Изучение метафазных хромосом. Регуляция деления клеток. Дифференциация клеток в тканях Стена высокая, но хилая


Оптимальным этапом для изучения хромосом является стадия метафазы, когда хромосомы достигают максимальной конденсации и располагаются в одной плоскости, что позволяет их идентифицировать с высокой точностью. Для изучения кариотипа требуется выполнение нескольких условий:

Стимуляция клеточных делений для получения максимального количества делящихся клеток,

- блокирование клеточного деления в метафазе;

- гипотонизацш клеток и приготовление препарата хромосом для дальнейшего исследования под микроскопом.

Для изучения хромосом можно использовать клетки из активно пролиферирующих тканей (клетки костного мозга, стенок семенников, опухолей) или клеточные культуры, которые получают путём культивирования в контролируемых условиях на специальных питательных средах клеток, выделенных из организма (клетки периферической крови*, лимфоциты Т, клетки красного костного мозга, фибробласты разного происхождения, клетки хориона, опухолевые клетки)

* Техника получения хромосомных препаратов из лимфоцитов периферической крови, культивируемых в изолированных условиях является наиболее простым методом и состоит из следующих этапов:

Забор венозной крови в асептических условиях;

Добавление гепарина для предотвращения свертывания крови;

Перенос материала во флаконы со специальной питательной средой;

Стимуляция клеточных делений добавлением фитогемагглютинина;

Инкубация культуры в течение 72 часов при температуре 37 0 С.

Блокирование клеточного деления на стадии метафазы достигается введением в среду колхицина или колцемида веществ - цитостатиков, разрушающих веретено деления. Получение препаратов для микроскопического анализа включает следующие этапы:

- гипотонизацю клеток, которая достигается добавлением гипотонического раствора хлорида калия; это приводит к набуханию клетки, разрыву ядерной оболочки и дисперсии хромосом;

- фиксацию клеток для остановки жизнедеятельности клетки с сохранением структуры хромосом; для этого используются специальные фиксаторы, например, смесь этилового спирта и уксусной кислоты;

- окрашивание препарата по Гимзе или использование других способов окрашивания;

- анализ под микроскопом с целью выявления численных нарушений (гомогенных или в мозаике) и структурных аберраций;

- фотографирование и вырезание хромосом;

- идентификацию хромосом и составление кариограммы (идиограммы).

Этапы кариотипирования Дифференциальная окраска хромосом

В настоящее время наряду с рутинными методами изучения кариотипа используются методы дифференциальной окраски, позволяющие выявить в хроматидах чередование окрашенных и неокрашенных полос. Они называются бэндами и имеют специфическое и точное распределение, обусловленное особенностями внутренней организации хромосомы

Методы дифференциальной окраски были разработаны в начале 70-х годов ХХ-го века и стали важной вехой в развитии цитогенетики человека. Они имеют широкое практическое применение, т.к.:

Чередование полос не носит случайный характер, а отражает внутреннюю структуру хромосом, например распределение эухроматиновых и гетерохроматиновых участков, богатых AT или GC последовательностями ДНК, участков хроматина с разной концентрацией гистонов и негистонов;

Распределение бэндов идентично для всех клеток одного организма и всех организмов данного вида, что используется для точной идентификации вида;

Метод позволяет точно идентифицировать гомологичные хромосомы, которые являются одинаковыми с генетической точки зрения и имеют сходное распределение бэндов;

Метод обеспечивает точную идентификацию каждой хромосомы, т.к. разные хромосомы имеют разное распределение бэндов;

Дифференциальная окраска позволяет выявить многие структурные нарушения хромосом (делеции, инверсии), которые с трудом обнаруживаются методами простой окраски.

В зависимости от способа предобработки хромосом и техники окрашивания различают несколько методов дифференциальной окраски (G,Q,R,T,C). Используя их, можно получить чередование окрашенных и неокрашенных полос - бэндов, стабильных и специфичных для каждой хромосомы.

Характеристика различных методов дифференциальной окраски хромосом

Название метода

Используемый краситель

Природа бэндов

Практическая роль

Окрашенные -

гетерохроматин;

неокрашенные -

эухроматин

Выявление численных и структурных аномалий хромосом

Куинакрин (флюоресцентный краситель)

Окрашенные -

гетерохроматин;

неокрашенные -

эухроматин

Метод R (реверс)

Окрашенные - эухроматин;

неокрашенные -

гетерохроматин

Выявление численных и структурных аномалий хромосом

Giemsa или флюоресцентный краситель

Окрашенные центромерный гетерохроматин

Анализ полиморфизма хромосом

Giemsa или флюоресцентный краситель

окрашенные - теломерный гетерохроматин

Анализ полиморфизма хромосом

Известно, что одни клетки непрерывно делятся, например стволовые клетки костного мозга , клетки зернистого слоя эпидермиса, эпителиальные клетки слизистой кишечника; другие, включая гладкомышечные, могут не делиться в течение нескольких лет, а некоторые клетки, например нейроны и поперечнополосатые мышечные волокна, вообще не способны делиться (если не считать внутриутробный период).

В некоторых тканях дефицит клеточной массы устраняется за счет быстрого деления оставшихся клеток. Так, у некоторых животных после хирургического удаления 7/8 печени ее масса восстанавливается почти до исходного уровня за счет деления клеток оставшейся 1/8 части. Таким свойством обладают многие железистые клетки и большинство клеток костного мозга, подкожной клетчатки, кишечного эпителия и других тканей, за исключением высокодифференцированных мышечных и нервных клеток.

Пока мало известно, каким образом в организме поддерживается необходимое число клеток разных типов . Тем не менее, экспериментальные данные говорят о существовании трех механизмов регуляции клеточного роста.

Во-первых, деление многих видов клеток находится под контролем факторов роста, вырабатываемых другими клетками. Некоторые из этих факторов поступают к клеткам из крови, другие - из близлежащих тканей. Так, эпителиальные клетки некоторых желез, например поджелудочной, не могут делиться без фактора роста, вырабатываемого подлежащей соединительной тканью.

Во-вторых, большинство нормальных клеток перестают делиться при недостатке места для новых клеток. Это можно наблюдать в клеточных культурах, в которых клетки делятся, пока не начнут контактировать друг с другом, затем они прекращают деление.

В-третьих, многие тканевые культуры перестают расти , если в культуральную жидкость попадает даже небольшое количество вырабатываемых ими веществ. Все эти механизмы контроля клеточного роста можно рассматривать как варианты механизма отрицательной обратной связи.

Регуляция размера клеток . Размер клетки зависит в основном от количества функционирующей ДНК. Так, при отсутствии репликации ДНК клетка растет, пока не достигнет определенного объема, после этого ее рост прекращается. Если с помощью колхицина заблокировать процесс образования веретена деления, то можно остановить митоз, хотя репликация ДНК при этом будет продолжаться. Это приведет к тому, что количество ДНК в ядре значительно превысит норму, и объем клетки увеличится. Предполагается, что избыточный рост клеток в данном случае обусловлен повышенной продукцией РНК и белка.

Дифференциация клеток в тканях

Одной из характеристик роста и деления клеток является их дифференцировка, под которой понимают изменение их физических и функциональных свойств в ходе эмбриогенеза с целью образования специализированных органов и тканей организма. Рассмотрим интересный эксперимент, помогающий объяснить этот процесс.

Если из яйцеклетки лягушки с помощью специальной методики вынуть ядро и вместо него поместить ядро клетки слизистой кишечника, то из такой яйцеклетки может вырасти нормальная лягушка. Этот эксперимент показывает, что даже такие высокодифференцированные клетки, как клетки слизистой кишечника, содержат всю необходимую генетическую информацию для развития нормального организма лягушки.

Из эксперимента ясно, что дифференцировка идет не за счет потери генов, а благодаря селективной репрессии оперонов. Действительно, на электронных микрофотографиях можно увидеть, что некоторые сегменты ДНК, «упакованные» вокруг гистонов, конденсированы настолько сильно, что уже не могут быть расплетены и использованы в качестве матрицы для транскрипции РНК. Этому явлению можно дать такое объяснение: на определенной стадии дифференцировки клеточный геном начинает синтезировать белки-регуляторы, которые необратимо репрессируют определенные группы генов, поэтому эти гены навсегда остаются инактивированными. Как бы то ни было, зрелые клетки человеческого организма способны синтезировать всего 8000-10000 разных белков, хотя если бы функционировали все гены, эта цифра составила бы около 30000.

Эксперименты на эмбрионах показывают, что некоторые клетки способны осуществлять контроль над дифференцировкой соседних клеток. Так, хордомезодерму называют первичным организатором эмбриона, поскольку вокруг нее начинают дифференцироваться все остальные ткани эмбриона. Превращаясь в ходе дифференцировки в сегментированную, состоящую из сомитов дорсальную мезодерму, хордомезодерма становится индуктором для окружающих тканей, запускающим формирование из них практически всех органов.

В качестве другого примера индукции можно привести развитие хрусталика. Когда глазной пузырек соприкасается с головной эктодермой, она начинает утолщаться, постепенно превращаясь в хрусталиковую плакоду, а та, в свою очередь, образует впячивание, из которого в результате и формируется хрусталик. Таким образом, развитие эмбриона в значительной степени обусловлено индукцией, суть которой заключается в том, что одна часть эмбриона вызывает дифференцировку другой, а та - дифференцировку остальных частей.
Итак, хотя дифференцировка клеток в целом все еще остается для нас загадкой, многие регуляторные механизмы, которые лежат в ее основе, нам уже известны.

К концу XIX в. цитологи располагали почти исчерпывающими знаниями о морфологической стороне митоза. Дальнейшее пополнение данных о клеточном делении шло главным образом за счет изучения наиболее примитивных организмов.

Был детально изучен процесс деления у прокариотных (не имеющих оформленного ядра) организмов (бактерий), генетически близкий к мнтозу (М. А. Пешков, 1966), а также митоз у простейших (И. Б. Райков, 1967), где были найдены крайне своеобразные формы этого процесса. У высших организмов морфологическое изучение митоза шло в основном по линии исследования этого процесса в динамике на живых объектах с помощью микрокиносъемки. В этом отношении большое значение имели работы А. Байера и Дж. Моле-Байер (1956, 1961), выполненные на клетках эндосперма некоторых растений.

Однако подавляющее большинство работ XX в. касалось физиологии клеточного деления, и именно в этом разделе проблемы были достигнуты наибольшие успехи. В сущности, неизученным оставался вопрос о причинах и контролирующих факторах митоза. Основоположником этого направления исследований был А. Г. Гурвич.

Уже в монографии «Морфология и биология клетки» (1904) Гурвич высказал мысль, что должны существовать факторы, обусловливающие возникновение митоза, причем они скорее всего связаны с состоянием самой приступающей к делению клетки. Эти пока еще очень общие представления получили развитие в серии дальнейших исследований Гурвича, обобщенных в монографии «Проблема клеточного деления с физиологической точки зрения» (1926). Первым важным теоретическим выводом Гурвича явилось представление о дуализме факторов, вызывающих митоз только при их сочетании. Один из этих факторов (или группа факторов) связан с эндогенными процессами подготовки клетки к делению (фактор возможности или готовности). Другой является экзогенным по отношению к данной клетке (фактор осуществления). Дальнейшие исследования Гурвича были посвящены главным образом изучению второго фактора.

Эксперименты и теоретические рассуждения привели Гурвича в 1923 г. к открытию, что большинство экзотермических реакций как в организме, так и в пробирке сопровождается УФ-излучением. Важнейшим биологическим следствием такого явления оказалась стимуляция клеточных делений, почему эти лучи получили название митогенетических, т. е. вызывающих митозы. В течение последующих лет Гурвичем (1948, 1959) и его сотрудниками было выполнено большое число исследований, посвященных проблеме митогенетического излучения. Стимулирующее влияние излучения было выяснено на самых разнообразных объектах - от бактерий и дрожжевых грибков до зародышей и клеток культуры ткани млекопитающих (А. А. Гурвич, 1968).

В первой четверти XX в. стали накапливаться данные относительно влияния на митоз внешних воздействий - лучистой энергии, различных химических веществ, температуры, концентрации водородных ионов, электрического тока и т. д. Особенно много исследований было выполнено на культуре ткани. В настоящее время установлено, что митотическое деление является следствием длинной цепи причин.

В противоположность цитологии начального периода, которая уделяла основное внимание самому митозу, современная цитология гораздо больше интересуется интерфазой. Пользуясь терминологией Гурвича, можно сказать, что сейчас на первом плане стоит изучение факторов готовно-

сти, обеспечивающих возможность вступления клетки в деление.

Это стало возможным благодаря новым методам исследования, в первую очередь благодаря радиоавтографии.

А. Говард и С. Пелк (1951) предложили весь митотический цикл разбить на четыре периода: постмитотический, или пресинтетический (Gi); синтетический (S), во время которого происходит репликация ДНК; постсинтетический, или премитотический (G2); и, наконец, митоз (М). Накоплен большой фактический материал по продолжительности у самых различных организмов отдельных периодов и всего митотического цикла в целом в норме и при воздействии разнообразных внешних и внутренних факторов - лучистой энергии, вирусов, гормонов и т. д.

Ряд исследований (М. Суонн, 1957, 1958) посвящен энергетике клеточного деления, и хотя многие детали остаются еще невыясненными, стало очевидным, что важная роль принадлежит в этом отношении макро- эргическим соединениям, в частности АТФ. Это вещество не только участвует в подготовке клетки к делению, но, по данным Г. Гофман- Берлинга (1959, 1960), ответственно за механические процессы, лежащие в основе расхождения хромосом к полюсам.

В выяснении механизма различных этапов клеточного деления особенно большую роль сыграли работы американского исследователя Д. Мезия (1961), изучавшего различные стороны физиологии митоза, в особенности роль митотического аппарата, осуществляющего самый процесс деления. Созданы различные представления о механизме разделения клеточного тела и о физико-химических изменениях клеток при делении. Изучение хромосом выросло в самостоятельную область исследований, которая оказалась органически связанной с генетикой и дала начало цитогенетике.

Наряду с изучением отдельных митозов значительное число исследований было посвящено выяснению закономерностей митотической актив ности тканей, в частности изучению зависимости клеточной пролиферации от физиологического состояния организма и влияния различных эндогенных и экзогенных факторов.

Первые исследования такого характера были выполнены на растительных объектах в самом начале XX в. в связи с изучением периодичности биологических процессов (А. Льюис, 1901; В. Келликот, 1904). В 20-х годах появился ряд фундаментальных исследований, посвященных суточному ритму клеточных делений в проростке растений (Р. Фризнер, 1920; М. Столфелд, 1921). В 30-40-х годах была проведена серия исследований (А. Карлетон, 1934; Ч. Блюменфельд, 1938, 1943; 3. Купер, Г. Франклин, 1940; Г. Блюменталь, 1948; и др.), в которых изучалась митотическая активность в очагах клеточного размножения различных лабораторных животных. Значительно меньше таких работ выполнено на очагах клеточного размножения человека (3. Купер, А. Шифф, 1938; А. Бродерс, В. Дублин, 1939; и др.).

В СССР первое исследование по влиянию на митотический режим физиологических факторов было опубликовано в 1947 г. Г. К. Хрущовим. Начиная с 50-х годов интерес к проблеме митотического режима организма значительно возрос (С. Я. Залкинд, И. А. Уткин, 1951; С. Я. Залкинд, 19,54, 1966; В. Н. Доброхотов, 1963; И. А. Алов, 1964; и др.). Наиболее полно был изучен суточный ритм митотической активности у млекопитающих.

Первые попытки проанализировать механизмы, регулирующие митотическую активность, были предприняты в 1948 г. английским исследователем В. Буллоу. Советские цитологи (JI. Я. Бляхер, 1954; И. А. Уткин, 1959; Г. С. Стрелин, В. В. Козлов, 1959) уделили большое внимание ней- рогуморальной регуляции митотической активности, установив рефлекторный характер регуляции клеточных делений. Оказалось, что воздействие на нервную систему влияет опосредованно - через сдвиг гормонального равновесия. Выяснилось также, что при этом резко усиливается секреция адреналина, тормозящего митотическую активность. Удаление надпочечников приводит к выключению эффекта торможения митозов (А. К. Рябуха, 1955, 1958). Ряд исследований посвящен изучению сложных взаимоотношений между митотической и физиологической активностью организма (С. Я. Залкинд, 1952; И. А. Алов, 1964).

Повышение интереса к проблеме митотических циклов и широкое применение радиоавтографии привело к тому, что в настоящее время подавляющее большинство работ посвящено изучению закономерностей митотического цикла, анализу закономерностей перехода из одного периода в другой, влиянию на митоз разнообразных эндогенных и экзогенных факторов. Это, несомненно, одно из наиболее перспективных направлений в изучении проблемы клеточной пролиферации (О. И. Епифанова, 1973).

Цитология наследственности

В первой половине XX в. в связи с расцветом генетики интенсивно разрабатывались цитологические проблемы, касающиеся наследственности. Так возникла новая область цитологии - кариология.

Пионером кариологических исследований был русский ботаник

С. Г. Навашин. Навашин по справедливости может быть назван создателем цитогенетики, не случайно первый период в развитии этой науки часто называют «русским» или «навашинским». Уже в классических работах по эмбриологии растений, в особенности по цитологии оплодотворения (1898), он сосредоточил свое внимание на морфологии хромосом в клетках некоторых лилейных, в частности, конского гиацинта (Galtonia candicans). В 1916 г. Навашин опубликовал работу, в которой привел тщательное описание хромосомного набора этого растения. Ему удалоеь найти на хромосоме (в центре или на ее полюсе) особый неокрашенный участок (названный им «хроматическим перерывом»), именуемый сейчас центромерой или кинетохором, в области которого хромосома при- .крепляется к веретену. Центромерам принадлежит чрезвычайно важная роль в процессе расщепления хромосом и их расхождения к полюсам делящейся клетки. Навашин впервые показал, что строение хромосом вовсе не является неизменным, но подвержено изменениям в филогенезе и при некоторых особых условиях существования (например, в клетках семян при их длительном хранении). На ряде растительных объектов (Crepis, Vicia, Muscari и др.) ученики Навашина показали, что ка- риолотический анализ может быть использован для филогенетических выводов. Несколько позже начались кариологические исследования на клетках животных и человека. В этих работах также участвовал Навашин. Уже после его смерти, в 1936 г., была опубликована работа, посвященная уменьшению (диминуции) хроматина при развитии яйца лошадиной аскариды, подтвердившая выводы Т. Бовери (1910).

Обстоятельные кариологические работы были выполнены ъ 20-30-х годах советским цитологом П. И. Живаго. Он и его сотрудники исследовали кариотип домашних птиц (куры, индейки; 1924, 1928), мелкого рогатого скота (1930) и человека (1932). Живаго не только выяснил ряд карио- типов, но и начал разработку вопроса о постоянстве числа хромосом в пределах одного организма. На основании литературных данных (по двукрылым) и исследования ряда объектов (эму, нанду, человек) Живаго (1934) пришел к заключению, что в отдельных клетках и целых тканях (особенно у эмбрионов) наблюдаются значительные колебания в числе хромосом. Он придавал этим различиям большое значение, так как они ведут к изменению генома, а следовательно, и наследственных свойств организма. Он высказывал также предположение, что наличие клеток с различным числом хромосом может иметь приспособительное значение, так как увеличивает возможные- варианты кариотипов для последующего отбора. Эта точка зрения, высказанная свыше 30 лет тому назад, разделяется в настоящее время многими исследователями.

Большую роль в развитии рассматриваемого направления сыграла книга К. Белара «Цитологические основы наследственности» (1928, русский перевод 1934). Разделу, посвященному связи хромосом с наследственностью, предшествуют собственно цитологические главы, содержащие данные о строении ядра и цитоплазмы, о клеточном делении, оплодотворении и созревании половых клеток, о партеногенезе. Очень детально и в сравнительном аспекте рассматривается строение хромосом не только у высших позвоночных, но и у беспозвоночных, простейших и растений. Содержатся ценные данные, касающиеся индивидуальности и изменчивости хромосом, обмена фрагментами при кроссинговере, диминуции хроматина, патологии митоза. Книга Белара в течение долгого времени оставалась лучшей монографией по цитологии наследственности.

Постепенно, в связи с интенсивным развитием генетики, цитология наследственности превратилась в цитогенетику, история которой кратко изложена вместе с историей генетики (см. главы 13 и 24). Во второй половине XX в. возникло несколько совершенно новых, весьма перспективных направлений исследований.

В первую очередь следует назвать цитоэкологию, изучающую роль клеточного уровня организации в приспособлении организма к условиям среды. В СССР это направление, тесно связанное с биохимией клетки и особенно с изучением свойств клеточных белков, получило широкое развитие в работах В. Я. Александрова и Б. П. Ушакова.

За последние 10-20 лет большое внимание привлекает изучение общей физиологии клетки и, в частности, закономерностей синтеза и расходования веществ, как участвующих в основных жизненных процессах, так и являющихся ее специфическими продуктами (секреты). К этому же кругу вопросов относится изучение восстановительных процессов в клетке, т. е. физиологической регенерации, обеспечивающей восстановление разрушенных или утраченных клеточных структур и веществ и совершающейся на молекулярном уровне.

Большое значение в цитологии приобрели проблемы детерминации, дифференциации и дедифференциации клеток. Они играют важную роль в эмбриональных клетках и различных категориях клеток, культивируемых вне организма (А. Де-Рейк, Дж. Найт, 1967; С. Я. Залкинд, Г. Б. Юровская, 1970).

Своеобразный раздел цитологии составила цитопатология - область, пограничная с общей патологией и сделавшая значительные успехи в последние десятилетия XX в. Термин «цитопатология» используется для обозначения отрасли биологии, в которой изучение общепатологических процессов ведется на клеточном уровне, и как система знаний о патологических изменениях отдельной клетки. Что касается первого направления, то после классических работ Р. Вирхова попытки свести сущность патологического процесса к изменению микроскопических и суб- микроскопических структур предпринимались неоднократно. Много примеров подобного использования цитологического анализа для понимания патологических процессов в организме содержится в работах Р. Камерона (1956, 1959).

Второе направление может рассматриваться как чисто цитологическое. Оно ставит своей целью изучение патологии самой клетки и ее органоидов, т. е. морфологических, биохимических и физиологических отклонений от нормы, наблюдаемых при происходящих в клетке различных патологических процессах, независимо от их влияния на состояние ткани, органа или всего организма. Развитие этого направления связано прежде всего с накоплением данных об изменении клеток, происходящем вследствие их естественного старения, а также различных резких цитопатологических изменений, наблюдаемых при воздействии тех или иных неблагоприятных факторов (физических, химических, биологических) внешней среды. Особенно значительное развитие получило изучение патологических изменений под влиянием неблагоприятных воздействий на клетку в эксперименте и исследование механизма действия таких факторов. Эти исследования получили широкое развитие в первую очередь в радиобиологии, где всестороннее изучение реакции клетки на воздействие лучистой энергии возможно не только на клеточном или субклеточном, но и на молекулярном уровне.

Стимуляторы метаболизма клеток и стимуляторы регенерации: экстракт плаценты, экстракт околоплодной жидкости, пантенол, экстракт медицинских пиявок, лососевой молоки, морского планктона, цветочной пыльцы, костный мозг, эмбриональные клетки, маточное молочко пчел (апилак), ДНК, РНК, факторы роста, органопрепараты тимуса, пуповины, костного мозга, масло облепихи, фитэстрогены и др.

Факторы роста - белки и гликопротеиды, которые оказывают митогенное действие (стимулируют деление) на различные клетки. Факторы роста получают название по типу клеток, для который впервые было показано митогенное действие, однако они обладают более широким спектром действия и не ограничиваются одной группой клеток. Фактор роста кератиноцитов стимулирует деление кератиноцитов. Появляется при ранениях кожи. Эпидермальный фактор роста - стимулирует регенерацию. Подавляет дифференцировку и апоптоз, обеспечивает реэпителизацию ран. Может индуцировать опухолевый рост. Гепаринсвязывающий фактор роста оказывает антипролиферативный эффект на кератиноциты. Фактор роста нервных клеток стимулирует деление кератиноцитов. В настоящее время факторы роста, способные активировать деление человеческих клеток, выделены из молочной сыворотки, из амниотической жидкости животных, плаценты, тканей человеческих эмбрионов, гонад беспозвоночных животных и спермы млекопитающих. Факторы роста используют для активации митозов в стареющей коже, ускорения обновления эпидермиса и регенерации кожных покровов.

Какие именно вещества стимулируют обновление клеток?

  • Витамины,
  • микроэлементы,
  • аминокислоты,
  • ферменты,

Это могут быть: вит. А, Е, С, F, цинк, магний, селен, сера, кремний, вит. группы В, биотин, глютатион, протеаза, папаин, и др.

Вещества, повышающие тургор и эластичность кожи, эластостимуляторы (сера, вит. С, хондроитинсульфат, гиалуроновая к-та, коллаген, кремний, глюкозамины, ретиноиды и ретиноевая кислота, фибронектин, фитоэстрогены, препараты клеточной косметики и др).

Ретиноиды

Ретиноиды - природные или синтетические соединения, проявляющие сходное с ретинолом (вит. А) действие. Действие ретиноидов на кожу: шелушивающее, осветляющее, повышение упругости и эластичности, сглаживание морщин, уменьшение воспаления, ранозаживляющее, побочное действие - раздражающее. Ретиноиды вызывают одновременное утолщение эпидермиса и отшелушивание рогового слоя, ускоряя обновление кератиноцитов. Группы ретиноидов:

  • Неароматические ретиноиды - ретинальдегид, третиноин, изотретиноин, транс-ретинол в - глюкуронид, фентретинид, эфиры ретиноевой кислоты (ре- тинилацетат, ретинилпальмитат).
  • Моноароматические ретиноиды - этретинат, транс-ацитретин, мотретинид.
  • Полиароматические ретиноиды - адапален, тазаротин, тамибаротин, аротиноид метилсульфон.

В наружных лекарственных и косметических средствах для коррекции старения используются ретинол, ретинола пальмитат, ретинальдегид, третиноин, эфиры ретиноевой кислоты, изотретиноин, для коррекции фотостарения - третиноин, изотретиноин, аротиноид метилсульфонат, фенретинид, для коррекции акне - третиноин, изотретиноин, мотретинид, адапален.

Деление клеток играет большую роль в процессах онтогенеза. Во-первых, благодаря делению из зиготы, которая соответствует одноклеточной стадии развития, возникает многоклеточный организм. Во-вторых, пролиферация клеток, происходящая после стадии дробления, обеспечивает рост организма. В-третьих, избирательному размножению клеток принадлежит заметная роль в обеспечении морфогенетических процессов. В постнатальном периоде индивидуального развития благодаря клеточному делению осуществляется обновление многих тканей в процессе жизнедеятельности организма, а также восстановление утраченных органов, заживление ран.

Зигота, бластомеры и все соматические клетки организма, за исключением половых клеток, в периоде созревания гаметогенеза делятся митозом. Клеточное деление как таковое является одной из фаз клеточного цикла. От продолжительности интерфазы (G­ 1 + S + G 2 -периоды) зависит частота последовательных делений в ряду клеточных поколений. В свою очередь интерфаза имеет разную продолжительность в зависимости от стадии развития зародыша, локализации и функции клеток.

Так, в периоде дробления эмбриогенеза клетки делятся быстрее, чем в другие, более поздние периоды. Во время гаструляции и органогенеза клетки делятся избирательно в определенных областях зародыша. Замечено, что там, где скорость клеточного деления высокая, происходят и качественные изменения в структуре эмбриональной закладки, т.е. органогенетические процессы сопровождаются активным размножением клеток. Показано, что растяжение клеток при их движении стимулирует клеточное деление. В сформировавшемся организме некоторые клетки, например нейроны, вообще не делятся, в то время как в кроветворной и эпителиальной тканях продолжается активное размножение клеток. Клетки некоторых органов взрослого организма в обычных условиях почти не делятся (печень, почка), но при наличии стимула в виде воздействия гормональных или внутритканевых факторов, часть из них может вступить в деление.

При изучении расположения делящихся клеток в тканях обнаружено, что они группируются гнездами. Само по себе деление клеток не придает эмбриональному зачатку определенной формы, и нередко эти клетки располагаются беспорядочно, но в результате последующего их перераспределения и миграции зачаток приобретает форму. Так, например, в зачатке головного мозга деление клеток сосредоточено исключительно в том слое стенки, который прилежит к полости невроцеля. Затем клетки передвигаются из зоны размножения к наружной стороне пласта и образуют ряд выпячиваний, так называемых мозговых пузырей. Таким образом, клеточное деление в эмбриогенезе носит избирательный и закономерный характер. Об этом же свидетельствует открытая в 60-х годах суточная периодичность количества делящихся клеток в обновляющихся тканях.

В настоящее время известен ряд веществ, которые побуждают клетки к делению, например фитогемагглютинин, некоторые гормоны, а также комплекс веществ, выделяющихся при повреждении тканей. Открыты также и тканеспецифичные ингибиторы клеточного деления - кейлоны. Их действие заключается в подавлении или замедлении скорости деления клеток в тех тканях, которые их вырабатывают. Например, эпидермальные кейлоны действуют только на эпидермис. Будучи тканеспецифичными, кейлоны лишены видовой специфичности. Так, эпидермальный кейлон трески действует и на эпидермис млекопитающего.

За последние годы установлено, что многие структуры зародыша образуются клетками, происходящими от небольшого числа или даже одной клетки. Совокупность клеток, являющихся потомками одной родоначальной клетки, называют клоном. Показано, например, что большие по объему участки центральной нервной системы формируются из определенных клеток раннего зародыша. Пока не ясно, в какой именно срок происходит отбор родоначальных клеток, каков механизм этого отбора. Важным следствием такой селекции является то, что многим клеткам раннего зародыша не суждено участвовать в дальнейшем развитии. В опытах на мышах показано, что организм развивается всего из трех клеток внутренней клеточной массы на стадии, когда бластоциста состоит из 64 клеток, а сама внутренняя клеточная масса содержит примерно 15 клеток. Клональные клетки могут быть причиной мозаицизма, когда большие группы клеток отличаются по набору хромосом или аллельному составу.

По-видимому, количество циклов клеточных делений в ходе онтогенеза генетически предопределено. Вместе с тем известна мутация, изменяющая размеры организма за счет одного дополнительного клеточного деления. Это мутация gt (giant), описанная у Drosophila melanogaster. Она наследуется по рецессивному сцепленному с полом типу. У мутантов gt развитие протекает нормально на протяжении всего эмбрионального периода. Однако в тот момент, когда нормальные особи окукливаются и начинают метаморфоз, особи gt продолжают оставаться в личиночном состоянии еще дополнительно 2-5 сут. За это время у них происходит одно, а может быть, и два дополнительных деления в имагинальных дисках, от количества клеток которых зависит размер будущей взрослой особи. Затем мутанты образуют куколку вдвое крупнее обычной. После метаморфоза несколько удлиненной по времени стадии куколки на свет появляется морфологически нормальная взрослая особь удвоенного размера.

У мышей описан ряд мутаций, обусловливающих снижение пролиферативной активности и следующие за этим фенотипические эффекты. К ним относят, например, мутацию or (ocular retardation), затрагивающую сетчатку глаза начиная с 10-х суток эмбрионального развития и приводящую к микрофтальмии (уменьшению размеров глазных яблок), и мутацию tgia, затрагивающую центральную нервную систему с 5-6-х суток после рождения и приводящую к отставанию роста и атрофии некоторых внутренних органов.

Таким образом, деление клеток является чрезвычайно важным процессом в онтогенетическом развитии. Оно протекает с разной интенсивностью в разное время и в разных местах, носит клональный характер и подвержено генетическому контролю. Все это характеризует клеточное деление как сложнейшую функцию целостного организма, подчиняющегося регулирующим влияниям на различных уровнях: генетическом, тканевом, онтогенетическом.