Как образуются рентгеновские лучи. Характеристическое рентгеновское излучение: описание, действие, особенности


Рентгеновское излучение (синоним рентгеновские лучи) - это с широким диапазоном длин волн (от 8·10 -6 до 10 -12 см). Рентгеновское излучение возникает при торможении заряженных частиц, чаще всего электронов, в электрическом поле атомов вещества. Образующиеся при этом кванты имеют различную энергию и образуют непрерывный спектр. Максимальная энергия квантов в таком спектре равна энергии налетающих электронов. В (см.) максимальная энергия квантов рентгеновского излучения, выраженная в килоэлектрон-вольтах, численно равна величине приложенного к трубке напряжения, выраженного в киловольтах. При прохождении через вещество рентгеновское излучение взаимодействует с электронами его атомов. Для квантов рентгеновского излучения с энергией до 100 кэв наиболее характерным видом взаимодействия является фотоэффект. В результате такого взаимодействия энергия кванта полностью расходуется на вырывание электрона из атомной оболочки и сообщения ему кинетической энергии. С ростом энергии кванта рентгеновского излучения вероятность фотоэффекта уменьшается и преобладающим становится процесс рассеяния квантов на свободных электронах - так называемый комптон-эффект. В результате такого взаимодействия также образуется вторичный электрон и, кроме того, вылетает квант с энергией меньшей, чем энергия первичного кванта. Если энергия кванта рентгеновского излучения превышает один мегаэлектрон-вольт, может иметь место так называемый эффект образования пар, при котором образуются электрон и позитрон (см. ). Следовательно, при прохождении через вещество происходит уменьшение энергии рентгеновского излучения, т. е. уменьшение его интенсивности. Поскольку при этом с большей вероятностью происходит поглощение квантов низкой энергии, то имеет место обогащение рентгеновского излучения квантами более высокой энергии. Это свойство рентгеновского излучения используют для увеличения средней энергии квантов, т. е. для увеличения его жесткости. Достигается увеличение жесткости рентгеновского излучения использованием специальных фильтров (см. ). Рентгеновское излучение применяют для рентгенодиагностики (см. ) и (см.). См. также Излучения ионизирующие.

Рентгеновское излучение (синоним: рентгеновские лучи, рентгеновы лучи) - квантовое электромагнитное излучение с длиной волны от 250 до 0,025 А (или квантов анергии от 5·10 -2 до 5·10 2 кэв). В 1895 г. открыто В. К. Рентгеном. Смежную с рентгеновским излучением спектральную область электромагнитного излучения, кванты энергии которого превышают 500 кэв, называют гамма-излучением (см.); излучение, кванты энергии которого ниже значений 0,05 кэв, составляет ультрафиолетовое излучение (см.).

Таким образом, представляя относительно небольшую часть обширного спектра электромагнитных излучений, в который входят и радиоволны и видимый свет, рентгеновское излучение, как всякое электромагнитное излучение, распространяется со скоростью света (в пустоте около 300 тыс. км/сек) и характеризуется длиной волны λ (расстояние, на которое излучение распространяется за один период колебания). Рентгеновское излучение обладает также рядом других волновых свойств (преломление, интерференция, дифракция), однако наблюдать их значительно сложнее, чем у более длинноволнового излучения: видимого света, радиоволн.

Спектры рентгеновского излучения: а1 - сплошной тормозной спектр при 310 кв; а - сплошной тормозной спектр при 250 кв, а1 - спектр, фильтрованный 1 мм Cu, а2 - спектр, фильтрованный 2 мм Cu, б - К-серия линии вольфрама.

Для генерирования рентгеновского излучения применяют рентгеновские трубки (см.), в которых излучение возникает при взаимодействии быстрых электронов с атомами вещества анода. Различают рентгеновские излучения двух видов: тормозное и характеристическое. Тормозное рентгеновское излучение, имеющее сплошной спектр, подобно обычному белому свету. Распределение интенсивности в зависимости от длины волны (рис.) представляется кривой с максимумом; в сторону длинных волн кривая спадает полого, а в сторону коротких - круто и обрывается при определенной длине волны (λ0), называемой коротковолновой границей сплошного спектра. Величина λ0 обратно пропорциональна напряжению на трубке. Тормозное излучение возникает при взаимодействии быстрых электронов с ядрами атомов. Интенсивность тормозного излучения прямо пропорциональна силе анодного тока, квадрату напряжения на трубке и атомному номеру (Z) вещества анода.

Если энергия ускоренных в рентгеновской трубке электронов превосходит критическую для вещества анода величину (эта энергия определяется критическим для этого вещества напряжением на трубке Vкр), то возникает характеристическое излучение. Характеристический спектр - линейчатый, его спектральные линии образуют серии, обозначаемые буквами К, L, М, N.

Серия К - самая коротковолновая, серия L - более длинноволновая, серии М и N наблюдаются только у тяжелых элементов (Vкр вольфрама для К-серии - 69,3 кв, для L-серии - 12,1 кв). Характеристическое излучение возникает следующим образом. Быстрые электроны выбивают атомные электроны из внутренних оболочек. Атом возбуждается, а затем возвращается в основное состояние. При этом электроны из внешних, менее связанных оболочек заполняют освободившиеся во внутренних оболочках места, и излучаются фотоны характеристического излучения с энергией, равной разности энергий атома в возбужденном и основном состоянии. Эта разность (а следовательно, и энергия фотона) имеет определенное значение, характерное для каждого элемента. Это явление лежит в основе рентгеноспектрального анализа элементов. На рисунке виден линейчатый спектр вольфрама на фоне сплошного спектра тормозного излучения.

Энергия ускоренных в рентгеновской трубке электронов преобразуется почти целиком в тепловую (анод при этом сильно нагревается), лишь незначительная часть (около 1% при напряжении, близком к 100 кв) превращается в энергию тормозного излучения.

Применение рентгеновского излучения в медицине основано на законах поглощения рентгеновых лучей веществом. Поглощение рентгеновского излучения совершенно не зависит от оптических свойств вещества поглотителя. Бесцветное и прозрачное свинцовое стекло, используемое для защиты персонала рентгеновских кабинетов, практически полностью поглощает рентгеновское излучение. Напротив, лист бумаги, не прозрачный для света, не ослабляет рентгеновского излучения.

Интенсивность однородного (т. е. определенной длины волны) пучка рентгеновского излучения при прохождении через слой поглотителя уменьшается по экспоненциальному закону (е-х), где е - основание натуральных логарифмов (2,718), а показатель экспоненты х равен произведению массового коэффициента ослабления (μ/р) см 2 /г на толщину поглотителя в г/см 2 (здесь р - плотность вещества в г/см 3). Ослабление рентгеновского излучения происходит как за счет рассеяния, так и за счет поглощения. Соответственно массовый коэффициент ослабления является суммой массовых коэффициентов поглощения и рассеяния. Массовый коэффициент поглощения резко возрастает с увеличением атомного номера (Z) поглотителя (пропорционально Z3 или Z5) и с увеличением длины волны (пропорционально λ3). Указанная зависимость от длины волны наблюдается в пределах полос поглощения, на границах которых коэффициент обнаруживает скачки.

Массовый коэффициент рассеяния возрастает с увеличением атомного номера вещества. При λ≥0,ЗÅ коэффициент рассеяния от длины волны не зависит, при λ<0,ЗÅ он уменьшается с уменьшением λ.

Уменьшение коэффициентов поглощения и рассеяния с уменьшением длины волны обусловливает возрастание проникающей способности рентгеновского излучения. Массовый коэффициент поглощения для костей [поглощение в основном обусловлено Са 3 (РO 4) 2 ] почти в 70 раз больше, чем для мягких тканей, где поглощение в основном обусловлено водой. Это объясняет, почему на рентгенограммах так резко выделяется тень костей на фоне мягких тканей.

Распространение неоднородного пучка рентгеновского излучения через любую среду наряду с уменьшением интенсивности сопровождается изменением спектрального состава, изменением качества излучения: длинноволновая часть спектра поглощается в большей степени, чем коротковолновая, излучение становится более однородным. Отфильтровывание длинноволновой части спектра позволяет при рентгенотерапии очагов, глубоко расположенных в теле человека, улучшить соотношение между глубинной и поверхностной дозами (см. Рентгеновские фильтры). Для характеристики качества неоднородного пучка рентгеновых лучей используется понятие «слой половинного ослабления (Л)» - слой вещества, ослабляющий излучение наполовину. Толщина этого слоя зависит от напряжения на трубке, толщины и материала фильтра. Для измерения слоев половинного ослабления используют целлофан (до энергии 12 кэв), алюминий (20-100 кэв), медь (60-300 кэв), свинец и медь (>300 кэв). Для рентгеновых лучей, генерируемых при напряжениях 80-120 кв, 1 мм меди по фильтрующей способности эквивалентен 26 мм алюминия, 1 мм свинца - 50,9 мм алюминия.

Поглощение и рассеяние рентгеновского излучения обусловлено его корпускулярными свойствами; рентгеновское излучение взаимодействует с атомами как поток корпускул (частиц) - фотонов, каждый из которых имеет определенную энергию (обратно пропорциональную длине волны рентгеновского излучения). Интервал энергий рентгеновских фотонов 0,05-500 кэв.

Поглощение рентгеновского излучения обусловлено фотоэлектрическим эффектом: поглощение фотона электронной оболочкой сопровождается вырыванием электрона. Атом возбуждается и, возвращаясь в основное состояние, испускает характеристическое излучение. Вылетающий фотоэлектрон уносит всю энергию фотона (за вычетом энергии связи электрона в атоме).

Рассеяние рентгеновского излучения обусловлено электронами рассеивающей среды. Различают классическое рассеяние (длина волны излучения не меняется, но меняется направление распространения) и рассеяние с изменением длины волны - комптон-эффект (длина волны рассеянного излучения больше, чем падающего). В последнем случае фотон ведет себя как движущийся шарик, а рассеяние фотонов происходит, по образному выражению Комнтона, наподобие игры на бильярде фотонами и электронами: сталкиваясь с электроном, фотон передает ему часть своей энергии и рассеивается, обладая уже меньшей энергией (соответственно длина волны рассеянного излучения увеличивается), электрон вылетает из атома с энергией отдачи (эти электроны называют комптон-электронами, или электронами отдачи). Поглощение энергии рентгеновского излучения происходит при образовании вторичных электронов (комптон - и фотоэлектронов) и передаче им энергии. Энергия рентгеновского излучения, переданная единице массы вещества, определяет поглощенную дозу рентгеновского излучения. Единица этой дозы 1 рад соответствует 100 эрг/г. За счет поглощенной энергии в веществе поглотителя протекает ряд вторичных процессов, имеющих важное значение для дозиметрии рентгеновского излучения, так как именно на них основываются методы измерения рентгеновского излучения. (см. Дозиметрия).

Все газы и многие жидкости, полупроводники и диэлектрики под действием рентгеновского излучения увеличивают электрическую проводимость. Проводимость обнаруживают лучшие изоляционные материалы: парафин, слюда, резина, янтарь. Изменение проводимости обусловлено ионизацией среды, т. е. разделением нейтральных молекул на положительные и отрицательные ионы (ионизацию производят вторичные электроны). Ионизация в воздухе используется для определения экспозиционной дозы рентгеновского излучения (дозы в воздухе), которая измеряется в рентгенах (см. Дозы ионизирующих излучений). При дозе в 1 р поглощенная доза в воздухе равна 0,88 рад.

Под действием рентгеновского излучения в результате возбуждения молекул вещества (и при рекомбинации ионов) возбуждается во многих случаях видимое свечение вещества. При больших интенсивностях рентгеновского излучения наблюдается видимое свечение воздуха, бумаги, парафина и т. п. (исключение составляют металлы). Наибольший выход видимого свечения дают такие кристаллические люминофоры, как Zn·CdS·Ag-фосфор и другие, применяемые для экранов при рентгеноскопии.

Под действием рентгеновского излучения в веществе могут проходить также различные химические процессы: разложение галоидных соединений серебра (фотографический эффект, используемый при рентгенографии), разложение воды и водных растворов перекиси водорода, изменение свойств целлулоида (помутнение и выделение камфоры), парафина (помутнение и отбелка).

В результате полного преобразования вся поглощенная химически инертным веществом энергия рентгеновское излучение превращается в теплоту. Измерение очень малых количеств теплоты требует высокочувствительных методов, зато является основным способом абсолютных измерений рентгеновского излучения.

Вторичные биологические эффекты от воздействия рентгеновского излучения являются основой медицинской рентгенотерапии (см.). Рентгеновские излучения, кванты которых составляют 6-16 кэв (эффективные длины волн от 2 до 5 Å), практически полностью поглощаются кожным покровом ткани человеческого тела; они называются пограничными лучами, или иногда лучами Букки (см. Букки лучи). Для глубокой рентгенотерапии применяется жесткое фильтрованное излучение с эффективными квантами энергии от 100 до 300 кэв.

Биологическое действие рентгеновского излучения должно учитываться не только при рентгенотерапии, но и при рентгенодиагностике, а также во всех других случаях контакта с рентгеновским излучением, требующих применения противолучевой защиты (см.).

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУ ВПО ЮУрГУ

Кафедра физической химии

по курсу КСЕ: “Рентгеновское излучение”

Выполнил:

Наумова Дарья Геннадиевна

Проверил:

Доцент, К. Т.Н.

Танклевская Н.М.

Челябинск 2010 г.

Введение

Глава I. Открытие рентгеновского излучения

Получение

Взаимодействие с веществом

Биологическое воздействие

Регистрация

Применение

Как делают рентгеновский снимок

Естественное рентгеновское излучение

Глава II. Рентгентография

Применение

Метод получения изображения

Преимущества рентгенографии

Недостатки рентгенографии

Рентгеноскопия

Принцип получения

Преимущества рентгеноскопии

Недостатки рентгеноскопии

Цифровые технологии в рентгеноскопии

Многострочный сканирующий метод

Заключение

Список использованной литературы

Введение

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых определяется диапазоном энергией от ультрафиолетовых до гамма-излучений, что соответствует интервалу длин волн от 10−4 до 10² Å (от 10−14 до 10−8 м).

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Глава I. Открытие рентгеновского излучения

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием "О новом типе лучей" была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. Также Никола Тесла, начиная с 1897 года, экспериментировал с катодолучевыми трубками, получил рентгеновские лучи, но не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них всего три сравнительно небольших статьи, но в них было дано столь исчерпывающее описание новых лучей, что сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: "Я уже всё написал, не тратьте зря время". Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). Подобная слава принесла Рентгену в 1901 году первую Нобелевскую премию по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название "рентгеновские лучи". В некоторых странах осталось старое название - X-лучи. В России лучи стали называть "рентгеновскими" с подачи ученика В.К. Рентгена - Абрама Фёдоровича Иоффе.

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 - 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

(Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В.К. Рентгеном)

)

Получение

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т.к ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение, частоты определяются законом Мозли:

,

где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т.н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения (см. рентгеновская трубка).

Взаимодействие с веществом

Коэффициент преломления почти любого вещества для рентгеновских лучей мало отличается от единицы. Следствием этого является тот факт, что не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z3λ3, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

В изучении и практическом использовании атомных явлений одну из важнейших ролей играют рентгеновские лучи. Благодаря их исследованию было сделано множество открытий и разработаны методы анализа вещества, применяемые в самых разных областях. Здесь мы рассмотрим один из видов рентгеновских лучей - характеристическое рентгеновское излучение.

Природа и свойства рентгеновских лучей

Рентгеновское излучение - это высокочастотное изменение состояния электромагнитного поля, распространяющееся в пространстве со скоростью около 300 000 км/с, то есть электромагнитные волны. На шкале диапазона электромагнитного излучения рентген располагается в области длин волн от приблизительно 10 -8 до 5∙10 -12 метров, что на несколько порядков короче оптических волн. Это соответствует частотам от 3∙10 16 до 6∙10 19 Гц и энергиям от 10 эВ до 250 кэВ, или 1,6∙10 -18 до 4∙10 -14 Дж. Следует отметить, что границы частотных диапазонов электромагнитного излучения достаточно условны вследствие их перекрытия.

Является взаимодействие ускоренных заряженных частиц (электронов высоких энергий) с электрическими и магнитными полями и с атомами вещества.

Фотонам рентгеновских лучей свойственны высокие энергии и большая проникающая и ионизирующая способность, особенно для жесткого рентгена с длинами волн менее 1 нанометра (10 -9 м).

Рентгеновские лучи взаимодействуют с веществом, ионизируя его атомы, в процессах фотоэффекта (фотопоглощения) и некогерентного (комптоновского) рассеяния. При фотопоглощении рентгеновский фотон, поглощаясь электроном атома, передает ему энергию. Если ее величина превышает энергию связи электрона в атоме, то он покидает атом. Комптоновское рассеяние характерно для более жестких (энергичных) рентгеновских фотонов. Часть энергии поглощаемого фотона затрачивается на ионизацию; при этом под некоторым углом к направлению первичного фотона излучается вторичный, с меньшей частотой.

Виды рентгеновского излучения. Тормозное излучение

Для получения лучей используют представляющие собой стеклянные вакуумные баллоны с расположенными внутри электродами. Разность потенциалов на электродах нужна очень высокая - до сотен киловольт. На вольфрамовом катоде, подогреваемом током, происходит термоэлектронная эмиссия, то есть с него испускаются электроны, которые, ускоряясь разностью потенциалов, бомбардируют анод. В результате их взаимодействия с атомами анода (иногда его именуют антикатодом) рождаются фотоны рентгеновского диапазона.

В зависимости от того, какой процесс приводит к рождению фотона, различают такие виды рентгеновского излучения, как тормозное и характеристическое.

Электроны могут, встречаясь с анодом, тормозиться, то есть терять энергию в электрических полях его атомов. Эта энергия излучается в форме рентгеновских фотонов. Такое излучение называется тормозным.

Понятно, что условия торможения будут различаться для отдельных электронов. Это значит, что в рентгеновское излучение преобразуются разные количества их кинетической энергии. В результате тормозное излучение включает фотоны разных частот и, соответственно, длин волн. Поэтому спектр его является сплошным (непрерывным). Иногда по этой причине его еще называют «белым» рентгеновским излучением.

Энергия тормозного фотона не может превышать кинетическую энергию порождающего его электрона, так что максимальная частота (и наименьшая длина волны) тормозного излучения соответствует наибольшему значению кинетической энергии налетающих на анод электронов. Последняя же зависит от приложенной к электродам разности потенциалов.

Существует еще один тип рентгеновского излучения, источником которого является иной процесс. Это излучение именуют характеристическим, и мы остановимся на нем подробнее.

Как возникает характеристическое рентгеновское излучение

Достигнув антикатода, быстрый электрон может проникнуть внутрь атома и выбить какой-либо электрон с одной из нижних орбиталей, то есть передать ему энергию, достаточную для преодоления потенциального барьера. Однако при наличии в атоме более высоких энергетических уровней, занятых электронами, освободившееся место пустым не останется.

Необходимо помнить, что электронная структура атома, как и всякая энергетическая система, стремится минимизировать энергию. Образовавшаяся в результате выбивания вакансия заполняется электроном с одного из вышележащих уровней. Его энергия выше, и, занимая более низкий уровень, он излучает излишек в форме кванта характеристического рентгеновского излучения.

Электронная структура атома - это дискретный набор возможных энергетических состояний электронов. Поэтому рентгеновские фотоны, излучаемые в процессе замещения электронных вакансий, также могут иметь только строго определенные значения энергии, отражающие разность уровней. Вследствие этого характеристическое рентгеновское излучение обладает спектром не сплошного, а линейчатого вида. Такой спектр позволяет характеризовать вещество анода - отсюда и название этих лучей. Именно благодаря спектральным различиям ясно, что понимают под тормозным и характеристическим рентгеновским излучением.

Иногда излишек энергии не излучается атомом, а затрачивается на выбивание третьего электрона. Этот процесс - так называемый эффект Оже - с большей вероятностью происходит, когда энергия связи электрона не превышает 1 кэВ. Энергия освобождающегося оже-электрона зависит от структуры энергетических уровней атома, поэтому спектры таких электронов также носят дискретный характер.

Общий вид характеристического спектра

Узкие характеристические линии присутствуют в рентгеновской спектральной картине вместе со сплошным тормозным спектром. Если представить спектр в виде графика зависимости интенсивности от длины волны (частоты), в местах расположения линий мы увидим резкие пики. Их позиция зависит от материала анода. Эти максимумы присутствуют при любой разности потенциалов - если есть рентгеновские лучи, пики тоже всегда есть. При повышении напряжения на электродах трубки интенсивность и сплошного, и характеристического рентгеновского излучения нарастает, но расположение пиков и соотношение их интенсивностей не меняется.

Пики в рентгеновских спектрах имеют одинаковый вид независимо от материала облучаемого электронами антикатода, но у различных материалов располагаются на разных частотах, объединяясь в серии по близости значений частоты. Между самими сериями различие по частотам намного значительнее. Вид максимумов никак не зависит от того, представляет ли материал анода чистый химический элемент или же это сложное вещество. В последнем случае характеристические спектры рентгеновского излучения составляющих его элементов просто накладываются друг на друга.

С повышением порядкового номера химического элемента все линии его рентгеновского спектра смещаются в сторону повышения частоты. Спектр при этом сохраняет свой вид.

Закон Мозли

Явление спектрального сдвига характеристических линий было экспериментально обнаружено английским физиком Генри Мозли в 1913 году. Это позволило ему связать частоты максимумов спектра с порядковыми номерами химических элементов. Таким образом, и длину волны характеристического рентгеновского излучения, как выяснилось, можно четко соотнести с определенным элементом. В общем виде закон Мозли можно записать следующим образом: √f = (Z - S n)/n√R, где f - частота, Z - порядковый номер элемента, S n - постоянная экранирования, n - главное квантовое число и R - постоянная Ридберга. Эта зависимость имеет линейный характер и на диаграмме Мозли выглядит как ряд прямых линий для каждого значения n.

Значения n соответствуют отдельным сериям пиков характеристического рентгеновского излучения. Закон Мозли позволяет по измеряемым значениям длин волн (они однозначно связаны с частотами) максимумов рентгеновского спектра устанавливать порядковый номер химического элемента, облучаемого жесткими электронами.

Структура электронных оболочек химических элементов идентична. На это указывает монотонность сдвигового изменения характеристического спектра рентгеновского излучения. Частотный сдвиг отражает не структурные, а энергетические различия между электронными оболочками, уникальные для каждого элемента.

Роль закона Мозли в атомной физике

Существуют небольшие отклонения от строгой линейной зависимости, выражаемой законом Мозли. Они связаны, во-первых, с особенностями порядка заполнения электронных оболочек у некоторых элементов, и, во-вторых, с релятивистскими эффектами движения электронов тяжелых атомов. Кроме того, при изменении количества нейтронов в ядре (так называемом изотопическом сдвиге) положение линий может слегка меняться. Этот эффект дал возможность детально изучить атомную структуру.

Значение закона Мозли чрезвычайно велико. Последовательное применение его к элементам периодической системы Менделеева установило закономерность увеличения порядкового номера соответственно каждому небольшому сдвигу характеристических максимумов. Это способствовало прояснению вопроса о физическом смысле порядкового номера элементов. Величина Z - это не просто номер: это положительный электрический заряд ядра, представляющий собой сумму единичных положительных зарядов частиц, входящих в его состав. Правильность размещения элементов в таблице и наличие в ней пустых позиций (тогда они еще существовали) получили мощное подтверждение. Была доказана справедливость периодического закона.

Закон Мозли, помимо этого, стал основой, на которой возникло целое направление экспериментальных исследований - рентгеновская спектрометрия.

Строение электронных оболочек атома

Вкратце вспомним, как устроена электронная Она состоит из оболочек, обозначаемых буквами K, L, M, N, O, P, Q либо цифрами от 1 до 7. Электроны в пределах оболочки характеризуются одинаковым главным квантовым числом n, определяющим возможные значения энергии. Во внешних оболочках энергия электронов выше, а потенциал ионизации для внешних электронов соответственно ниже.

Оболочка включает один или несколько подуровней: s, p, d, f, g, h, i. В каждой оболочке количество подуровней увеличивается на один по сравнению с предыдущей. Количество электронов в каждом подуровне и в каждой оболочке не может превышать определенного значения. Они характеризуются, помимо главного квантового числа, одинаковым значением орбитального определяющего форму электронного облака. Подуровни обозначаются с указанием оболочки, которой они принадлежат, например, 2s, 4d и так далее.

Подуровень содержит которые задаются, кроме главного и орбитального, еще одним квантовым числом - магнитным, определяющим проекцию орбитального момента электрона на направление магнитного поля. Одна орбиталь может иметь не более двух электронов, различающихся значением четвертого квантового числа - спинового.

Рассмотрим подробнее, как возникает характеристическое рентгеновское излучение. Так как происхождение этого типа электромагнитной эмиссии связано с явлениями, происходящими внутри атома, удобнее всего описывать его именно в приближении электронных конфигураций.

Механизм генерации характеристического рентгеновского излучения

Итак, причиной возникновения данного излучения является образование электронных вакансий во внутренних оболочках, обусловленное проникновением высокоэнергичных электронов глубоко внутрь атома. Вероятность того, что жесткий электрон вступит во взаимодействие, возрастает с увеличением плотности электронных облаков. Следовательно, наиболее вероятным будет столкновение в пределах плотно упакованных внутренних оболочек, например, самой нижней К-оболочки. Здесь атом ионизируется, и в оболочке 1s образуется вакансия.

Эта вакансия заполняется электроном из оболочки с большей энергией, избыток которой уносится рентгеновским фотоном. Этот электрон может «упасть» из второй оболочки L, из третьей М и так далее. Так формируется характеристическая серия, в данном примере - К-серия. Указание на то, откуда происходит заполнивший вакансию электрон, дается в виде греческого индекса при обозначении серии. «Альфа» означает, что он происходит из L-оболочки, «бета» - из М-оболочки. В настоящее время существует тенденция к замене греческих буквенных индексов латинскими, принятыми для обозначения оболочек.

Интенсивность альфа-линии в серии всегда наивысшая - это значит, что вероятность заполнения вакансии из соседней оболочки самая высокая.

Теперь мы можем ответить на вопрос, какова максимальная энергия кванта характеристического рентгеновского излучения. Она определяется разностью значений энергии уровней, между которыми совершается переход электрона, по формуле E = E n 2 - E n 1 , где E n 2 и E n 1 - энергии электронных состояний, между которыми произошел переход. Наивысшее значение этого параметра дают переходы К-серии с максимально высоких уровней атомов тяжелых элементов. Но интенсивность этих линий (высота пиков) самая малая, поскольку они наименее вероятны.

Если из-за недостаточности напряжения на электродах жесткий электрон не может достичь К-уровня, он образует вакансию на L-уровне, и формируется менее энергичная L-серия с большими длинами волн. Аналогичным образом рождаются последующие серии.

Кроме того, при заполнении вакансии в результате электронного перехода возникает новая вакансия в вышележащей оболочке. Это создает условия для генерирования следующей серии. Электронные вакансии перемещаются выше с уровня на уровень, и атом испускает каскад характеристических спектральных серий, оставаясь при этом ионизированным.

Тонкая структура характеристических спектров

Атомным рентген-спектрам характеристического рентгеновского излучения свойственна тонкая структура, выражающаяся, как и в оптических спектрах, в расщеплении линий.

Тонкая структура связана с тем, что энергетический уровень - электронная оболочка - представляет собой набор тесно расположенных компонентов - подоболочек. Для характеристики подоболочек введено еще одно, внутреннее квантовое число j, отражающее взаимодействие собственного и орбитального магнитных моментов электрона.

В связи с влиянием спин-орбитального взаимодействия энергетическая структура атома усложняется, и в результате характеристическое рентгеновское излучение имеет спектр, которому свойственны расщепленные линии с очень близко расположенными элементами.

Элементы тонкой структуры принято обозначать дополнительными цифровыми индексами.

Характеристическое рентгеновское излучение обладает особенностью, отраженной только в тонкой структуре спектра. Переход электрона на низший энергетический уровень не происходит с нижней подоболочки вышележащего уровня. Такое событие имеет пренебрежимо малую вероятность.

Использование рентгена в спектрометрии

Это излучение благодаря своим особенностям, описанным законом Мозли, лежит в основе различных рентгеноспектральных методов анализа веществ. При анализе рентгеновского спектра применяют либо дифракцию излучения на кристаллах (волнодисперсионный метод), либо чувствительные к энергии поглощенных рентгеновских фотонов детекторы (энергодисперсионный метод). Большинство электронных микроскопов оснащены теми или иными рентгеноспектрометрическими приставками.

Особенно высокой точностью отличается волнодисперсионная спектрометрия. При помощи особых фильтров выделяются наиболее интенсивные пики в спектре, благодаря чему можно получить практически монохроматическое излучение с точно известной частотой. Материал анода выбирается очень тщательно, чтобы обеспечить получение монохроматического пучка нужной частоты. Его дифракция на кристаллической решетке изучаемого вещества позволяет исследовать структуру решетки с большой точностью. Этот метод применяется также в изучении ДНК и других сложных молекул.

Одна из особенностей характеристического рентгеновского излучения учитывается и в гамма-спектрометрии. Это высокая интенсивность характеристических пиков. В гамма-спектрометрах применяется свинцовая защита от внешних фоновых излучений, вносящих помехи в измерения. Но свинец, поглощая гамма-кванты, испытывает внутреннюю ионизацию, в результате чего активно излучает в рентгеновском диапазоне. Для поглощения интенсивных максимумов характеристического рентгеновского излучения свинца используется дополнительная кадмиевая экранировка. Она, в свою очередь, ионизируется и также излучает в рентгене. Для нейтрализации характеристических пиков кадмия применяют третий экранирующий слой - медный, рентгеновские максимумы которого лежат вне рабочего диапазона частот гамма-спектрометра.

Спектрометрия использует и тормозное, и характеристическое рентгеновское излучение. Так, при анализе веществ исследуются спектры поглощения сплошного рентгена различными веществами.

Рентгеновское излучение — разновидность высокоэнергетического электромагнитного излучения. Оно активно используется в различных отраслях медицины.

Рентгеновские лучи представляют собой электромагнитные волны, энергия фотонов которых на шкале электромагнитных волн находится между ультрафиолетовым излучением и гамма-излучением (от ~10 эВ до ~1 МэВ), что соответствует длинам волн от ~10^3 до ~10^−2 ангстрем (от ~10^−7 до ~10^−12 м). То есть это несравнимо более жесткое излучение, чем видимый свет, который находится на этой шкале между ультрафиолетом и инфракрасными («тепловыми») лучами.

Граница между рентгеном и гамма-излучением выделяется условно: их диапазоны пересекаются, гамма-лучи могут иметь энергию от 1 кэв. Различаются они по происхождению: гамма-лучи испускаются в ходе процессов, происходящих в атомных ядрах, рентгеновские же — при процессах, идущих с участием электронов (как свободных, так и находящихся в электронных оболочках атомов). При этом по самому фотону невозможно установить, в ходе какого процесса он возник, то есть деление на рентгеновский и гамма-диапазон во многом условно.

Рентгеновский диапазон делят на «мягкий рентген» и «жесткий». Граница между ними пролегает на уровне длины волны 2 ангстрема и 6 кэв энергии.

Генератор рентгеновского излучения представляет собой трубку, в которой создан вакуум. Там расположены электроды — катод, на который подается отрицательный заряд, и положительно заряженный анод. Напряжение между ними составляет десятки-сотни киловольт. Генерация рентгеновских фотонов происходит тогда, когда электроны «срываются» с катода и с высочайшей скоростью врезаются в поверхность анода. Возникающее при этом рентгеновское излучение называется «тормозным», его фотоны имеют различную длину волны.

Одновременно происходит генерация фотонов характеристического спектра. Часть электронов в атомах вещества анода возбуждается, то есть переходит на более высокие орбиты, а потом возвращается в нормальное состояние, излучая фотоны определенной длины волны. В стандартном генераторе возникают оба типа рентгеновского излучения.

История открытия

8 ноября 1895 года немецкий ученый Вильгельм Конрад Рентген обнаружил, что некоторые вещества под воздействием «катодных лучей», то есть потока электронов, генерируемого катодно-лучевой трубкой, начинают светиться. Он объяснил это явление воздействием неких X-лучей — так («икс-лучи») это излучение и сейчас называется на многих языках. Позже В.К. Рентген изучил открытое им явление. 22 декабря 1895 года он сделал доклад на эту тему в Вюрцбургском университете.

Позже выяснилось, что рентгеновское излучение наблюдалось и ранее, но тогда связанным с ним феноменам не придали большого значения. Катодно-лучевая трубка была изобретена уже давно, но до В.К. Рентгена никто не обращал особого внимания на почернение фотопластинок вблизи нее и т.п. явления. Неизвестна была и опасность, исходящая от проникающей радиации.

Виды и их влияние на организм

«Рентген» — самый мягкий тип проникающей радиации. Избыточное воздействие мягкого рентгена напоминает влияние ультрафиолетового облучения, но в более тяжелой форме. На коже образуется ожог, но поражение оказывается более глубоким, а заживает он намного медленнее.

Жесткий рентген представляет собой полноценную ионизирующую радиацию, способную привести к лучевой болезни. Рентгеновские кванты могут разрывать молекулы белков, из которых состоят ткани человеческого тела, а также молекулы ДНК генома. Но даже если рентгеновский квант разбивает молекулу воды, все равно: при этом образуются химически активные свободные радикалы H и OH, которые сами способны воздействовать на белки и ДНК. Лучевая болезнь протекает в тем более тяжелой форме, чем больше поражаются органы кроветворения.

Рентгеновские лучи обладают мутагенной и канцерогенной активностью. Это значит, что вероятность спонтанных мутаций в клетках при облучении возрастает, а иногда здоровые клетки могут перерождаться в раковые. Повышение вероятности появления злокачественных опухолей — стандартное следствие любого облучения, в том числе рентгеновского. Рентген является наименее опасным видом проникающей радиации, но он все равно может быть опасен.

Рентгеновское излучение: применение и как работает

Рентгеновское излучение применяется в медицине, а также в других сферах человеческой деятельности.

Рентгеноскопия и компьютерная томография

Наиболее частое применение рентгеновского излучения — рентгеноскопия. «Просвечивание» человеческого тела позволяет получить детальное изображение как костей (они видны наиболее четко), так и изображения внутренних органов.

Различная прозрачность тканей тела в рентгеновских лучах связана с их химическим составом. Особенности строения костей в том, что они содержат много кальция и фосфора. Другие же ткани состоят в основном из углерода, водорода, кислорода и азота. Атом фосфора превосходит по весу атом кислорода почти вдвое, а атом кальция — в 2,5 раза (углерод, азот и водород — еще легче кислорода). В связи с этим поглощение рентгеновских фотонов в костях оказывается намного выше.

Помимо двухмерных «снимков» рентгенография дает возможность создать трехмерное изображение органа: эта разновидность рентгенографии называется компьютерной томографией. Для этих целей применяется мягкий рентген. Объем облучения, полученный при одном снимке, невелик: он примерно равен облучению, получаемому при 2-часовом полете на самолете на высоте 10 км.

Рентгеновская дефектоскопия позволяет выявлять мелкие внутренние дефекты в изделиях. Для нее используется жесткий рентген, так как многие материалы (металл например) плохо «просвечиваются» из-за высокой атомной массы составляющего их вещества.

Рентгеноструктурный и рентгенофлуоресцентный анализ

У рентгеновских лучей свойства позволяют с их помощью детально рассматривать отдельные атомы. Рентгеноструктурный анализ активно применяется в химии (в том числе биохимии) и кристаллографии. Принцип его работы — дифракционное рассеивание рентгеновских лучей на атомах кристаллов или сложных молекул. При помощи рентгеноструктурного анализа была определена структура молекулы ДНК.

Рентгенофлуоресцентный анализ позволяет быстро определить химический состав вещества.

Существует множество форм радиотерапии, но все они подразумевают использование ионизирующей радиации. Радиотерапия делится на 2 типа: корпускулярный и волновой. Корпускулярный использует потоки альфа-частиц (ядер атомов гелия), бета-частиц (электронов), нейтронов, протонов, тяжелых ионов. Волновой использует лучи электромагнитного спектра — рентгеновские и гамма.

Используются радиотерапевтические методы прежде всего для лечения онкологических заболеваний. Дело в том, что радиация поражает в первую очередь активно делящиеся клетки, поэтому так страдают органы кроветворения (их клетки постоянно делятся, производя все новые эритроциты). Раковые клетки тоже постоянно делятся и более уязвимы для радиации, чем здоровая ткань.

Используется уровень облучения, который подавляет активность раковых клеток, умеренно влияя на здоровые. Под воздействием радиации происходит не разрушение клеток как таковое, а поражение их генома — молекул ДНК. Клетка с разрушенным геномом может некоторое время существовать, но уже не может делиться, то есть рост опухоли прекращается.

Рентгенотерапия — наиболее мягкая форма радиотерапии. Волновая радиация мягче корпускулярной, а рентген — мягче гамма-излучения.

При беременности

Использовать ионизирующую радиацию при беременности опасно. Рентгеновские лучи обладают мутагенной активностью и могут вызвать нарушения у плода. Рентгенотерапия несовместима с беременностью: она может применяться только в том случае, если уже решено производить аборт. Ограничения на рентгеноскопию мягче, но в первые месяцы она тоже строго запрещена.

В случае крайней необходимости рентгенологическое исследование заменяют магниторезонансной томографией. Но в первый триместр стараются избегать и ее (этот метод появился недавно, и с абсолютной уверенностью говорить об отсутствии вредных последствий).

Однозначная опасность возникает при облучении суммарной дозой не менее 1 мЗв (в старых единицах — 100 мР). При простом рентгеновском снимке (например, при прохождении флюорографии) пациентка получает примерно в 50 раз меньше. Для того, чтобы получить такую дозу за 1 раз, нужно подвергнуться детальной компьютерной томографии.

То есть сам по себе факт 1-2-кратного «рентгена» на ранней стадии беременности не грозит тяжелыми последствиями (но лучше не рисковать).

Лечение с помощью него

Рентгеновские лучи применяют прежде всего при борьбе со злокачественными опухолями. Этот метод хорош тем, что высокоэффективен: он убивает опухоль. Плох он тем, что здоровым тканям приходится немногим лучше, имеются многочисленные побочные эффекты. В особой опасности находятся органы кроветворения.

На практике применяются различные методы, позволяющие снизить воздействие рентгена на здоровые ткани. Лучи направляются под углом таким образом, чтобы в зоне их перекрещивания оказалась опухоль (благодаря этому основное поглощение энергии происходит как раз там). Иногда процедура производится в движении: тело пациента относительно источника излучения вращается вокруг оси, проходящей через опухоль. При этом здоровые ткани оказываются в зоне облучения лишь иногда, а больные — постоянно.

Рентген используется при лечении некоторых артрозов и подобных заболеваний, а также кожных болезней. При этом болевой синдром снижается на 50-90%. Так как излучение при этом используется более мягкое, побочных эффектов, аналогичных тем, что возникают при лечении опухолей, не наблюдается.

В 1895 году Рентген обнаружил, что если через стеклянную трубку с двумя впаянными электро­дами, из которой выкачан воз­дух до давления 103 мм рт. ст., пропустить электрический ток, то анод выделяет особые, неизвестные до тех пор, неви­димые глазом лучи. Он назвал их Х-лучами. В России и во многих других стра­нах их стали на­зывать рентгеновскими лучами. Рентген, иссле­дуя их свойства, обнаружил следующее:

1.Они обладают сильной проникающей способ­ностью, кото­рая зависит от природы вещества и толщины его. Благодаря это­му свойству они по­лучили широкое распространение в меди­цине и промышленности.

2.Вызывают свечение (люминесценцию) некото­рых тел. С по­мощью экранов из таких веществ их можно наблюдать.

3.Оказывают действие на фотопленку (фотохи­мическое дей­ствие).

4.Способны активно ионизировать воздух и дру­гие вещества.

5.Оказывают биологическое действие на ткани организма, что нашло применение в лечении зло­качественных опухолей.

Однако природу рентгеновских лучей сам Рент­ген не раскрыл. Многие исследователи находили сходство между рентгеновскими лучами и свето­выми - они распространялись прямолинейно и не отклонялись ни в электриче­ском, ни в магнитном поле. Но, если предполо­жить одинаковую при­роду света и рентгеновских лучей, то рентгенов­ские лучи должны были бы обладать волновы­ми и квантовыми свойствами. Однако дифракцию рентгеновских лучей долгое время получить не удавалось. В 1910 году П.Н. Ле­бедев предложил использовать в качестве дифракционной решет­ки для рентгеновских лучей естественные кри­сталлы, а в 1912 году немецкий физик Лауэ вы­полнил этот опыт. Поток рентгеновского света направлялся через диафрагму на кристалл, при этом на эк­ране или фотопленке вокруг централь­ного светлого пятна (недифрагировавшие лучи) возникал ряд светлых точек, расположенных в определенном порядке.

Расстояние между атомами кристаллической ре­шетки, поряд­ка 1А°, соизмеримо с длиной волны и эти промежутки являются центрами вторичных волн, которые, дифрагируя, дают максиму­мы в виде белых пятен. Но т.к. атомы расположены не строго один около другого как щели дифракци­онной решетки, то максимумы расположены в сложном порядке, нежели в дифракцион­ной ре­шетке. Такая картина называ­ется лауэграммой. Этот опыт показал, что рентгеновские лучи имеют волновую природу.

Опыт Лауэ позволил использовать дифракцию рентгеновских лучей:

1. Для определения длины волны, зная расстоя­ние между ато­мами.

2. Для определения структуры веществ по лауэ­грамме, зная длину волны рентгеновских лучей.

Метод изучения молекулярных структур, т.е. оп­ределение по­ложения атомов в молекуле и их природы с помощью рентгено­вских лучей, полу­чил название рентгеноструктурный анализ . Для исследования биологических структур быть использованы различные явления взаимодейст­вия рентгеновского излучения с веществом: по­глощение, рассеяние и дифракция, инактивация (из­менение структуры молекул и функций их со­ставных частей под действием рентгеновского излучения). Метод рассеяния и дифрак­ции рент­геновских лучей использует их волновые свой­ства. Рент­геновские лучи, рассеи­ваемые атомами, входящими в состав мо­лекул, интерферируют и дают картину - лауэграмму, на которой положе­ние и интенсивности максиму­мов зависят от по­ложения атомов в молекуле и от взаимного рас­положения молекул. Если моле­кулы располо­жены хаотически, например, в растворах, то рас­сеяние не зависит от внутренней структуры мо­лекул, а в ос­новном от их размеров и формы.

В дальнейшем были изучены и другие свой­ства рентгеновских лучей:

1. Интерференция.

2. Преломление.

3. Полное внутрен­нее отражение.

4. Поляризация.

5. Спектральный со­став.

6. Взаимодействие с веществом.

Получают рентгено­вские лучи с помощью рент­геновской трубки.

Она состоит из стеклянного баллона с возможно высоким вакуу­мом (10 -6 - 10 -7 мм. рт. ст.), в кото­ром находятся два электрода.

Катод - является источником электронов и вы­полняется в виде спирали. Анод состоит из мас­сивного медного стержня, на торцевом срезе ко­торого расположена пластина из вольфрама (зер­кальце анода). Электроны разгоняется в электри­ческом поле и взаимодействуют с зеркальцем анода. В результате взаимодействия образуется поток рентгеновских лучей. Вся трубка окружена свинцовым кожухом, имеется лишь небольшое окно для выхода излучения. Т.к. анод при работе силь­но разогревается, его охлаждают водой или маслом. В некоторых трубках анод делают вра­щающимся. Длина волны рентгеновских лучей от 0,001 до 2 нм. Рентгено­вское излучение харак­теризуется интенсивностью и жесткостью.

Интенсивность - это величина энергии, кото­рую несут рент­геновские лучи, через площадку 1 см 2 за 1 с.

Жесткость рентгеновского излучения определя­ется его способностью проходить через веще­ство, а прони­кающая способность зависит от дли­ны волны. Рентгеновское излучение возника­ет в результате взаимодействия потока электронов с атомами зеркальца ано­да.

Двигающийся направ­ленно электрон можно представить электрическим током. Попадая в элек­трическое поле атома, движение элек­трона замедляется, что соответствует уменьшению тока. Уменьшение тока

вызовет изменяющееся магнитное поле вокруг электрона, а изме­няющееся магнитное поле на­ведет в смежных точках изменяюще­еся электри­ческое поле и т.д., т.о. при торможении электрона ато­мом возникает электромагнитная волна. Су­ществует и квантовая теория, объяс­няющая воз­никновение тормозного рентгенов­ского излуче­ния. Кроме круговых или эл­липти­ческих стацио­нарных орбит, называемых периодическими, существуют и не замкнутые орбиты электронов (параболические, гиперболи­ческие), по которым может двигаться электрон, не из­лучая и не по­глощая энергии. Подлетая к атому со скоростью υ 1 , электрон двигается по ста­ционарной не замк­нутой орбите с энергией Е 1 , тормозясь, он пе­ре­ходит на другую стационар­ную орбиту с энер­гией Е 2 , при этом излучается квант энергии. На­чальная кинетическая энергия электрона зависит только от ускоряющего напряжения mυ 1 2 /2=eU и есть величина постоян­ная. Конечная энергия в зависимости от условий торможения может при­нимать любые значения от mυ 1 2 /2 до 0. Следова­тельно, энергия излучен­ного кванта может быть любой в промежутке от 0 до mυ 1 2 /2 . Спектр излу­чения сплошной, ограниченный со стороны

коротких длин волн.

hv =(mυ 1 2)/2 – (mυ 2 2)/2

Минимальная энергия кванта определяется из этого уравнения,

если (mυ 2 2)/2= 0 , тогда или hv min =(mυ 1 2)/2

hc/λ max =eU , откуда λ max = (hc)/(eU)

Электрон, взаимодействуя с атомом анода, может удалить ор­битальный электрон с ближайшей к ядру орбиты К, L, М на более отдаленную или вообще за пределы атома. На освободившееся ме­сто перейдет электрон с более удаленной ор­биты. При этом излу­чается квант рентгенов­ского излучения, длина волны которого оп­ределяется разностью дозволенных энергетиче­ских состоя­ний ато­ма (hv = E 2 - E 1). Следова­тельно, излуче­ние может быть только оп­реде­ленных длин волн, спектр такого излучения будет линейчатым, а из­лучение называют характеристическим.

При бомбардировке вещества анода электрона­ми существуют оба вида излучения. Рассмотрим схему рентгеновского аппарата.

В состав рентгеновско­го аппарата входят следую­щие узлы:

1. Рентгеновская труб­ка (РТ)

2. Повышающий трансформатор (ТР2).

3. Понижающий трансформатор (ТР,).

4. Автотрансформатор (АТР).

5. Высоковольтный выпрямитель (В).

Первичная обмотка повышающего трансформа­тора питается от сети переменного тока через ав­тотрансформатор. Автотранс­форматор служит для регулировки напряжения между анодом и катодом. Изменение напряжения изменяет длину волны λ min =l,24/ U , а длина волны характеризует жесткость излучения, т.о. авто­трансформатор служит для регулировки жесткости рентгенов­ско­го излучения. Напряжение между анодом и катодом рентгено­вской трубки в медицинских рентгеновских аппаратах до 60 кВ, в промыш­ленных - 200 - 250 кВ. Питается трубка постоян­ным током. В качестве выпрямителя использу­ются высоковольтные диоды или кенотроны, ис­пользу­ются однополупериодные и двухполупе­риодные схемы. Для питания накала трубки слу­жит понижающий трансформа­тор ТР 1 . В пер­вичную цепь этого трансформатора ставится рео­с­тат R. Изменяя сопротивление, мы изменяем ток накала катода, а, следовательно, его темпера­туру и число испускаемых электронов. Число элек­тронов характеризует интенсивность рентге­нов­ского излучения, т.о. реостат R служит для изме­нения интенсивности из­лучения, которая опреде­ляется следующей формулой:

Ф = kJU 2 Z",

где J - анодный ток, U - напряжение между като­дом и анодом трубки, Z - порядковый номер ве­щества зеркальца анода. Защита от воздействия рентгеновского излучения, даваемо­го лечебными и диагностическими аппаратами, сводится к сле­дующему:

1.Экранизация источника излучения. Рентгенов­ская трубка самозащитная. Камера закрывается свинцовыми листами.

2.Индивидуальная защита обслуживающего пер­сонала (фартук, перчатки, стекло экрана делается из просвинцованного материала).

3. Охраняются законом (меньший рабочий день, дополнитель­ный отпуск, спецпитание и др.)

При взаимодействии рентгеновских лучей с ве­ществом, часть их отражается от поверхности, часть проходит через вещество без взаимодейст­вия, часть проходит вовнутрь вещества, взаимо­дей­ствуя с атомами.

При этом могут возникнуть три случая взаи­мо­действия.

1. Если фотон не обладает достаточной энергией для перевода орбитального электрона на более высокий энергетический уро­вень, то взаимодей­ствие происходит путем упругого соударения, изменяется направление фотона, а энергия и длина волны остаются прежними hv 1 = hv 2 Это взаимодействие называет­ся когерентным или классическим рассеянием.

2. Если энергия кванта равна или незначительно превышает работу выхода электрона из металла, то при взаимодействии воз­никает фотоэффект , энергия фотона затрачивается на работу по вы­ходу электрона из атома и сообщение ему кине­тической энергии.

hv 1 = A вых + (mυ 2)/2

Если энергия меньше работы выхода, но доста­точна для того, чтобы перевести электрон с од­ной орбиты на другую (с более высоким энерге­тическим уровнем), то может произойти излуче­ние в видимой части спектра, рентгено­люми­несценция или акти­вация молекул. Оба вида взаимодействия объединены общим названием - истинное поглощение .

3. Если энергия фотона значительно превышает работу по вы­ходу электрона, что более харак­терно для жесткого коротковолно­вого излучения и внешних электронов атома, то при взаимодей­ствии фотон отдает часть энергии. Возникает фо­тон с меньшей энергией и фотоэлектрон отдачи. Это явление называ­ется не когерентным рас­сеянием или комптон-эффектом.

Возникающие новый фотон и электрон назы­вают вторичным излучением. Вторичное излуче­ние может вызывать новые реак­ции (когерентное рассеяние, истинное поглощение, комптон-эф­фект) с образованием третичных электронов, квантов и т.д. В ре­зультате всех этих процессов возникает ионизация вещества и излучение с большей длиной волны, которое рассеивается по всем направлениям.

Параллельный поток рент­геновских лучей при прохожде­нии через вещество ослабляет­ся. Ос­лабление под­чиняется закону Бугера: Ф = Ф 0 e - μd

Фо - поток, падающий на вещество, Ф - поток, прошед­ший через вещество, μ - ли­нейный коэф­фициент ослабле­ния, d - толщина слоя веще­ства.

Для рентгеновского излу­чения применяемого в меди­цине с энергией фотонов 150-200 кэВ при глубокой терапии; 60-100 кэВ при диагностике; коэффициент ослабления опре­деляется по фор­муле:

μ = kpZ 3 λ 3 ,

k - коэффициент пропор­циональности, завися­щий от выбора единиц измерения, р - плотность вещества, Z - порядковый номер элемента, λ - длина волны излучения.

Если на пути рентгеновско­го излучения помес­тить нео­днородное вещество, то на флюоресци­рующем экране по­лучим тени отдельных деталей

вещества. Таким неоднородным веществом явля­ется организм че­ловека. Просвечивая его рентге­новскими лучами, по форме и размерам, а так же по интенсивности теневого изображения, су­дят о нормальном или патологическом состоя­нии ор­ганов. Такой метод диагностики заболева­ний но­сит название рентгенодиагнос­тики. Существует два основных ме­тода рентгенодиаг­ностики: рентге­носкопия и рентгенография. При рент­геноскопии теневое изобра­жение органов на­блюдается на люминесцентном экране. На экра­не более плотные ткани (сердце, кровеносные со­суды) видны тем­ными, мало поглощающие ткани (легочные поля) - светлыми.При рентгено­графии теневое изображение фотографируют на фотопленку. Изображение получа­ют негативное (обратное) по отно­шению к изображению на эк­ране.

Кроме основных методов, используются специ­альные приемы рентгенодиагностики.

1. Контрастная рентгенография . Для получе­ния более контра­стного изображения использу­ются особые вещества, вводимые в ткани - отри­цательные контрастные вещества (воздух, кисло­род) используются в плотных тканях (головной мозг), положительные контрастные вещества (соли бария, коллоиды на основе йода) для мало поглощающих тканей.

2. Флюорография. Фотографирование рентге­новского изобра­жения с экрана на пленку не­большого формата. Экран, оптика и пленка с фо­токамерой объединяются в большую светоне­проница­емую систему, что позволяет делать съемку в незатемненном по­мещении. Этот метод применяется для массового обследования насе­ления.

3. Электрорентгенография отличается от обычной рентгено­графии способом получения изображения; при этом методе пу­чок рентгенов­ских лучей, прошедших через тело пациента, на­правляется на предварительно зараженную селе­новую пластину. Прошедшие через организм рентгеновские лучи, изменяют потенциал пла­стины на разных ее участках, соответственно ин­тенсивности попадающего на эти участки излу­чения - на плас­тинке возникает «скрытое элек­трическое изображение». Для «проявления» изо­бражения селеновую пластинку напыляют гра­фитовым порошком, который притягивается к тем местам, где сохранился заряд и не задержи­вается в тех местах, которые поте­ряли заряд под действием рентгеновских лучей. Это изображе­ние легко переносится на обычную бумагу. По­сле стирания по­рошка пластину можно исполь­зовать вновь. На одной пластине можно провести более 1000 снимков. Главные достоин­ства элек­трорентгенографии состоит в том, что она позво­ляет быстро по­лучить снимки без затрат фото­пленки, без мокрого фотопроцес­са, без затемне­ния и обладает более высокой разрешающей спо­собностью.

4. Рентгеновская компьютерная томография . Этот метод зак­лючается в перемещении рентге­новской трубки по определенной траектории, для фотографирования объекта с различных положе­ний. При этом на фотопленке изображение также пе­ремещается. Однако съемка производится та­ким образом, что рентгеновский луч всегда про­ходит одну и ту же точку О. Если перемещать эту точку, то на снимке можно получить послой­ное теневое изображение (томография - послой­ная запись). Чтение таких изображений довольно сложное. Помогает врачу в этом вопросе вычис­лительная техника, поэтому добавляется слово ком­пьютерная томография. Рентгеновская ком­пьютерная томография позволяет получать изо­бражение с деталями около 1 мм, различа­ются по контрастности два образования с разностью в по­глоще­нии около 0,1 %.

5. Рентгенотелевидение . С помощью специаль­ных фотоуси­лителей рентгеновского изображе­ния (УРИ) регистрируют и уси­ливают слабое изображение на экране и, исполь­зуя передаю­щую телеви­зионную аппаратуру, по­лучают изо­бражение на экране телевизора. Изоб­ражение на экране теле­визора значительной яр­кости, обеспе­чивает вы­явление сравнительно ма­лых деталей объекта, по­зволяет производить фото - и кино­съемку.

Рентгеновские лучи используют для «лечения» злокачествен­ных новообразований - рентгено­терапия . При облучении жи­вых тканей рентге­новскими лучами изменяется функциональное состояние клеток. Первичный эффект воздейст­вия рентгеновских лучей на вещество - иониза­ция. Выявлено, что при летальных дозах в клетке образуется около 1 млн. ионов (всего в клетке 10 14 атомов). При первичном размене энергии никаких видимых структурных изменений в атомах и молекулах не происходит. Со­временная физиология рассматривает первичные эффекты взаи­модействия ионизирующего излучения с веществом (в том чис­ле и рентгеновского) в двух аспектах: взаимодействие с молеку­лами воды в водных растворах и действие на органические со­единения. В водных растворах образуются ради­калы (ОН - , Н +), гидроперекисные и перекис­ные соединения (Н 2 О 2), обладающие большой хими­ческой активностью. При воздействии на орга­нические со­единения образуются возбуж­денные молекулы, радикалы, ионы, перекиси, которые так же в химическом отношении весьма актив­ны. Т.о. первичное взаимодействие проис­ходит по физическим законам возбуждения и ионизации молекул. Ионизация атомов и моле­кул вызывает вторичные процессы, развиваю­щиеся по биоло­гическим законам. Активные перекис­ные соеди­нения окисляют и изменяют клеточные фер­менты, что вызывает нарушение нормального протекания биохимических процес­сов - клетки теряют способность синтезировать опреде­лен­ные типы белков, без которых невоз­можно деле­ние клетки. Возникают мутации, изменяется те­чение белкового, углеводного, пептидного и хо­лестеринового обмена веществ. При таких реак­ци­ях белковые молекулы могут разрушаться и распадаться на ами­нокислоты, вплоть до образо­вания весьма токсичных гистаминоподобных со­единений, под влиянием которых развиваются дист­рофические и некро­тические изменения. Особенно сильно рент­геновские лучи действуют на быстрорастущие, малодифференцированные клетки - кроветвор­ные органы, кожу, гонады, что по­зволяет исполь­зовать рентгеновские лучи для облучения раковых опухолей этих образований. Следует помнить, что излучение действует не только на био­логический объект, подвергнутый облуче­нию, но и на последую­щие поколения, че­рез наследственный аппарат клеток.