კოეფიციენტის სიმძლავრის ნამრავლის ლოგარითმი მაგალითები. ლოგარითმების თვისებები და მათი ამონახსნების მაგალითები. ყოვლისმომცველი გზამკვლევი (2019)


მოგეხსენებათ, გამონათქვამების ძალებით გამრავლებისას მათი მაჩვენებლები ყოველთვის იკრიბება (a b *a c = a b+c). ეს მათემატიკური კანონი გამოიტანა არქიმედესმა, მოგვიანებით კი, მე-8 საუკუნეში, მათემატიკოსმა ვირასენმა შექმნა მთელი რიცხვების მაჩვენებლების ცხრილი. სწორედ ისინი ემსახურებოდნენ ლოგარითმების შემდგომ აღმოჩენას. ამ ფუნქციის გამოყენების მაგალითები შეგიძლიათ ნახოთ თითქმის ყველგან, სადაც თქვენ უნდა გაამარტივოთ რთული გამრავლება მარტივი შეკრებით. თუ 10 წუთს დაუთმობთ ამ სტატიის კითხვას, ჩვენ აგიხსნით რა არის ლოგარითმები და როგორ იმუშაოთ მათთან. მარტივი და ხელმისაწვდომი ენით.

განმარტება მათემატიკაში

ლოგარითმი არის შემდეგი ფორმის გამოხატულება: log a b=c, ანუ ნებისმიერი არაუარყოფითი რიცხვის (ანუ ნებისმიერი დადებითი) ლოგარითმი "b" მის ფუძეზე "a" ითვლება "c" ხარისხად. ” რომელზედაც უნდა გაიზარდოს ფუძე “a”, რათა საბოლოოდ მივიღოთ მნიშვნელობა “b”. გავაანალიზოთ ლოგარითმი მაგალითების გამოყენებით, ვთქვათ არის გამონათქვამი log 2 8. როგორ მოვძებნოთ პასუხი? ეს ძალიან მარტივია, თქვენ უნდა იპოვოთ სიმძლავრე ისეთი, რომ 2-დან საჭირო სიმძლავრემდე მიიღოთ 8. თქვენს თავში გარკვეული გამოთვლების გაკეთების შემდეგ მივიღებთ რიცხვს 3! და ეს მართალია, რადგან 2 3-ის ხარისხზე იძლევა პასუხს, როგორც 8.

ლოგარითმების სახეები

ბევრი მოსწავლისა და სტუდენტისთვის ეს თემა რთული და გაუგებარი ჩანს, მაგრამ სინამდვილეში ლოგარითმები არც ისე საშინელია, მთავარია მათი ზოგადი მნიშვნელობის გაგება და მათი თვისებების და ზოგიერთი წესის დამახსოვრება. არის სამი ცალკეული სახეობებილოგარითმული გამონათქვამები:

  1. ბუნებრივი ლოგარითმი ln a, სადაც ფუძეა ეილერის რიცხვი (e = 2.7).
  2. ათწილადი a, სადაც ფუძე არის 10.
  3. ნებისმიერი b რიცხვის ლოგარითმი a>1-მდე.

თითოეული მათგანი წყდება სტანდარტული გზით, მათ შორის გამარტივება, შემცირება და შემდგომი შემცირება ერთ ლოგარითმზე ლოგარითმული თეორემების გამოყენებით. მისაღებად სწორი ღირებულებებილოგარითმები, მათი ამოხსნისას უნდა გახსოვდეთ მათი თვისებები და მოქმედებების თანმიმდევრობა.

წესები და გარკვეული შეზღუდვები

მათემატიკაში არის რამდენიმე წესი-შეზღუდვა, რომლებიც მიღებულია აქსიომად, ანუ ისინი არ ექვემდებარება განხილვას და არის ჭეშმარიტება. მაგალითად, შეუძლებელია რიცხვების გაყოფა ნულზე და ასევე შეუძლებელია უარყოფითი რიცხვების ლუწი ფესვის ამოღება. ლოგარითმებს ასევე აქვთ საკუთარი წესები, რომელთა დაცვით შეგიძლიათ მარტივად ისწავლოთ მუშაობა გრძელი და ტევადი ლოგარითმული გამონათქვამებითაც კი:

  • ფუძე "a" ყოველთვის უნდა იყოს ნულზე მეტი და არა 1-ის ტოლი, წინააღმდეგ შემთხვევაში გამოთქმა დაკარგავს თავის მნიშვნელობას, რადგან "1" და "0" ნებისმიერი ხარისხით ყოველთვის მათი მნიშვნელობების ტოლია;
  • თუ a > 0, მაშინ a b >0, გამოდის, რომ „c“ ასევე უნდა იყოს ნულზე მეტი.

როგორ ამოხსნათ ლოგარითმები?

მაგალითად, დავალება მოცემულია პასუხის პოვნა განტოლებაზე 10 x = 100. ეს ძალიან მარტივია, თქვენ უნდა აირჩიოთ სიმძლავრე ათი რიცხვის აწევით, რომლითაც მივიღებთ 100-ს. ეს, რა თქმა უნდა, არის 10 2 = 100.

ახლა წარმოვიდგინოთ ეს გამონათქვამი ლოგარითმული ფორმით. ვიღებთ log 10 100 = 2. ლოგარითმების ამოხსნისას ყველა მოქმედება პრაქტიკულად იყრის თავს იმ სიმძლავრის საპოვნელად, რომელზედაც საჭიროა ლოგარითმის ფუძის შეყვანა მოცემული რიცხვის მისაღებად.

უცნობი ხარისხის მნიშვნელობის ზუსტად დასადგენად, თქვენ უნდა ისწავლოთ როგორ იმუშაოთ გრადუსების ცხრილთან. ეს ასე გამოიყურება:

როგორც ხედავთ, ზოგიერთი მაჩვენებლის გამოცნობა შესაძლებელია ინტუიციურად, თუ თქვენ გაქვთ ტექნიკური გონება და ცოდნა გამრავლების ცხრილის შესახებ. თუმცა იმისთვის დიდი ღირებულებებიდაგჭირდებათ ხარისხების ცხრილი. მისი გამოყენება შეუძლიათ მათაც, ვინც საერთოდ არაფერი იცის კომპლექსის შესახებ მათემატიკური თემები. მარცხენა სვეტი შეიცავს რიცხვებს (ბაზა a), რიცხვების ზედა მწკრივი არის c სიმძლავრის მნიშვნელობა, რომელზედაც ამაღლებულია რიცხვი. კვეთაზე, უჯრედები შეიცავს ნომრის მნიშვნელობებს, რომლებიც პასუხია (a c =b). ავიღოთ, მაგალითად, პირველივე უჯრედი 10-ით და კვადრატში მივიღოთ მნიშვნელობა 100, რომელიც მითითებულია ჩვენი ორი უჯრედის გადაკვეთაზე. ყველაფერი ისეთი მარტივი და მარტივია, რომ ყველაზე ჭეშმარიტი ჰუმანისტიც კი მიხვდება!

განტოლებები და უტოლობა

გამოდის, რომ გარკვეულ პირობებში მაჩვენებლის მაჩვენებელი ლოგარითმია. აქედან გამომდინარე, ნებისმიერი მათემატიკური რიცხვითი გამონათქვამი შეიძლება დაიწეროს ლოგარითმული ტოლობის სახით. მაგალითად, 3 4 = 81 შეიძლება ჩაიწეროს, როგორც 81-ის მე-3 ლოგარითმი, რომელიც ტოლია ოთხს (log 3 81 = 4). ამისთვის უარყოფითი ძალებიწესები იგივეა: 2 -5 = 1/32 ვწერთ ლოგარითმად, ვიღებთ log 2 (1/32) = -5. მათემატიკის ერთ-ერთი ყველაზე მომხიბვლელი განყოფილება არის "ლოგარითმების" თემა. განტოლებების მაგალითებსა და ამონახსნებს განვიხილავთ ქვემოთ, მათი თვისებების შესწავლისთანავე. ახლა ვნახოთ, როგორ გამოიყურება უტოლობები და როგორ განვასხვავოთ ისინი განტოლებისგან.

მოცემულია შემდეგი გამოთქმა: log 2 (x-1) > 3 - ეს არის ლოგარითმული უტოლობა, რადგან უცნობი მნიშვნელობა „x“ ლოგარითმული ნიშნის ქვეშ არის. და ასევე გამონათქვამში შედარებულია ორი სიდიდე: სასურველი რიცხვის ლოგარითმი ორზე მეტია სამზე.

ყველაზე მნიშვნელოვანი განსხვავება ლოგარითმულ განტოლებებსა და უტოლობას შორის არის ის, რომ განტოლებები ლოგარითმებით (მაგალითად, ლოგარითმი 2 x = √9) პასუხში გულისხმობს ერთ ან მეტ კონკრეტულ რიცხვობრივ მნიშვნელობას, ხოლო უტოლობის ამოხსნისას ორივე მისაღები დიაპაზონი. მნიშვნელობები და წერტილები განისაზღვრება ამ ფუნქციის დარღვევით. შედეგად, პასუხი არ არის ინდივიდუალური რიცხვების მარტივი ნაკრები, როგორც განტოლების პასუხში, არამედ უწყვეტი სერია ან რიცხვების სიმრავლე.

ძირითადი თეორემები ლოგარითმების შესახებ

ლოგარითმის მნიშვნელობების პოვნის პრიმიტიული ამოცანების გადაჭრისას, მისი თვისებები შეიძლება არ იყოს ცნობილი. თუმცა, როდესაც საქმე ეხება ლოგარითმულ განტოლებებს ან უტოლობას, უპირველეს ყოვლისა, აუცილებელია ლოგარითმების ყველა ძირითადი თვისების მკაფიოდ გაგება და პრაქტიკაში გამოყენება. განტოლებათა მაგალითებს განვიხილავთ ჯერ უფრო დეტალურად.

  1. ძირითადი იდენტურობა ასე გამოიყურება: a logaB =B. იგი გამოიყენება მხოლოდ მაშინ, როდესაც a მეტია 0-ზე, არ უდრის ერთს და B არის ნულზე მეტი.
  2. პროდუქტის ლოგარითმი შეიძლება წარმოდგენილი იყოს შემდეგი ფორმულით: log d (s 1 * s 2) = log d s 1 + log d s 2. ამ შემთხვევაში სავალდებულო პირობაა: d, s 1 და s 2 > 0; a≠1. ამ ლოგარითმული ფორმულის მტკიცებულება შეგიძლიათ მაგალითებითა და ამოხსნით. მოდით log a s 1 = f 1 და log a s 2 = f 2, შემდეგ a f1 = s 1, a f2 = s 2. მივიღებთ, რომ s 1 * s 2 = a f1 *a f2 = a f1+f2 (თვისებები გრადუსი ), და შემდეგ განმარტებით: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, რაც დასამტკიცებლად იყო საჭირო.
  3. კოეფიციენტის ლოგარითმი ასე გამოიყურება: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. ფორმულის სახით თეორემა იღებს შემდეგ ფორმას: log a q b n = n/q log a b.

ამ ფორმულას ეწოდება "ლოგარითმის ხარისხის თვისება". ის წააგავს ჩვეულებრივი ხარისხების თვისებებს და გასაკვირი არ არის, რადგან ყველა მათემატიკა ემყარება ბუნებრივ პოსტულატებს. მოდით შევხედოთ მტკიცებულებას.

მოდით log a b = t, გამოდის t =b. თუ ორივე ნაწილს ავწევთ m ხარისხზე: a tn = b n;

მაგრამ რადგან a tn = (a q) nt/q = b n, ამიტომ log a q b n = (n*t)/t, მაშინ log a q b n = n/q log a b. თეორემა დადასტურდა.

პრობლემებისა და უთანასწორობის მაგალითები

ლოგარითმებზე ამოცანების ყველაზე გავრცელებული ტიპები არის განტოლებებისა და უტოლობების მაგალითები. ისინი გვხვდება თითქმის ყველა პრობლემურ წიგნში და ასევე არის მათემატიკის გამოცდების აუცილებელი ნაწილი. უნივერსიტეტში შესასვლელად ან მათემატიკაში მისაღები გამოცდების ჩასაბარებლად, თქვენ უნდა იცოდეთ როგორ სწორად ამოხსნათ ასეთი ამოცანები.

სამწუხაროდ, არ არსებობს ლოგარითმის უცნობი მნიშვნელობის ამოხსნისა და განსაზღვრის ერთი გეგმა ან სქემა, თუმცა მისი გამოყენება შესაძლებელია ყველა მათემატიკური უტოლობის ან ლოგარითმული განტოლებისთვის. გარკვეული წესები. უპირველეს ყოვლისა, თქვენ უნდა გაარკვიოთ, შეიძლება თუ არა გამოხატვის გამარტივება ან გამოიწვიოს იერი. თქვენ შეგიძლიათ გაამარტივოთ გრძელი ლოგარითმული გამონათქვამები, თუ სწორად გამოიყენებთ მათ თვისებებს. მოდით გავეცნოთ მათ სწრაფად.

როცა გადაწყვეტს ლოგარითმული განტოლებები, უნდა განვსაზღვროთ რა ტიპის ლოგარითმი გვაქვს: შეიძლება შეიცავდეს მაგალითის გამოხატულებას ბუნებრივი ლოგარითმიან ათობითი.

აქ არის მაგალითები ln100, ln1026. მათი გამოსავალი ემყარება იმ ფაქტს, რომ მათ უნდა დაადგინონ სიმძლავრე, რომლის ფუძე 10 ტოლი იქნება, შესაბამისად, 100 და 1026. ბუნებრივი ლოგარითმების ამოსახსნელად, თქვენ უნდა გამოიყენოთ ლოგარითმული იდენტობები ან მათი თვისებები. მოდით შევხედოთ სხვადასხვა ტიპის ლოგარითმული ამოცანების ამოხსნის მაგალითებს.

როგორ გამოვიყენოთ ლოგარითმის ფორმულები: მაგალითებითა და გადაწყვეტილებებით

ასე რომ, მოდით შევხედოთ ლოგარითმების შესახებ ძირითადი თეორემების გამოყენების მაგალითებს.

  1. პროდუქტის ლოგარითმის თვისება შეიძლება გამოყენებულ იქნას ამოცანებში, სადაც აუცილებელია b რიცხვის დიდი მნიშვნელობის დაშლა უფრო მარტივ ფაქტორებად. მაგალითად, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. პასუხი არის 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1.5 - როგორც ხედავთ, ლოგარითმის სიმძლავრის მეოთხე თვისების გამოყენებით, ჩვენ მოვახერხეთ ერთი შეხედვით რთული და ამოუხსნელი გამოსახულების ამოხსნა. თქვენ უბრალოდ უნდა შეაფასოთ საფუძველი და შემდეგ ამოიღოთ მაჩვენებლების მნიშვნელობები ლოგარითმის ნიშნიდან.

დავალებები ერთიანი სახელმწიფო გამოცდიდან

ლოგარითმები ხშირად გვხვდება მისაღებ გამოცდებში, განსაკუთრებით ბევრი ლოგარითმული პრობლემა ერთიან სახელმწიფო გამოცდაში (სახელმწიფო გამოცდა სკოლის ყველა კურსდამთავრებულისთვის). როგორც წესი, ეს ამოცანები წარმოდგენილია არა მხოლოდ A ნაწილში (გამოცდის ყველაზე მარტივი ტესტი), არამედ C ნაწილში (ყველაზე რთული და მოცულობითი ამოცანები). გამოცდა მოითხოვს ზუსტ და სრულყოფილ ცოდნას თემის „ბუნებრივი ლოგარითმები“.

მაგალითები და პრობლემების გადაწყვეტა აღებულია ერთიანი სახელმწიფო გამოცდის ოფიციალური ვერსიებიდან. ვნახოთ, როგორ წყდება ასეთი ამოცანები.

მოცემული ჟურნალი 2 (2x-1) = 4. ამოხსნა:
მოდით გადავიწეროთ გამონათქვამი, გავამარტივოთ იგი ცოტა log 2 (2x-1) = 2 2, ლოგარითმის განმარტებით მივიღებთ, რომ 2x-1 = 2 4, შესაბამისად 2x = 17; x = 8.5.

  • უმჯობესია, ყველა ლოგარითმი ერთსა და იმავე ფუძეზე შევიყვანოთ, რათა გამოსავალი არ იყოს რთული და დამაბნეველი.
  • ლოგარითმის ნიშნის ქვეშ მყოფი ყველა გამონათქვამი მითითებულია, როგორც დადებითი, ამიტომ, როდესაც გამოხატვის გამოხატულება, რომელიც არის ლოგარითმის ნიშნის ქვეშ და მისი ფუძე ამოღებულია მულტიპლიკატორად, ლოგარითმის ქვეშ დარჩენილი გამოხატულება უნდა იყოს დადებითი.
  1. შეამოწმეთ არის თუ არა უარყოფითი რიცხვები თუ ერთი ლოგარითმის ნიშნის ქვეშ.ეს მეთოდი გამოიყენება ფორმის გამონათქვამებისთვის ჟურნალი b⁡ (x) ჟურნალი b ⁡ (a) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))). თუმცა, ეს არ არის შესაფერისი ზოგიერთი განსაკუთრებული შემთხვევებისთვის:

    • უარყოფითი რიცხვის ლოგარითმი არ არის განსაზღვრული ნებისმიერ ბაზაში (მაგალითად, ჟურნალი ⁡ (− 3) (\displaystyle \log(-3))ან ჟურნალი 4 ⁡ (− 5) (\displaystyle \log _(4)(-5))). ამ შემთხვევაში დაწერეთ "არ არის გამოსავალი".
    • ნებისმიერი ფუძის ნულის ლოგარითმი ასევე განუსაზღვრელია. თუ დაგიჭერენ ln ⁡ (0) (\displaystyle \ln(0)), ჩაწერეთ "არ არის გამოსავალი".
    • ლოგარითმი ერთიდან ნებისმიერ ბაზაზე ( ჟურნალი ⁡ (1) (\displaystyle \log(1))) ყოველთვის ნულია, რადგან x 0 = 1 (\displaystyle x^(0)=1)ყველა ღირებულებისთვის x. დაწერეთ 1 ამ ლოგარითმის ნაცვლად და არ გამოიყენოთ ქვემოთ მოცემული მეთოდი.
    • თუ ლოგარითმებს აქვთ სხვადასხვა ფუძე, მაგალითად l o g 3 (x) l o g 4 (a) (\displaystyle (\frac (log_(3)(x))(log_(4)(a)))), და არ არის შემცირებული მთელ რიცხვებად, გამოხატვის მნიშვნელობა ვერ მოიძებნება ხელით.
  2. გამოთქმის გადაქცევა ერთ ლოგარითმად.თუ გამოთქმა ზემოთ ჩამოთვლილთაგან არ არის განსაკუთრებული შემთხვევები, ის შეიძლება წარმოდგენილი იყოს როგორც ერთი ლოგარითმი. ამისათვის გამოიყენეთ შემდეგი ფორმულა: ჟურნალი b ⁡ (x) ჟურნალი b ⁡ (ა) = ჟურნალი a ⁡ (x) (\displaystyle (\frac (\log _(b)(x))(\log _(b)(a)))=\ log_(a)(x)).

    • მაგალითი 1: განვიხილოთ გამონათქვამი ჟურნალი ⁡ 16 ჟურნალი ⁡ 2 (\displaystyle (\frac (\log (16))(\log (2)))).
      პირველი, მოდით წარმოვადგინოთ გამოხატულება, როგორც ერთი ლოგარითმი ზემოაღნიშნული ფორმულის გამოყენებით: ჟურნალი ⁡ 16 ჟურნალი ⁡ 2 = ჟურნალი 2 ⁡ (16) (\displaystyle (\frac (\log (16))(\log (2)))=\log _(2)(16)).
    • ლოგარითმის „ფუძის შეცვლის“ ეს ფორმულა მომდინარეობს ლოგარითმის ძირითადი თვისებებიდან.
  3. თუ შესაძლებელია, შეაფასეთ გამოხატვის მნიშვნელობა ხელით.Პოვნა შესვლა a ⁡ (x) (\displaystyle \log _(a)(x))წარმოიდგინეთ გამოთქმა " ა? = x (\displaystyle a^(?)=x)“, ანუ ჰკითხეთ საკუთარ თავს შემდეგი შეკითხვა: „რა ძალამდე უნდა ავწიოთ , მისაღებად xამ კითხვაზე პასუხის გასაცემად შეიძლება დაგჭირდეთ კალკულატორი, მაგრამ თუ გაგიმართლათ, შეგიძლიათ ხელით იპოვოთ იგი.

    • მაგალითი 1 (გაგრძელება): გადაწერე როგორც 2? = 16 (\displaystyle 2^(?)=16). თქვენ უნდა იპოვოთ რა რიცხვი უნდა დადგეს ნიშნის ნაცვლად. ეს შეიძლება გაკეთდეს საცდელი და შეცდომით:
      2 2 = 2 ∗ 2 = 4 (\displaystyle 2^(2)=2*2=4)
      2 3 = 4 ∗ 2 = 8 (\displaystyle 2^(3)=4*2=8)
      2 4 = 8 ∗ 2 = 16 (\displaystyle 2^(4)=8*2=16)
      ასე რომ, რიცხვი, რომელსაც ჩვენ ვეძებთ არის 4: ჟურნალი 2 ⁡ (16) (\displaystyle \log _(2)(16)) = 4 .
  4. დატოვეთ თქვენი პასუხი ლოგარითმული ფორმით, თუ არ შეგიძლიათ მისი გამარტივება.ბევრი ლოგარითმის ხელით გამოთვლა ძალიან რთულია. ამ შემთხვევაში ზუსტი პასუხის მისაღებად დაგჭირდებათ კალკულატორი. თუმცა, თუ პრობლემას აგვარებთ კლასში, მასწავლებელი დიდი ალბათობით დაკმაყოფილდება პასუხით ლოგარითმული ფორმით. ქვემოთ განხილული მეთოდი გამოიყენება უფრო რთული მაგალითის გადასაჭრელად:

    • მაგალითი 2: რისი ტოლია ჟურნალი 3 ⁡ (58) ჟურნალი 3 ⁡ (7) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7))))?
    • გადავიყვანოთ ეს გამონათქვამი ერთ ლოგარითმად: ჟურნალი 3 ⁡ (58) ჟურნალი 3 ⁡ (7) = ჟურნალი 7 ⁡ (58) (\displaystyle (\frac (\log _(3)(58))(\log _(3)(7)))=\ log_(7)(58)). გაითვალისწინეთ, რომ ორივე ლოგარითმისთვის საერთო 3 ფუძე ქრება; ეს მართალია ნებისმიერი მიზეზით.
    • გადმოვწეროთ გამოთქმა ფორმაში 7? = 58 (\displaystyle 7^(?)=58)და ვცადოთ ვიპოვოთ მნიშვნელობა?:
      7 2 = 7 ∗ 7 = 49 (\displaystyle 7^(2)=7*7=49)
      7 3 = 49 ∗ 7 = 343 (\displaystyle 7^(3)=49*7=343)
      იმის გამო, რომ 58 არის ამ ორ რიცხვს შორის, ის არ არის გამოხატული როგორც მთელი რიცხვი.
    • პასუხს ვტოვებთ ლოგარითმული ფორმით: ჟურნალი 7 ⁡ (58) (\displaystyle \log _(7)(58)).

როგორც საზოგადოება განვითარდა და წარმოება უფრო რთული გახდა, მათემატიკაც განვითარდა. მოძრაობა მარტივიდან რთულამდე. ჩვეულებრივი აღრიცხვიდან შეკრება-გამოკლების მეთოდით, მათთან ბევრჯერ გაიმეორა, მივიდა გამრავლებისა და გაყოფის ცნებამდე. გამრავლების განმეორებითი მოქმედების შემცირება გახდა ექსპონენტაციის კონცეფცია. რიცხვების დამოკიდებულების პირველი ცხრილები ფუძეზე და გაძლიერების რაოდენობაზე შეადგინა ჯერ კიდევ VIII საუკუნეში ინდოელმა მათემატიკოსმა ვარასენამ. მათგან შეგიძლიათ დაითვალოთ ლოგარითმების გაჩენის დრო.

ისტორიული ჩანახატი

მე-16 საუკუნეში ევროპის აღორძინებამ ასევე ხელი შეუწყო მექანიკის განვითარებას. თ საჭირო იყო დიდი რაოდენობის გამოთვლადაკავშირებულია გამრავლებასთან და გაყოფასთან მრავალნიშნა რიცხვები. უძველესი მაგიდები დიდ მომსახურებას აძლევდა. მათ ჩანაცვლების უფლება მისცეს რთული ოპერაციებიუფრო მარტივზე - შეკრება და გამოკლება. დიდი წინგადადგმული ნაბიჯი იყო მათემატიკოს მაიკლ შტიფელის ნაშრომი, რომელიც გამოქვეყნდა 1544 წელს, რომელშიც მან გააცნობიერა მრავალი მათემატიკოსის იდეა. ამან შესაძლებელი გახადა ცხრილების გამოყენება არა მხოლოდ ხარისხებისთვის ფორმაში მარტივი რიცხვები, არამედ თვითნებური რაციონალებისთვისაც.

1614 წელს შოტლანდიელმა ჯონ ნაპიერმა, რომელმაც ეს იდეები განავითარა, პირველად შემოიტანა ახალი ტერმინი „რიცხვის ლოგარითმი“. შედგენილია ახალი რთული ცხრილები სინუსების და კოსინუსების ლოგარითმების, ასევე ტანგენტების გამოსათვლელად. ამან მნიშვნელოვნად შეამცირა ასტრონომების მუშაობა.

დაიწყო ახალი ცხრილების გამოჩენა, რომლებსაც წარმატებით იყენებდნენ მეცნიერები სამი საუკუნის განმავლობაში. მანამდე დიდი დრო გავიდა ახალი ოპერაციაალგებრაში მან თავისი სრული ფორმა შეიძინა. მოცემულია ლოგარითმის განმარტება და შესწავლილი იქნა მისი თვისებები.

მხოლოდ მე-20 საუკუნეში, კალკულატორისა და კომპიუტერის მოსვლასთან ერთად, კაცობრიობამ მიატოვა უძველესი ცხრილები, რომლებიც წარმატებით მუშაობდნენ მე-13 საუკუნეში.

დღეს b-ის ლოგარითმს ვუწოდებთ a-ს დასაფუძნებლად x რიცხვს, რომელიც არის a-ის ძალა b-ის გასაკეთებლად. ეს იწერება ფორმულის სახით: x = log a(b).

მაგალითად, log 3(9) იქნება 2-ის ტოლი. ეს აშკარაა, თუ დაიცავთ განმარტებას. თუ 3-ს ავწევთ 2-ის ხარისხზე, მივიღებთ 9-ს.

ამრიგად, ჩამოყალიბებული განმარტება ადგენს მხოლოდ ერთ შეზღუდვას: რიცხვები a და b უნდა იყოს რეალური.

ლოგარითმების სახეები

კლასიკურ განმარტებას რეალური ლოგარითმი ეწოდება და რეალურად არის a x = b განტოლების ამონახსნი. ვარიანტი a = 1 არის მოსაზღვრე და არ არის საინტერესო. ყურადღება: 1 ნებისმიერი სიმძლავრის მიმართ უდრის 1-ს.

ლოგარითმის რეალური მნიშვნელობაგანისაზღვრება მხოლოდ მაშინ, როდესაც ბაზა და არგუმენტი მეტია 0-ზე და ბაზა არ უნდა იყოს 1-ის ტოლი.

განსაკუთრებული ადგილი მათემატიკის სფეროშიითამაშეთ ლოგარითმები, რომლებიც დასახელდება მათი ბაზის ზომის მიხედვით:

წესები და შეზღუდვები

ლოგარითმების ფუნდამენტური თვისებაა წესი: ნამრავლის ლოგარითმი ლოგარითმული ჯამის ტოლია. log abp = log a(b) + log a(p).

ამ განცხადების ვარიანტად იქნება: log c(b/p) = log c(b) - log c(p), კოეფიციენტის ფუნქცია უდრის ფუნქციების სხვაობას.

წინა ორი წესიდან ადვილად ჩანს, რომ: log a(b p) = p * log a(b).

სხვა თვისებები მოიცავს:

კომენტარი. არ დაუშვათ ჩვეულებრივი შეცდომა - ჯამის ლოგარითმი არ არის ჯამის ტოლილოგარითმები.

მრავალი საუკუნის განმავლობაში, ლოგარითმის პოვნის ოპერაცია საკმაოდ შრომატევადი ამოცანა იყო. მათემატიკოსებმა გამოიყენეს პოლინომიური გაფართოების ლოგარითმული თეორიის ცნობილი ფორმულა:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), სადაც n - ბუნებრივი რიცხვი 1-ზე მეტი, რაც განსაზღვრავს გაანგარიშების სიზუსტეს.

სხვა საფუძვლებით ლოგარითმები გამოითვალეს ერთი ფუძიდან მეორეზე გადასვლის თეორემისა და პროდუქტის ლოგარითმის თვისების გამოყენებით.

ვინაიდან ეს მეთოდი ძალიან შრომატევადია და პრაქტიკული პრობლემების გადაჭრისასრთული განსახორციელებელი, გამოვიყენეთ ლოგარითმების წინასწარ შედგენილი ცხრილები, რამაც საგრძნობლად დააჩქარა მთელი სამუშაო.

ზოგიერთ შემთხვევაში გამოიყენებოდა სპეციალურად შექმნილი ლოგარითმის გრაფიკები, რომლებიც ნაკლებ სიზუსტეს აძლევდნენ, მაგრამ საგრძნობლად აჩქარებდნენ ძიებას სასურველი ღირებულება. y = log a(x) ფუნქციის მრუდი, რომელიც აგებულია რამდენიმე წერტილზე, საშუალებას გაძლევთ გამოიყენოთ ჩვეულებრივი სახაზავი ფუნქციის მნიშვნელობის საპოვნელად ნებისმიერ სხვა წერტილში. ინჟინრები დიდი დროამ მიზნით გამოიყენებოდა ე.წ.

მე-17 საუკუნეში გაჩნდა პირველი დამხმარე ანალოგური გამოთვლითი პირობები, რომელიც მე-19 საუკუნედასრულებული სახე შეიძინა. ყველაზე წარმატებულ მოწყობილობას ეწოდა სლაიდის წესი. მოწყობილობის სიმარტივის მიუხედავად, მისმა გარეგნობამ მნიშვნელოვნად დააჩქარა ყველა საინჟინრო გამოთვლების პროცესი და ამის გადაჭარბება ძნელია. ამჟამად, ცოტა ადამიანი იცნობს ამ მოწყობილობას.

კალკულატორებისა და კომპიუტერების გამოჩენამ ნებისმიერი სხვა მოწყობილობის გამოყენება უაზრო გახადა.

განტოლებები და უტოლობა

ლოგარითმების გამოყენებით სხვადასხვა განტოლებისა და უტოლობების ამოსახსნელად გამოიყენება შემდეგი ფორმულები:

  • ერთი ბაზიდან მეორეზე გადასვლა: log a(b) = log c(b) / log c(a);
  • წინა ვარიანტის შედეგად: log a(b) = 1 / log b(a).

უტოლობების გადასაჭრელად სასარგებლოა ვიცოდეთ:

  • ლოგარითმის მნიშვნელობა დადებითი იქნება მხოლოდ იმ შემთხვევაში, თუ ბაზა და არგუმენტი ერთზე დიდი ან ნაკლებია; თუ ერთი პირობა მაინც დაირღვა, ლოგარითმის მნიშვნელობა უარყოფითი იქნება.
  • თუ ლოგარითმის ფუნქცია გამოიყენება უტოლობის მარჯვენა და მარცხენა მხარეს, ხოლო ლოგარითმის ფუძე ერთზე მეტია, მაშინ უტოლობის ნიშანი შენარჩუნებულია; წინააღმდეგ შემთხვევაში იცვლება.

პრობლემების ნიმუში

განვიხილოთ ლოგარითმების გამოყენების რამდენიმე ვარიანტი და მათი თვისებები. მაგალითები განტოლებების ამოხსნით:

განვიხილოთ ლოგარითმის სიმძლავრეში მოთავსების ვარიანტი:

  • ამოცანა 3. გამოთვალეთ 25^log 5(3). ამოხსნა: პრობლემის პირობებში ჩანაწერი მსგავსია (5^2)^log5(3) ან 5^(2 * log 5(3)). მოდით სხვანაირად ჩავწეროთ: 5^log 5(3*2), ან რიცხვის კვადრატი, როგორც ფუნქციის არგუმენტი, შეიძლება დაიწეროს როგორც თავად ფუნქციის კვადრატი (5^log 5(3))^2. ლოგარითმების თვისებების გამოყენებით, ეს გამოხატულება უდრის 3^2. პასუხი: გაანგარიშების შედეგად ვიღებთ 9-ს.

პრაქტიკული გამოყენება

როგორც წმინდა მათემატიკური ინსტრუმენტი, ის შორს არის ნამდვილი ცხოვრებარომ ლოგარითმმა უეცრად დიდი მნიშვნელობა შეიძინა რეალურ სამყაროში ობიექტების აღწერისთვის. ძნელია იპოვოთ მეცნიერება, სადაც ის არ გამოიყენება. ეს სრულად ეხება არა მხოლოდ ბუნებრივ, არამედ ჰუმანიტარულ ცოდნის სფეროებსაც.

ლოგარითმული დამოკიდებულებები

აქ მოცემულია რიცხვითი დამოკიდებულების რამდენიმე მაგალითი:

მექანიკა და ფიზიკა

ისტორიულად, მექანიკა და ფიზიკა ყოველთვის ვითარდებოდა გამოყენებით მათემატიკური მეთოდებიკვლევას და იმავდროულად ემსახურებოდა მათემატიკის, მათ შორის ლოგარითმების განვითარების სტიმულს. ფიზიკის კანონების უმეტესობის თეორია დაწერილია მათემატიკის ენაზე. მოდით მოვიყვანოთ მხოლოდ ორი მაგალითი ლოგარითმის გამოყენებით ფიზიკური კანონების აღწერისთვის.

ისეთი რთული სიდიდის გამოთვლის პრობლემა, როგორიც არის რაკეტის სიჩქარე, შეიძლება გადაწყდეს ციოლკოვსკის ფორმულის გამოყენებით, რომელმაც საფუძველი ჩაუყარა კოსმოსის კვლევის თეორიას:

V = I * ln (M1/M2), სადაც

  • V არის თვითმფრინავის საბოლოო სიჩქარე.
  • I - ძრავის სპეციფიკური იმპულსი.
  • M 1 - რაკეტის საწყისი მასა.
  • M 2 – საბოლოო მასა.

სხვა მნიშვნელოვანი მაგალითი - ეს გამოიყენება კიდევ ერთი დიდი მეცნიერის მაქს პლანკის ფორმულაში, რომელიც ემსახურება თერმოდინამიკაში წონასწორობის მდგომარეობის შეფასებას.

S = k * ln (Ω), სადაც

  • S – თერმოდინამიკური თვისება.
  • k – ბოლცმანის მუდმივი.
  • Ω არის სხვადასხვა მდგომარეობის სტატისტიკური წონა.

Ქიმია

ნაკლებად აშკარაა ფორმულების გამოყენება ქიმიაში, რომლებიც შეიცავს ლოგარითმების თანაფარდობას. მხოლოდ ორი მაგალითი მოვიყვანოთ:

  • ნერნსტის განტოლება, გარემოს რედოქსული პოტენციალის მდგომარეობა ნივთიერებების აქტივობასთან და წონასწორობის მუდმივთან მიმართებაში.
  • ისეთი მუდმივების გამოთვლა, როგორიცაა ავტოლიზის ინდექსი და ხსნარის მჟავიანობა, ასევე შეუძლებელია ჩვენი ფუნქციის გარეშე.

ფსიქოლოგია და ბიოლოგია

და საერთოდ არ არის გასაგები, რა კავშირი აქვს მას ფსიქოლოგიას. გამოდის, რომ შეგრძნების სიძლიერე კარგად არის აღწერილი ამ ფუნქციით, როგორც სტიმულის ინტენსივობის მნიშვნელობის შებრუნებული თანაფარდობა ქვედა ინტენსივობის მნიშვნელობასთან.

ზემოაღნიშნული მაგალითების შემდეგ, გასაკვირი აღარ არის, რომ ლოგარითმების თემა ფართოდ გამოიყენება ბიოლოგიაში. მთელი ტომები შეიძლება დაიწეროს ლოგარითმული სპირალების შესაბამისი ბიოლოგიური ფორმების შესახებ.

სხვა სფეროები

როგორც ჩანს, სამყაროს არსებობა შეუძლებელია ამ ფუნქციასთან კავშირის გარეშე და ის მართავს ყველა კანონს. განსაკუთრებით მაშინ, როდესაც ბუნების კანონები დაკავშირებულია გეომეტრიული პროგრესია. ღირს MatProfi ვებსაიტზე მიბრუნება და ასეთი მაგალითები ბევრია საქმიანობის შემდეგ სფეროებში:

სია შეიძლება იყოს უსასრულო. ამ ფუნქციის ძირითადი პრინციპების დაუფლების შემდეგ, შეგიძლიათ ჩაძიროთ უსაზღვრო სიბრძნის სამყაროში.

ძირითადი თვისებები.

  1. ლოგაქსი + ლოგაი = ლოგა (x y);
  2. ლოგაქსი − ლოგაი = ლოგა (x: y).

იდენტური საფუძველი

Log6 4 + log6 9.

ახლა ცოტა გავართულოთ დავალება.

ლოგარითმების ამოხსნის მაგალითები

რა მოხდება, თუ ლოგარითმის საფუძველი ან არგუმენტი არის ძალა? მაშინ ამ ხარისხის მაჩვენებლის ამოღება შესაძლებელია ლოგარითმის ნიშნიდან შემდეგი წესების მიხედვით:

რა თქმა უნდა, ყველა ამ წესს აქვს აზრი, თუ ლოგარითმის ODZ დაფიქსირდა: a > 0, a ≠ 1, x >

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

ახალ საძირკველზე გადასვლა

მიეცეს ლოგარითმის ჟურნალინაჯახი. მაშინ ნებისმიერი c რიცხვისთვის ისეთი, რომ c > 0 და c ≠ 1, ტოლობა მართალია:

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

Იხილეთ ასევე:


ლოგარითმის ძირითადი თვისებები

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



მაჩვენებელი არის 2.718281828…. მაჩვენებლის დასამახსოვრებლად შეგიძლიათ შეისწავლოთ წესი: მაჩვენებლის ტოლია ლეო ნიკოლაევიჩ ტოლსტოის დაბადების წელი 2,7 და ორჯერ.

ლოგარითმების ძირითადი თვისებები

ამ წესის ცოდნა, თქვენ გეცოდინებათ როგორც მაჩვენებლის ზუსტი მნიშვნელობა, ასევე ლეო ტოლსტოის დაბადების თარიღი.


ლოგარითმების მაგალითები

ლოგარითმის გამონათქვამები

მაგალითი 1.
ა). x=10ac^2 (a>0,c>0).

3.5 თვისებების გამოყენებით ვიანგარიშებთ

2.

3.

4. სად .



მაგალითი 2. იპოვეთ x თუ


მაგალითი 3. მოცემულია ლოგარითმების მნიშვნელობა

გამოთვალეთ log(x) თუ




ლოგარითმების ძირითადი თვისებები

ლოგარითმები, ისევე როგორც ნებისმიერი რიცხვი, შეიძლება ყველანაირად დაემატოს, გამოკლდეს და გარდაიქმნას. მაგრამ რადგან ლოგარითმები არ არის ზუსტად ჩვეულებრივი რიცხვები, აქ არის წესები, რომლებსაც უწოდებენ ძირითადი თვისებები.

თქვენ აუცილებლად უნდა იცოდეთ ეს წესები - მათ გარეშე არც ერთი სერიოზული ლოგარითმული პრობლემის გადაჭრა შეუძლებელია. გარდა ამისა, ისინი ძალიან ცოტაა - ყველაფრის სწავლა ერთ დღეში შეგიძლიათ. მოდით დავიწყოთ.

ლოგარითმების შეკრება და გამოკლება

განვიხილოთ ორი ლოგარითმი ერთი და იგივე ფუძეებით: ლოგაქსი და ლოგაი. შემდეგ მათი დამატება და გამოკლება შესაძლებელია და:

  1. ლოგაქსი + ლოგაი = ლოგა (x y);
  2. ლოგაქსი − ლოგაი = ლოგა (x: y).

მაშასადამე, ლოგარითმების ჯამი ტოლია ნამრავლის ლოგარითმისა, ხოლო სხვაობა უდრის კოეფიციენტის ლოგარითმს. Შენიშვნა: საკვანძო მომენტიᲐქ - იდენტური საფუძველი. თუ მიზეზები განსხვავებულია, ეს წესები არ მუშაობს!

ეს ფორმულები დაგეხმარებათ გამოთვალოთ ლოგარითმული გამოხატულება მაშინაც კი, როცა მისი ცალკეული ნაწილები არ არის გათვალისწინებული (იხილეთ გაკვეთილი „რა არის ლოგარითმი“). გადახედეთ მაგალითებს და ნახეთ:

ვინაიდან ლოგარითმებს აქვთ იგივე ფუძეები, ვიყენებთ ჯამის ფორმულას:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log2 48 − log2 3.

საფუძვლები იგივეა, ჩვენ ვიყენებთ განსხვავების ფორმულას:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

დავალება. იპოვეთ გამოთქმის მნიშვნელობა: log3 135 − log3 5.

ისევ ბაზები იგივეა, ამიტომ გვაქვს:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

როგორც ხედავთ, ორიგინალური გამონათქვამები შედგება "ცუდი" ლოგარითმებისგან, რომლებიც ცალკე არ არის გამოთვლილი. მაგრამ გარდაქმნების შემდეგ ისინი საკმაოდ გამოდიან ნორმალური ნომრები. ბევრი აგებულია ამ ფაქტზე ტესტის ფურცლები. დიახ, ტესტის მსგავსი გამონათქვამები წარმოდგენილია მთელი სერიოზულობით (ზოგჯერ პრაქტიკულად ცვლილებების გარეშე) ერთიან სახელმწიფო გამოცდაზე.

მაჩვენებლის ამოღება ლოგარითმიდან

ამის შემჩნევა ადვილია ბოლო წესიმიჰყვება პირველ ორს. მაგრამ უმჯობესია დაიმახსოვროთ ის მაინც - ზოგიერთ შემთხვევაში ეს მნიშვნელოვნად შეამცირებს გამოთვლების რაოდენობას.

რა თქმა უნდა, ყველა ამ წესს აქვს აზრი, თუ ლოგარითმის ODZ დაფიქსირდა: a > 0, a ≠ 1, x > 0. და კიდევ ერთი რამ: ისწავლეთ ყველა ფორმულის გამოყენება არა მხოლოდ მარცხნიდან მარჯვნივ, არამედ პირიქით. , ე.ი. თქვენ შეგიძლიათ შეიყვანოთ რიცხვები ლოგარითმის ნიშანიმდე ლოგარითმში. ეს არის ის, რაც ყველაზე ხშირად საჭიროა.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log7 496.

მოდით, თავი დავაღწიოთ არგუმენტის ხარისხს პირველი ფორმულის გამოყენებით:
log7 496 = 6 log7 49 = 6 2 = 12

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

გაითვალისწინეთ, რომ მნიშვნელი შეიცავს ლოგარითმს, რომლის საფუძველი და არგუმენტი ზუსტი ხარისხებია: 16 = 24; 49 = 72. გვაქვს:

ვფიქრობ, ბოლო მაგალითი მოითხოვს გარკვეულ განმარტებას. სად წავიდა ლოგარითმები? ბოლო მომენტამდე ჩვენ ვმუშაობთ მხოლოდ მნიშვნელით.

ლოგარითმის ფორმულები. ლოგარითმები ამონახსნების მაგალითები.

იქ მდგომი ლოგარითმის საფუძველი და არგუმენტი წარვადგინეთ სიმძლავრეების სახით და ამოვიღეთ მაჩვენებლები - მივიღეთ „სამსართულიანი“ წილადი.

ახლა გადავხედოთ ძირითად წილადს. მრიცხველი და მნიშვნელი შეიცავს ერთსა და იმავე რიცხვს: log2 7. ვინაიდან log2 7 ≠ 0 შეგვიძლია შევამციროთ წილადი - 2/4 დარჩება მნიშვნელში. არითმეტიკის წესების მიხედვით, ოთხი შეიძლება გადავიდეს მრიცხველზე, რაც გაკეთდა. შედეგი იყო პასუხი: 2.

ახალ საძირკველზე გადასვლა

ლოგარითმების შეკრებისა და გამოკლების წესებზე საუბრისას, მე კონკრეტულად ხაზგასმით აღვნიშნე, რომ ისინი მუშაობენ მხოლოდ ერთი და იგივე ფუძეებით. რა მოხდება, თუ მიზეზები განსხვავებულია? რა მოხდება, თუ ისინი არ არიან იგივე რიცხვის ზუსტი სიმძლავრეები?

ახალ საძირკველზე გადასვლის ფორმულები სამაშველოში მოდის. მოდით ჩამოვაყალიბოთ ისინი თეორემის სახით:

მოდით იყოს მოცემული ლოგარითმის ლოგაქსი. მაშინ ნებისმიერი c რიცხვისთვის ისეთი, რომ c > 0 და c ≠ 1, ტოლობა მართალია:

კერძოდ, თუ დავაყენებთ c = x, მივიღებთ:

მეორე ფორმულიდან გამომდინარეობს, რომ ლოგარითმის საფუძველი და არგუმენტი შეიძლება შეიცვალოს, მაგრამ ამ შემთხვევაში მთელი გამოთქმა არის „გადაბრუნებული“, ე.ი. ლოგარითმი გამოჩნდება მნიშვნელში.

ეს ფორმულები იშვიათად გვხვდება ჩვეულებრივ ციფრულ გამონათქვამებში. მათი მოხერხებულობის შეფასება შესაძლებელია მხოლოდ ლოგარითმული განტოლებებისა და უტოლობების ამოხსნისას.

თუმცა არის პრობლემები, რომელთა მოგვარებაც საერთოდ შეუძლებელია, გარდა ახალ ფონდში გადასვლისა. მოდით შევხედოთ რამდენიმე მათგანს:

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log5 16 log2 25.

გაითვალისწინეთ, რომ ორივე ლოგარითმის არგუმენტები შეიცავს ზუსტ ძალას. ამოვიღოთ ინდიკატორები: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

ახლა მოდით "შევუბრუნდეთ" მეორე ლოგარითმს:

ვინაიდან პროდუქტი არ იცვლება ფაქტორების გადაწყობისას, ჩვენ მშვიდად გავამრავლეთ ოთხი და ორი, შემდეგ კი ლოგარითმებს მივმართეთ.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log9 100 lg 3.

პირველი ლოგარითმის საფუძველი და არგუმენტი ზუსტი სიმძლავრეებია. მოდით დავწეროთ ეს და მოვიშოროთ ინდიკატორები:

ახლა მოდით დავაღწიოთ ათობითი ლოგარითმი ახალ ბაზაზე გადასვლით:

ძირითადი ლოგარითმული იდენტურობა

ხშირად ამოხსნის პროცესში აუცილებელია რიცხვის ლოგარითმის სახით წარმოდგენა მოცემულ ბაზაზე. ამ შემთხვევაში შემდეგი ფორმულები დაგვეხმარება:

პირველ შემთხვევაში, რიცხვი n ხდება არგუმენტის მაჩვენებელი. რიცხვი n შეიძლება იყოს აბსოლუტურად ნებისმიერი, რადგან ის მხოლოდ ლოგარითმის მნიშვნელობაა.

მეორე ფორმულა რეალურად არის პერიფრაზირებული განმარტება. ასე ჰქვია: .

ფაქტობრივად, რა მოხდება, თუ რიცხვი b გაიზარდა ისეთ ხარისხამდე, რომ რიცხვი b ამ ხარისხში იძლევა რიცხვს a? მართალია: შედეგი არის იგივე რიცხვი a. კიდევ ერთხელ ყურადღებით წაიკითხეთ ეს აბზაცი - ბევრი ადამიანი ჩერდება მასზე.

ახალ ბაზაზე გადასვლის ფორმულების მსგავსად, მთავარი ლოგარითმული იდენტურობაზოგჯერ ეს ერთადერთი გამოსავალია.

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

გაითვალისწინეთ, რომ log25 64 = log5 8 - უბრალოდ აიღო კვადრატი ლოგარითმის ფუძიდან და არგუმენტიდან. ძალაუფლების გამრავლების წესების გათვალისწინებით იგივე საფუძველი, ვიღებთ:

თუ ვინმემ არ იცის, ეს იყო რეალური დავალება ერთიანი სახელმწიფო გამოცდიდან :)

ლოგარითმული ერთეული და ლოგარითმული ნული

დასასრულს, მე მივცემ ორ იდენტობას, რომლებსაც ძნელად შეიძლება ვუწოდოთ თვისებები - უფრო მეტიც, ისინი ლოგარითმის განსაზღვრის შედეგებია. ისინი გამუდმებით ჩნდებიან პრობლემებში და, რა გასაკვირია, პრობლემებს უქმნიან თუნდაც „მოწინავე“ მოსწავლეებს.

  1. ლოგა = 1 არის. ერთხელ და სამუდამოდ დაიმახსოვრეთ: ლოგარითმი ამ ფუძის ნებისმიერი a ფუძის ტოლია ერთის.
  2. ლოგა 1 = 0 არის. ფუძე a შეიძლება იყოს ნებისმიერი, მაგრამ თუ არგუმენტი შეიცავს ერთს, ლოგარითმი ნულის ტოლია! რადგან a0 = 1 არის განმარტების პირდაპირი შედეგი.

ეს არის ყველა თვისება. დარწმუნდით, რომ ივარჯიშეთ მათ პრაქტიკაში! ჩამოტვირთეთ მოტყუების ფურცელი გაკვეთილის დასაწყისში, ამობეჭდეთ და მოაგვარეთ პრობლემები.

Იხილეთ ასევე:

b-ის ლოგარითმი a-ს ბაზაზე აღნიშნავს გამოხატვას. ლოგარითმის გამოთვლა ნიშნავს x () სიმძლავრის პოვნას, რომლის დროსაც ტოლობა დაკმაყოფილებულია

ლოგარითმის ძირითადი თვისებები

აუცილებელია ზემოაღნიშნული თვისებების ცოდნა, ვინაიდან ლოგარითმებთან დაკავშირებული თითქმის ყველა პრობლემა და მაგალითი წყდება მათ საფუძველზე. დანარჩენი ეგზოტიკური თვისებების მიღება შესაძლებელია ამ ფორმულებით მათემატიკური მანიპულაციებით

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

ლოგარითმების ჯამისა და სხვაობის ფორმულის გამოთვლისას (3.4) საკმაოდ ხშირად გვხვდება. დანარჩენი გარკვეულწილად რთულია, მაგრამ რიგ ამოცანებში ისინი შეუცვლელია რთული გამონათქვამების გასამარტივებლად და მათი მნიშვნელობების გამოსათვლელად.

ლოგარითმების გავრცელებული შემთხვევები

ზოგიერთი ყველაზე გავრცელებული ლოგარითმებია ისეთები, რომლებშიც ფუძე უდრის ათს, ექსპონენციალურს ან ორს.
ათი ბაზის ლოგარითმს ჩვეულებრივ უწოდებენ ათობითი ლოგარითმს და უბრალოდ აღინიშნება lg(x-ით).

ჩანაწერიდან ირკვევა, რომ ჩანაწერში საფუძვლები არ წერია. Მაგალითად

ბუნებრივი ლოგარითმი არის ლოგარითმი, რომლის ფუძე არის ექსპონენტი (აღნიშნულია ln(x)-ით).

მაჩვენებელი არის 2.718281828…. მაჩვენებლის დასამახსოვრებლად შეგიძლიათ შეისწავლოთ წესი: მაჩვენებლის ტოლია ლეო ნიკოლაევიჩ ტოლსტოის დაბადების წელი 2,7 და ორჯერ. ამ წესის ცოდნა, თქვენ გეცოდინებათ როგორც მაჩვენებლის ზუსტი მნიშვნელობა, ასევე ლეო ტოლსტოის დაბადების თარიღი.

და კიდევ ერთი მნიშვნელოვანი ლოგარითმი ორი საფუძვლისთვის აღინიშნება

ფუნქციის ლოგარითმის წარმოებული ტოლია ერთის გაყოფილი ცვლადზე

ინტეგრალური ან ანტიდერივატიული ლოგარითმი განისაზღვრება ურთიერთობით

მოცემული მასალა საკმარისია თქვენთვის ლოგარითმებთან და ლოგარითმებთან დაკავშირებული ამოცანების ფართო კლასის გადასაჭრელად. მასალის გაგებაში რომ დაგეხმაროთ, მხოლოდ რამდენიმე გავრცელებულ მაგალითს მოვიყვან სკოლის სასწავლო გეგმიდან და უნივერსიტეტებიდან.

ლოგარითმების მაგალითები

ლოგარითმის გამონათქვამები

მაგალითი 1.
ა). x=10ac^2 (a>0,c>0).

3.5 თვისებების გამოყენებით ვიანგარიშებთ

2.
ლოგარითმების განსხვავების თვისებით გვაქვს

3.
თვისებები 3.5-ის გამოყენებით ვპოულობთ

4. სად .

ერთი შეხედვით რთული გამონათქვამი გამარტივებულია და ჩამოყალიბებულია რიგი წესების გამოყენებით

ლოგარითმის მნიშვნელობების პოვნა

მაგალითი 2. იპოვეთ x თუ

გამოსავალი. გამოსათვლელად ვიყენებთ ბოლო ტერმინს 5 და 13 თვისებებს

ჩავწერეთ ჩანაწერში და ვგლოვობთ

ვინაიდან ფუძეები ტოლია, გამონათქვამებს ვაიგივებთ

ლოგარითმები. პირველი დონე.

დაე, ლოგარითმების მნიშვნელობა იყოს მოცემული

გამოთვალეთ log(x) თუ

ამოხსნა: ავიღოთ ცვლადის ლოგარითმი, რომ დავწეროთ ლოგარითმი მისი წევრთა ჯამის მეშვეობით


ეს მხოლოდ დასაწყისია ჩვენი გაცნობისა ლოგარითმებთან და მათ თვისებებთან. ივარჯიშეთ გამოთვლებით, გაამდიდრეთ თქვენი პრაქტიკული უნარები - მალე დაგჭირდებათ მიღებული ცოდნა ლოგარითმული განტოლებების ამოსახსნელად. ასეთი განტოლებების ამოხსნის ძირითადი მეთოდების შესწავლის შემდეგ, ჩვენ გავაფართოვებთ თქვენს ცოდნას სხვა თანაბრად მნიშვნელოვან თემაზე - ლოგარითმული უტოლობები...

ლოგარითმების ძირითადი თვისებები

ლოგარითმები, ისევე როგორც ნებისმიერი რიცხვი, შეიძლება ყველანაირად დაემატოს, გამოკლდეს და გარდაიქმნას. მაგრამ რადგან ლოგარითმები არ არის ზუსტად ჩვეულებრივი რიცხვები, აქ არის წესები, რომლებსაც უწოდებენ ძირითადი თვისებები.

თქვენ აუცილებლად უნდა იცოდეთ ეს წესები - მათ გარეშე არც ერთი სერიოზული ლოგარითმული პრობლემის გადაჭრა შეუძლებელია. გარდა ამისა, ისინი ძალიან ცოტაა - ყველაფრის სწავლა ერთ დღეში შეგიძლიათ. მოდით დავიწყოთ.

ლოგარითმების შეკრება და გამოკლება

განვიხილოთ ორი ლოგარითმი ერთი და იგივე ფუძეებით: ლოგაქსი და ლოგაი. შემდეგ მათი დამატება და გამოკლება შესაძლებელია და:

  1. ლოგაქსი + ლოგაი = ლოგა (x y);
  2. ლოგაქსი − ლოგაი = ლოგა (x: y).

მაშასადამე, ლოგარითმების ჯამი ტოლია ნამრავლის ლოგარითმისა, ხოლო სხვაობა უდრის კოეფიციენტის ლოგარითმს. გთხოვთ გაითვალისწინოთ: მთავარი აქ არის იდენტური საფუძველი. თუ მიზეზები განსხვავებულია, ეს წესები არ მუშაობს!

ეს ფორმულები დაგეხმარებათ გამოთვალოთ ლოგარითმული გამოხატულება მაშინაც კი, როცა მისი ცალკეული ნაწილები არ არის გათვალისწინებული (იხილეთ გაკვეთილი „რა არის ლოგარითმი“). გადახედეთ მაგალითებს და ნახეთ:

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log6 4 + log6 9.

ვინაიდან ლოგარითმებს აქვთ იგივე ფუძეები, ვიყენებთ ჯამის ფორმულას:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log2 48 − log2 3.

საფუძვლები იგივეა, ჩვენ ვიყენებთ განსხვავების ფორმულას:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

დავალება. იპოვეთ გამოთქმის მნიშვნელობა: log3 135 − log3 5.

ისევ ბაზები იგივეა, ამიტომ გვაქვს:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

როგორც ხედავთ, ორიგინალური გამონათქვამები შედგება "ცუდი" ლოგარითმებისგან, რომლებიც ცალკე არ არის გამოთვლილი. მაგრამ გარდაქმნების შემდეგ მიიღება სრულიად ნორმალური რიცხვები. ბევრი ტესტი ეფუძნება ამ ფაქტს. დიახ, ტესტის მსგავსი გამონათქვამები წარმოდგენილია მთელი სერიოზულობით (ზოგჯერ პრაქტიკულად ცვლილებების გარეშე) ერთიან სახელმწიფო გამოცდაზე.

მაჩვენებლის ამოღება ლოგარითმიდან

ახლა ცოტა გავართულოთ დავალება. რა მოხდება, თუ ლოგარითმის საფუძველი ან არგუმენტი არის ძალა? მაშინ ამ ხარისხის მაჩვენებლის ამოღება შესაძლებელია ლოგარითმის ნიშნიდან შემდეგი წესების მიხედვით:

ადვილი მისახვედრია, რომ ბოლო წესი პირველ ორს მიჰყვება. მაგრამ უმჯობესია დაიმახსოვროთ ის მაინც - ზოგიერთ შემთხვევაში ეს მნიშვნელოვნად შეამცირებს გამოთვლების რაოდენობას.

რა თქმა უნდა, ყველა ამ წესს აქვს აზრი, თუ ლოგარითმის ODZ დაფიქსირდა: a > 0, a ≠ 1, x > 0. და კიდევ ერთი რამ: ისწავლეთ ყველა ფორმულის გამოყენება არა მხოლოდ მარცხნიდან მარჯვნივ, არამედ პირიქით. , ე.ი. თქვენ შეგიძლიათ შეიყვანოთ რიცხვები ლოგარითმის ნიშანიმდე ლოგარითმში.

როგორ ამოხსნათ ლოგარითმები

ეს არის ის, რაც ყველაზე ხშირად საჭიროა.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log7 496.

მოდით, თავი დავაღწიოთ არგუმენტის ხარისხს პირველი ფორმულის გამოყენებით:
log7 496 = 6 log7 49 = 6 2 = 12

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

გაითვალისწინეთ, რომ მნიშვნელი შეიცავს ლოგარითმს, რომლის საფუძველი და არგუმენტი ზუსტი ხარისხებია: 16 = 24; 49 = 72. გვაქვს:

ვფიქრობ, ბოლო მაგალითი მოითხოვს გარკვეულ განმარტებას. სად წავიდა ლოგარითმები? ბოლო მომენტამდე ჩვენ ვმუშაობთ მხოლოდ მნიშვნელით. იქ მდგომი ლოგარითმის საფუძველი და არგუმენტი წარვადგინეთ სიმძლავრეების სახით და ამოვიღეთ მაჩვენებლები - მივიღეთ „სამსართულიანი“ წილადი.

ახლა გადავხედოთ ძირითად წილადს. მრიცხველი და მნიშვნელი შეიცავს ერთსა და იმავე რიცხვს: log2 7. ვინაიდან log2 7 ≠ 0 შეგვიძლია შევამციროთ წილადი - 2/4 დარჩება მნიშვნელში. არითმეტიკის წესების მიხედვით, ოთხი შეიძლება გადავიდეს მრიცხველზე, რაც გაკეთდა. შედეგი იყო პასუხი: 2.

ახალ საძირკველზე გადასვლა

ლოგარითმების შეკრებისა და გამოკლების წესებზე საუბრისას, მე კონკრეტულად ხაზგასმით აღვნიშნე, რომ ისინი მუშაობენ მხოლოდ ერთი და იგივე ფუძეებით. რა მოხდება, თუ მიზეზები განსხვავებულია? რა მოხდება, თუ ისინი არ არიან იგივე რიცხვის ზუსტი სიმძლავრეები?

ახალ საძირკველზე გადასვლის ფორმულები სამაშველოში მოდის. მოდით ჩამოვაყალიბოთ ისინი თეორემის სახით:

მოდით იყოს მოცემული ლოგარითმის ლოგაქსი. მაშინ ნებისმიერი c რიცხვისთვის ისეთი, რომ c > 0 და c ≠ 1, ტოლობა მართალია:

კერძოდ, თუ დავაყენებთ c = x, მივიღებთ:

მეორე ფორმულიდან გამომდინარეობს, რომ ლოგარითმის საფუძველი და არგუმენტი შეიძლება შეიცვალოს, მაგრამ ამ შემთხვევაში მთელი გამოთქმა არის „გადაბრუნებული“, ე.ი. ლოგარითმი გამოჩნდება მნიშვნელში.

ეს ფორმულები იშვიათად გვხვდება ჩვეულებრივ ციფრულ გამონათქვამებში. მათი მოხერხებულობის შეფასება შესაძლებელია მხოლოდ ლოგარითმული განტოლებებისა და უტოლობების ამოხსნისას.

თუმცა არის პრობლემები, რომელთა მოგვარებაც საერთოდ შეუძლებელია, გარდა ახალ ფონდში გადასვლისა. მოდით შევხედოთ რამდენიმე მათგანს:

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log5 16 log2 25.

გაითვალისწინეთ, რომ ორივე ლოგარითმის არგუმენტები შეიცავს ზუსტ ძალას. ამოვიღოთ ინდიკატორები: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

ახლა მოდით "შევუბრუნდეთ" მეორე ლოგარითმს:

ვინაიდან პროდუქტი არ იცვლება ფაქტორების გადაწყობისას, ჩვენ მშვიდად გავამრავლეთ ოთხი და ორი, შემდეგ კი ლოგარითმებს მივმართეთ.

დავალება. იპოვეთ გამოხატვის მნიშვნელობა: log9 100 lg 3.

პირველი ლოგარითმის საფუძველი და არგუმენტი ზუსტი სიმძლავრეებია. მოდით დავწეროთ ეს და მოვიშოროთ ინდიკატორები:

ახლა მოდით დავაღწიოთ ათობითი ლოგარითმი ახალ ბაზაზე გადასვლით:

ძირითადი ლოგარითმული იდენტურობა

ხშირად ამოხსნის პროცესში აუცილებელია რიცხვის ლოგარითმის სახით წარმოდგენა მოცემულ ბაზაზე. ამ შემთხვევაში შემდეგი ფორმულები დაგვეხმარება:

პირველ შემთხვევაში, რიცხვი n ხდება არგუმენტის მაჩვენებელი. რიცხვი n შეიძლება იყოს აბსოლუტურად ნებისმიერი, რადგან ის მხოლოდ ლოგარითმის მნიშვნელობაა.

მეორე ფორმულა რეალურად არის პერიფრაზირებული განმარტება. ასე ჰქვია: .

ფაქტობრივად, რა მოხდება, თუ რიცხვი b გაიზარდა ისეთ ხარისხამდე, რომ რიცხვი b ამ ხარისხში იძლევა რიცხვს a? მართალია: შედეგი არის იგივე რიცხვი a. კიდევ ერთხელ ყურადღებით წაიკითხეთ ეს აბზაცი - ბევრი ადამიანი ჩერდება მასზე.

ახალ ბაზაზე გადასვლის ფორმულების მსგავსად, ძირითადი ლოგარითმული იდენტურობა ზოგჯერ ერთადერთი შესაძლო გამოსავალია.

დავალება. იპოვნეთ გამოთქმის მნიშვნელობა:

გაითვალისწინეთ, რომ log25 64 = log5 8 - უბრალოდ აიღო კვადრატი ლოგარითმის ფუძიდან და არგუმენტიდან. იმავე ფუძით ძალაუფლების გამრავლების წესების გათვალისწინებით, მივიღებთ:

თუ ვინმემ არ იცის, ეს იყო რეალური დავალება ერთიანი სახელმწიფო გამოცდიდან :)

ლოგარითმული ერთეული და ლოგარითმული ნული

დასასრულს, მე მივცემ ორ იდენტობას, რომლებსაც ძნელად შეიძლება ვუწოდოთ თვისებები - უფრო მეტიც, ისინი ლოგარითმის განსაზღვრის შედეგებია. ისინი გამუდმებით ჩნდებიან პრობლემებში და, რა გასაკვირია, პრობლემებს უქმნიან თუნდაც „მოწინავე“ მოსწავლეებს.

  1. ლოგა = 1 არის. ერთხელ და სამუდამოდ დაიმახსოვრეთ: ლოგარითმი ამ ფუძის ნებისმიერი a ფუძის ტოლია ერთის.
  2. ლოგა 1 = 0 არის. ფუძე a შეიძლება იყოს ნებისმიერი, მაგრამ თუ არგუმენტი შეიცავს ერთს, ლოგარითმი ნულის ტოლია! რადგან a0 = 1 არის განმარტების პირდაპირი შედეგი.

ეს არის ყველა თვისება. დარწმუნდით, რომ ივარჯიშეთ მათ პრაქტიკაში! ჩამოტვირთეთ მოტყუების ფურცელი გაკვეთილის დასაწყისში, ამობეჭდეთ და მოაგვარეთ პრობლემები.

ინსტრუქციები

დაწერეთ მოცემული ლოგარითმული გამოხატულება. თუ გამოთქმა იყენებს 10-ის ლოგარითმს, მაშინ მისი აღნიშვნა მცირდება და ასე გამოიყურება: lg b არის ათობითი ლოგარითმი. თუ ლოგარითმს საფუძვლად აქვს რიცხვი e, ჩაწერეთ გამოთქმა: ln b – ბუნებრივი ლოგარითმი. გასაგებია, რომ ნებისმიერის შედეგი არის ძალა, რომელზედაც უნდა გაიზარდოს საბაზისო რიცხვი, რომ მივიღოთ b რიცხვი.

ორი ფუნქციის ჯამის პოვნისას თქვენ უბრალოდ უნდა განასხვავოთ ისინი სათითაოდ და დაამატოთ შედეგები: (u+v)" = u"+v";

ორი ფუნქციის ნამრავლის წარმოებულის პოვნისას აუცილებელია პირველი ფუნქციის წარმოებული გავამრავლოთ მეორეზე და დავუმატოთ მეორე ფუნქციის წარმოებული გამრავლებული პირველ ფუნქციაზე: (u*v)" = u"*v. +v"*u;

ორი ფუნქციის კოეფიციენტის წარმოებული რომ ვიპოვოთ, საჭიროა დივიდენდის წარმოებულის ნამრავლს გამრავლებულ ფუნქციაზე გამოვაკლოთ გამყოფის წარმოებულის ნამრავლი გამრავლებული დივიდენდის ფუნქციაზე და გავყოთ. ეს ყველაფერი გამყოფი ფუნქციის კვადრატში. (u/v)" = (u"*v-v"*u)/v^2;

თუ მიცემულია რთული ფუნქცია, მაშინ აუცილებელია მისი წარმოებულის გამრავლება შიდა ფუნქციახოლო გარეგანის წარმოებული. მოდით y=u(v(x)), შემდეგ y"(x)=y"(u)*v"(x).

ზემოთ მიღებული შედეგების გამოყენებით, შეგიძლიათ განასხვავოთ თითქმის ნებისმიერი ფუნქცია. ასე რომ, მოდით შევხედოთ რამდენიმე მაგალითს:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2 *x));
ასევე არის პრობლემები წარმოებულის გამოთვლასთან დაკავშირებით. მოცემული იყოს ფუნქცია y=e^(x^2+6x+5), თქვენ უნდა იპოვოთ ფუნქციის მნიშვნელობა x=1 წერტილში.
1) იპოვეთ ფუნქციის წარმოებული: y"=e^(x^2-6x+5)*(2*x +6).

2) გამოთვალეთ ფუნქციის მნიშვნელობა მოცემული წერტილი y"(1)=8*e^0=8

ვიდეო თემაზე

სასარგებლო რჩევა

ისწავლეთ ელემენტარული წარმოებულების ცხრილი. ეს მნიშვნელოვნად დაზოგავს დროს.

წყაროები:

  • მუდმივის წარმოებული

მაშ, რა განსხვავებაა მათ შორის რაციონალური განტოლებარაციონალურიდან? თუ უცნობი ცვლადი არის ნიშნის ქვეშ კვადრატული ფესვი, მაშინ განტოლება ითვლება ირაციონალურად.

ინსტრუქციები

ასეთი განტოლებების ამოხსნის მთავარი მეთოდია ორივე მხარის აგების მეთოდი განტოლებებიმოედანზე. თუმცა. ეს ბუნებრივია, პირველი რაც უნდა გააკეთოთ არის ნიშნის მოშორება. ეს მეთოდი არ არის ტექნიკურად რთული, მაგრამ ზოგჯერ შეიძლება გამოიწვიოს პრობლემები. მაგალითად, განტოლება არის v(2x-5)=v(4x-7). ორივე მხარის კვადრატში მიიღებთ 2x-5=4x-7. ასეთი განტოლების ამოხსნა არ არის რთული; x=1. მაგრამ ნომერი 1 არ იქნება მოცემული განტოლებები. რატომ? შეცვალეთ ერთი განტოლებაში x-ის მნიშვნელობის ნაცვლად და მარჯვენა და მარცხენა მხარეები შეიცავენ გამონათქვამებს, რომლებსაც აზრი არ აქვთ, ანუ. ეს მნიშვნელობა არ არის მოქმედი კვადრატული ფესვისთვის. მაშასადამე, 1 არის უცხო ფესვი და, შესაბამისად, ამ განტოლებას ფესვები არ აქვს.

ასე რომ, ირაციონალური განტოლება წყდება მისი ორივე მხარის კვადრატის მეთოდის გამოყენებით. და განტოლების ამოხსნის შემდეგ, აუცილებელია ზედმეტი ფესვების ამოჭრა. ამისათვის შეცვალეთ ნაპოვნი ფესვები თავდაპირველ განტოლებაში.

განიხილეთ კიდევ ერთი.
2х+vх-3=0
რა თქმა უნდა, ეს განტოლება შეიძლება ამოხსნას იგივე განტოლების გამოყენებით, როგორც წინა. ნაერთების გადატანა განტოლებები, რომლებსაც არ აქვთ კვადრატული ფესვი, in მარჯვენა მხარედა შემდეგ გამოიყენეთ კვადრატის მეთოდი. ამოხსნათ მიღებული რაციონალური განტოლება და ფესვები. მაგრამ ასევე სხვა, უფრო ელეგანტური. შეიყვანეთ ახალი ცვლადი; vх=y. შესაბამისად მიიღებთ 2y2+y-3=0 ფორმის განტოლებას. ანუ ჩვეულებრივი კვადრატული განტოლება. იპოვნეთ მისი ფესვები; y1=1 და y2=-3/2. შემდეგი, გადაწყვიტეთ ორი განტოლებები vх=1; vх=-3/2. მეორე განტოლებას არ აქვს ფესვები პირველიდან ვხვდებით, რომ x=1. არ დაგავიწყდეთ ფესვების შემოწმება.

პირადობის ამოხსნა საკმაოდ მარტივია. ამისათვის თქვენ უნდა გააკეთოთ იდენტობის გარდაქმნებიმიზნის მიღწევამდე. ამრიგად, მარტივი არითმეტიკული ოპერაციების დახმარებით, დასმული პრობლემა მოგვარდება.

დაგჭირდებათ

  • - ქაღალდი;
  • -კალამი.

ინსტრუქციები

ასეთი გარდაქმნებიდან უმარტივესი არის ალგებრული შემოკლებული გამრავლება (როგორიცაა ჯამის კვადრატი (განსხვავება), კვადრატების სხვაობა, ჯამი (განსხვავება), ჯამის კუბი (განსხვავება)). გარდა ამისა, არსებობს მრავალი ტრიგონომეტრიული ფორმულა, რომლებიც არსებითად იგივე იდენტობებია.

მართლაც, ორი წევრის ჯამის კვადრატი უდრის პირველის კვადრატს პლუს ორჯერ ნამრავლი პირველის მეორეზე და პლუს მეორის კვადრატი, ანუ (a+b)^2= (a+ ბ)(a+b)=a^2+ab +ba+b ^2=a^2+2ab+b^2.

გაამარტივეთ ორივე

გადაწყვეტის ზოგადი პრინციპები

გაიმეორეთ მათემატიკური ანალიზის ან უმაღლესი მათემატიკის სახელმძღვანელოდან რა არის განსაზღვრული ინტეგრალი. როგორც ცნობილია, გამოსავალი განსაზღვრული ინტეგრალიარის ფუნქცია, რომლის წარმოებული იძლევა ინტეგრანდს. ეს ფუნქციაანტიდერივატი ეწოდება. ამ პრინციპის საფუძველზე აგებულია ძირითადი ინტეგრალები.
განსაზღვრეთ ინტეგრადის ტიპის მიხედვით, ცხრილის რომელი ინტეგრალია შესაფერისი ამ შემთხვევაში. ამის დაუყოვნებლივ დადგენა ყოველთვის არ არის შესაძლებელი. ხშირად, ტაბულური ფორმა შესამჩნევი ხდება მხოლოდ რამდენიმე გარდაქმნის შემდეგ, ინტეგრადის გასამარტივებლად.

ცვლადის ჩანაცვლების მეთოდი

თუ ინტეგრადი არის ტრიგონომეტრიული ფუნქცია, რომლის არგუმენტი არის პოლინომი, მაშინ სცადეთ გამოიყენოთ ცვლადების შეცვლის მეთოდი. ამისათვის შეცვალეთ პოლინომი ინტეგრადის არგუმენტში ახალი ცვლადით. ახალ და ძველ ცვლადებს შორის ურთიერთობის საფუძველზე განსაზღვრეთ ინტეგრაციის ახალი საზღვრები. ამ გამონათქვამის დიფერენცირებით იპოვეთ ახალი დიფერენციალი . ასე რომ თქვენ მიიღებთ ახალი სახეობაწინა ინტეგრალის, ახლოს ან თუნდაც შესაბამისი რომელიმე ცხრილის.

მეორე სახის ინტეგრალების ამოხსნა

თუ ინტეგრალი არის მეორე სახის ინტეგრალი, ინტეგრანის ვექტორული ფორმა, მაშინ დაგჭირდებათ ამ ინტეგრალებიდან სკალარზე გადასვლის წესების გამოყენება. ერთ-ერთი ასეთი წესია ოსტროგრადსკი-გაუსის ურთიერთობა. ეს კანონი საშუალებას გვაძლევს გადავიდეთ გარკვეული ვექტორული ფუნქციის როტორული ნაკადიდან სამმაგ ინტეგრალზე მოცემული ვექტორული ველის დივერგენციაზე.

ინტეგრაციის ლიმიტების ჩანაცვლება

ანტიდერივატივის პოვნის შემდეგ აუცილებელია ინტეგრაციის საზღვრების ჩანაცვლება. პირველ რიგში, ჩაანაცვლეთ ზედა ზღვრის მნიშვნელობა ანტიწარმოებულის გამოხატულებაში. რაღაც ნომერს მიიღებ. შემდეგ, მიღებული რიცხვიდან გამოაკლეთ ქვედა ზღვრიდან მიღებული სხვა რიცხვი ანტიწარმოებულში. თუ ინტეგრაციის ერთ-ერთი ზღვარი არის უსასრულობა, მაშინ მისი ჩანაცვლებისას ანტიდერივატიული ფუნქციააუცილებელია ზღვარზე წასვლა და პოვნა, რისკენ ისწრაფვის გამოთქმა.
თუ ინტეგრალი არის ორგანზომილებიანი ან სამგანზომილებიანი, მაშინ თქვენ მოგიწევთ გეომეტრიულად წარმოადგინოთ ინტეგრაციის საზღვრები, რათა გაიგოთ, როგორ შეაფასოთ ინტეგრალი. მართლაც, მაგალითად, სამგანზომილებიანი ინტეგრალის შემთხვევაში, ინტეგრაციის საზღვრები შეიძლება იყოს მთლიანი სიბრტყეები, რომლებიც ზღუდავს ინტეგრირებულ მოცულობას.