Как решить систему неравенств с модулем. Решение неравенств с модулями


Математика является символом мудрости науки ,

образцом научной строгости и простоты ,

эталоном совершенства и красоты в науке.

Российский философ, профессор А.В. Волошинов

Неравенства с модулем

Наиболее сложно решаемыми задачами школьной математики являются неравенства , содержащие переменные под знаком модуля. Для успешного решения таких неравенств необходимо хорошо знать свойства модуля и иметь навыки их использования.

Основные понятия и свойства

Модуль (абсолютная величина) действительного числа обозначается и определяется следующим образом:

К простым свойствам модуля относятся следующие соотношения:

И .

Отметим , что последние два свойства справедливы для любой четной степени.

Кроме того , если , где , то и

Более сложные свойства модуля , которые можно эффективно использовать при решении уравнений и неравенств с модулями , формулируются посредством следующих теорем:

Теорема 1. Для любых аналитических функций и справедливо неравенство .

Теорема 2. Равенство равносильно неравенству .

Теорема 3. Равенство равносильно неравенству .

Наиболее распространенными в школьной математике неравенствами , содержащие неизвестные переменные под знаком модуля , являются неравенства вида и , где некоторая положительная константа.

Теорема 4. Неравенство равносильно двойному неравенству , а решение неравенства сводится к решению совокупности неравенств и .

Данная теорема является частным случаем теорем 6 и 7.

Более сложными неравенствами , содержащие модуль, являются неравенства вида , и .

Методы решения таких неравенств можно сформулировать посредством следующих трех теорем.

Теорема 5. Неравенство равносильно совокупности двух систем неравенств

И (1)

Доказательство. Так как , то

Отсюда вытекает справедливость (1).

Теорема 6. Неравенство равносильно системе неравенств

Доказательство. Так как , то из неравенства следует , что . При таком условии неравенство и при этом вторая система неравенств (1) окажется несовместной.

Теорема доказана.

Теорема 7. Неравенство равносильно совокупности одного неравенства и двух систем неравенств

И (3)

Доказательство. Поскольку , то неравенство всегда выполняется , если .

Пусть , тогда неравенство будет равносильно неравенству , из которого вытекает совокупность двух неравенств и .

Теорема доказана.

Рассмотрим типовые примеры решения задач на тему «Неравенства , содержащие переменные под знаком модуля».

Решение неравенств с модулем

Наиболее простым методом решения неравенств с модулем является метод , основанный на раскрытии модулей. Этот метод является универсальным , однако в общем случае его применение может привести к весьма громоздким вычислениям. Поэтому учащиеся должны знать и другие (более эффективные) методы и приемы решения таких неравенств. В частности , необходимо иметь навыки применения теорем , приведенных в настоящей статье.

Пример 1. Решить неравенство

. (4)

Решение. Неравенство (4) будем решать «классическим» методом – методом раскрытия модулей. С этой целью разобьем числовую ось точками и на интервалы и рассмотрим три случая.

1. Если , то , , , и неравенство (4) принимает вид или .

Так как здесь рассматривается случай , то является решением неравенства (4).

2. Если , то из неравенства (4) получаем или . Так как пересечение интервалов и является пустым , то на рассматриваемом интервале решений неравенства (4) нет.

3. Если , то неравенство (4) принимает вид или . Очевидно , что также является решением неравенства (4).

Ответ: , .

Пример 2. Решить неравенство .

Решение. Положим , что . Так как , то заданное неравенство принимает вид или . Поскольку , то и отсюда следует или .

Однако , поэтому или .

Пример 3. Решить неравенство

. (5)

Решение. Так как , то неравенство (5) равносильно неравенствам или . Отсюда , согласно теореме 4 , имеем совокупность неравенств и .

Ответ: , .

Пример 4. Решить неравенство

. (6)

Решение. Обозначим . Тогда из неравенства (6) получаем неравенства , , или .

Отсюда , используя метод интервалов , получаем . Так как , то здесь имеем систему неравенств

Решением первого неравенства системы (7) является объединение двух интервалов и , а решением второго неравенства – двойное неравенство . Отсюда следует , что решение системы неравенств (7) представляет собой объединение двух интервалов и .

Ответ: ,

Пример 5. Решить неравенство

. (8)

Решение. Преобразуем неравенство (8) следующим образом:

Или .

Применяя метод интервалов , получаем решение неравенства (8).

Ответ: .

Примечание. Если в условии теоремы 5 положить и , то получим .

Пример 6. Решить неравенство

. (9)

Решение. Из неравенства (9) следует . Преобразуем неравенство (9) следующим образом:

Или

Так как , то или .

Ответ: .

Пример 7. Решить неравенство

. (10)

Решение. Так как и , то или .

В этой связи и неравенство (10) принимает вид

Или

. (11)

Отсюда следует, что или . Так как , то и из неравенства (11) вытекает или .

Ответ: .

Примечание. Если к левой части неравенства (10) применить теорему 1 , то получим . Отсюда и из неравенства (10) следует , что или . Так как , то неравенство (10) принимает вид или .

Пример 8. Решить неравенство

. (12)

Решение. Так как , то и из неравенства (12) следует или . Однако , поэтому или . Отсюда получаем или .

Ответ: .

Пример 9. Решить неравенство

. (13)

Решение. Согласно теореме 7 решением неравенства (13) являются или .

Пусть теперь . В таком случае и неравенство (13) принимает вид или .

Если объединить интервалы и , то получим решение неравенства (13) вида .

Пример 10. Решить неравенство

. (14)

Решение. Перепишем неравенство (14) в равносильном виде: . Если к левой части данного неравенства применить теорему 1, то получим неравенство .

Отсюда и из теоремы 1 следует , что неравенство (14) выполняется для любых значений .

Ответ: любое число.

Пример 11. Решить неравенство

. (15)

Решение. Применяя теорему 1 к левой части неравенства (15) , получаем . Отсюда и из неравенства (15) вытекает уравнение , которое имеет вид .

Согласно теореме 3 , уравнение равносильно неравенству . Отсюда получаем .

Пример 12. Решить неравенство

. (16)

Решение . Из неравенства (16), согласно теореме 4, получаем систему неравенств

При решении неравенства воспользуемся теоремой 6 и получим систему неравенств из которой следует .

Рассмотрим неравенство . Согласно теореме 7 , получаем совокупность неравенств и . Второе неравенство совокупности справедливо для любого действительного .

Следовательно , решением неравенства (16) являются .

Пример 13. Решить неравенство

. (17)

Решение. Согласно теореме 1 можно записать

(18)

Принимая во внимание неравенство (17), делаем вывод о том, что оба неравенства (18) обращаются в равенства, т.е. имеет место система уравнений

По теореме 3 данная система уравнений равносильна системе неравенств

или

Пример 14. Решить неравенство

. (19)

Решение. Так как , то . Умножим обе части неравенства (19) на выражение , которое для любых значений принимает только положительные значения. Тогда получим неравенство, которое равносильно неравенству (19), вида

Отсюда получаем или , где . Так как и , то решением неравенства (19) являются и .

Ответ: , .

Для более глубокого изучения методов решения неравенств с модулем можно посоветовать обратиться к учебным пособиям , приведенных в списке рекомендованной литературы.

1. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

2. Супрун В.П. Математика для старшеклассников: методы решения и доказательства неравенств. – М.: Ленанд / URSS , 2018. – 264 с.

3. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Методы (правила) раскрытия неравенств с модулями заключаются в последовательном раскрытии модулей, при этом используют интервалы знакопостоянства подмодульных функций. В конечном варианте получают несколько неравенств из которых и находят интервалы или промежутки, которые удовлетворяют условию задачи.

Перейдем к решению распространенных на практике примеров.

Линейные неравенства с модулями

Под линейными понимаем уравнения, в которых переменная входит в уравнение линейно.

Пример 1. Найти решение неравенства

Решение:
Из условия задачи следует, что модули превращаются в ноль при x=-1 и x=-2. Эти точки разбивают числовую ось на интервалы

В каждом из этих интервалов решим заданное неравенство. Для этого прежде всего составляем графические рисунки областей знакопостоянства подмодульных функций. Их изображают в виде областей с знаками каждой из функций


или интервалов со знаками всех функций.

На первом интервале раскрываем модули

Умножаем обе части на минус единицу, при этом знак в неравенстве поменяется на противоположный. Если Вам до этого правила трудно привыкнуть, то можете перенести каждую из частей за знак, чтобы избавиться минуса. В конечном варианте Вы получите

Пересечением множества x>-3 с областью на которой решали уравнения будет интервал (-3;-2) . Для тех кому легче искать решения графически можете рисовать пересечение этих областей

Общие пересечение областей и будет решением. При строгом неровности края не включают. При нестрогое проверяют подстановкой.

На втором интервале получим

Сечением будет интервал (-2;-5/3). Графически решение будет иметь вид

На третьем интервале получим

Данное условие не дает решений на искомой областе.

Поскольку два найдены решения (-3;-2) и (-2;-5/3) граничат точкой x=-2 , то проверяем и ее.

Таким образом точка x=-2 является решением. Общее решение с учетом этого будет выглядеть (-3;5/3).

Пример 2. Найти решение неравенства
|x-2|-|x-3|>=|x-4|

Решение:
Нулями подмодульных функций будут точки x=2, x=3, x=4 . При значениях аргументов меньше этих точек подмодульные функции отрицательные, а при больших – положительные.

Точки разбивают действительную ось на четыре интервала. Раскрываем модули согласно интервалов знакопостоянства и решаем неравенства.

1) На первом интервале все подмодульные функции отрицательные, поэтому при раскрытии модулей меняем знак на противоположный.

Пересечением найденных значений x с рассматриваемым интервалом будет множество точек

2) На промежутке между точками x=2 и x=3 первая подмодульная функция положительная, вторая и третья – отрицательные. Раскрывая модули, получим

неравенство, которое в пересечении с интервалом, на котором решаем, дает одно решение – x=3.

3) На промежутке между точками x=3 и x=4 первая и вторая подмодульные функции положительные, а третья – отрицательная. На основе этого получим

Это условие показывает, что целый промежуток будет удовлетворять неравенство с модулями.

4) При значениях x>4 все функции знакоположительные. При раскрытии модулей их знак не меняем.

Найденное условие в пересечении с интервалом дает следующее множество решений

Поскольку неравенство решено на всех интервалах, то остается найти общее всех найденных значений x. Решением будут два интервала

На этом пример решен.

Пример 3. Найти решение неравенства
||x-1|-5|>3-2x

Решение:
Имеем неравенство с модулем от модуля. Такие неравенства раскрывают по мере вложенности модулей, начиная с тех, которые размещены глубже.

Подмодульная функция x-1 преобразуется в нуль в точке x=1 . При меньших значениях за 1 она отрицательная и положительная для x>1 . На основе этого раскрываем внутренний модуль и рассматриваем неравенство на каждом из интервалов.

Сначала рассмотрим интервал от минус бесконечности до единицы


Подмодульная функция равна нулю в точке x=-4 . При меньших значениях она знакоположительная, при больших – отрицательная. Раскроем модуль для x<-4:

В пересечении с областью, на которой рассматриваем получим множество решений

Следующим шагом раскрываем модуль на интервале (-4;1)

С учетом области раскрытия модуля получим интервал решений

ЗАПОМНИТЕ: если Вы получили в подобных неровностях с модулями два интервала, граничащих общей точкой, то, как правило, она также является решением.

Для этого стоит лишь провести проверку.

В данном случае подставляем точку x=-4.

Итак x=-4 является решением.
Раскроем внутренний модуль для x>1

Подмодульная функция отрицательная для x<6.
Раскрывая модуль получим

Данное условие в сечении с интервалом (1;6) дает пустое множество решений.

Для x>6 получим неравенство

Также решая получили пустое множество.
Учитывая все выше изложенное, единственным решением неравенства с модулями будет следующий интервал.

Неравенства с модулями, содержащие квадратные уравнения

Пример 4. Найти решение неравенства
|x^2+3x|>=2-x^2

Решение:
Подмодульная функция обращается в нуль в точках x=0, x=-3. Простой подстановкой минус единицы

устанавливаем, что она меньше нуля на интервале (-3;0) и положительная за его пределами.
Раскроем модуль в областях где подмодульная функция положительная

Осталось определить области, где квадратная функция положительная. Для этого определяем корни квадратного уравнения

Для удобства подставляем точку x=0, которая принадлежит интервалу (-2;1/2). Функция отрицательная в этом интервале, значит решением будут следующие множества x

Здесь скобками обозначены края областей с решениями, это сделано сознательно, учитывая следующее правило.

ЗАПОМНИТЕ: Если неравенство с модулями, или простое неравенство является строгим, то края найденных областей не являются решениями, если же неравенства нестроги ()то края являются решениями (обозначают квадратными скобками).

Это правило использует многие преподаватели: если задано строгое неравенство, а Вы при вычислениях запишете в решении квадратную скобку ([,]) – они автоматом посчитают это за неправильный ответ. Также при тестировании, если задано нестрогое неравенство с модулями, то среди решений ищите области с квадратными скобками.

На интервале (-3;0) раскрывая модуль меняем знак функции на противоположный

Учитывая область раскрытия неравенства, решение будет иметь вид

Вместе с предыдущей областью это даст два полуинтервала

Пример 5. Найти решение неравенства
9x^2-|x-3|>=9x-2

Решение:
Задано нестрогое неравенство, подмодульная функция которого равна нулю в точке x=3. При меньших значениях она отрицательная, при больших – положительная. Раскрываем модуль на интервале x<3.

Находим дискриминант уравнения

и корни

Подставляя точку ноль, выясняем, что на промежутке [-1/9;1] квадратичная функция отрицательна, следовательно промежуток является решением. Далее раскрываем модуль при x>3

Модулем числа называется само это число, если оно неотрицательное, или это же число с противоположным знаком, если оно отрицательное.

Например, модулем числа 6 является 6, модулем числа -6 тоже является 6.

То есть под модулем числа понимается абсолютная величина, абсолютное значение этого числа без учета его знака.

Обозначается так: |6|, |х |, |а | и т.д.

(Подробнее - в разделе «Модуль числа»).

Уравнения с модулем.

Пример 1 . Решить уравнение |10 х - 5| = 15.

Решение .

В соответствии с правилом, уравнение равносильно совокупности двух уравнений:

10х - 5 = 15
10х - 5 = -15

Решаем:

10х = 15 + 5 = 20
10х = -15 + 5 = -10

х = 20: 10
х = -10: 10

х = 2
х = -1

Ответ : х 1 = 2, х 2 = -1.

Пример 2 . Решить уравнение |2 х + 1| = х + 2.

Решение .

Поскольку модуль - число неотрицательное, то х + 2 ≥ 0. Соответственно:

х ≥ -2.

Составляем два уравнения:

2х + 1 = х + 2
2х + 1 = -(х + 2)

Решаем:

2х + 1 = х + 2
2х + 1 = -х - 2

2х - х = 2 - 1
2х + х = -2 - 1

х = 1
х = -1

Оба числа больше -2. Значит, оба являются корнями уравнения.

Ответ : х 1 = -1, х 2 = 1.

Пример 3 . Решить уравнение

|х + 3| - 1
————— = 4
х - 1

Решение .

Уравнение имеет смысл, если знаменатель не равен нулю - значит, если х ≠ 1. Учтем это условие. Наше первое действие простое - не просто освобождаемся от дроби, а преобрахуем ее так, чтобы получить модуль в чистом виде:

|х + 3| - 1 = 4 · (х - 1),

|х + 3| - 1 = 4х - 4,

|х + 3| = 4х - 4 + 1,

|х + 3| = 4х - 3.

Теперь у нас в левой части уравнения только выражение под модулем. Идем дальше.
Модуль числа есть неотрицательное число - то есть он должен быть больше нуля или равен нулю. Соответственно, решаем неравенство:

4х - 3 ≥ 0

4х ≥ 3

х ≥ 3/4

Таким образом, у нас появилось второе условие: корень уравнения должен быть не меньше 3/4.

В соответствии с правилом, составляем совокупность двух уравнений и решаем их:

х + 3 = 4х - 3
х + 3 = -(4х - 3)

х + 3 = 4х - 3
х + 3 = -4х + 3

х - 4х = -3 - 3
х + 4х = 3 - 3

х = 2
х = 0

Мы получили два ответа. Проверим, являются ли они корнями исходного уравнения.

У нас было два условия: корень уравнения не может быть равен 1, и он должен быть не меньше 3/4. То есть х ≠ 1, х ≥ 3/4. Обоим этим условиям соответствует только один из двух полученных ответов - число 2. Значит, только оно и является корнем исходного уравнения.

Ответ : х = 2.

Неравенства с модулем.

Пример 1 . Решить неравенство | х - 3| < 4

Решение .

Правило модуля гласит:

|а | = а , если а ≥ 0.

|а | = -а , если а < 0.

Модуль может иметь и неотрицательное, и отрицательное число. Значит, мы должны рассмотреть оба случая: х - 3 ≥ 0 и х - 3 < 0.

1) При х - 3 ≥ 0 наше исходное неравенство остается как есть, только без знака модуля:
х - 3 < 4.

2) При х - 3 < 0 в исходном неравенстве надо поставить знак минус перед всем подмодульным выражением:

-(х - 3) < 4.

Раскрыв скобки, получаем:

-х + 3 < 4.

Таким образом, от этих двух условий мы пришли к объединению двух систем неравенств:

х - 3 ≥ 0
х - 3 < 4

х - 3 < 0
-х + 3 < 4

Решим их:

х ≥ 3
х < 7

х < 3
х > -1

Итак, у нас в ответе объединение двух множеств:

3 ≤ х < 7 U -1 < х < 3.

Определяем наименьшее и наибольшее значения. Это -1 и 7. При этом х больше -1, но меньше 7.
Кроме того, х ≥ 3. Значит, решением неравенства является все множество чисел от -1 до 7, исключая эти крайние числа.

Ответ : -1 < х < 7.

Или: х ∈ (-1; 7).

Дополнения .

1) Есть более простой и короткий способ решения нашего неравенства - графический. Для этого надо нарисовать горизонтальную ось (рис.1).

Выражение |х - 3| < 4 означает, что расстояние от точки х до точки 3 меньше четырех единиц. Отмечаем на оси число 3 и отсчитываем влево и вправо от от него 4 деления. Слева мы придем к точке -1, справа - к точке 7. Таким образом, точки х мы просто увидели, не вычисляя их.

При этом, согласно условию неравенства, сами -1 и 7 не включены во множество решений. Таким образом, получаем ответ:

1 < х < 7.

2) Но есть еще одно решение, которое проще даже графического способа. Для этого наше неравенство надо представить в следующем виде:

4 < х - 3 < 4.

Ведь так оно и есть по правилу модуля. Неотрицательное число 4 и аналогичное отрицательное число -4 являются границами решения неравенства.

4 + 3 < х < 4 + 3

1 < х < 7.

Пример 2 . Решить неравенство | х - 2| ≥ 5

Решение .

Этот пример существенно отличается от предыдущего. Левая часть больше 5 либо равна 5. С геометрической точки зрения, решением неравенства являются все числа, которые от точки 2 отстоят на расстоянии 5 единиц и больше (рис.2). По графику видно, что это все числа, которые меньше или равны -3 и больше или равны 7. А значит, мы уже получили ответ.

Ответ : -3 ≥ х ≥ 7.

Попутно решим это же неравенство способом перестановки свободного члена влево и вправо с противоположным знаком:

5 ≥ х - 2 ≥ 5

5 + 2 ≥ х ≥ 5 + 2

Ответ тот же: -3 ≥ х ≥ 7.

Или: х ∈ [-3; 7]

Пример решен.

Пример 3 . Решить неравенство 6 х 2 - | х | - 2 ≤ 0

Решение .

Число х может быть и положительным числом, и отрицательным, и нулем. Поэтому нам надо учесть все три обстоятельства. Как вы знаете, они учитываются в двух неравенствах: х ≥ 0 и х < 0. При х ≥ 0 мы просто переписываем наше исходное неравенство как есть, только без знака модуля:

6х 2 - х - 2 ≤ 0.

Теперь о втором случае: если х < 0. Модулем отрицательного числа является это же число с противоположным знаком. То есть пишем число под модулем с обратным знаком и опять же освобождаемся от знака модуля:

6х 2 - (-х ) - 2 ≤ 0.

Раскрываем скобки:

6х 2 + х - 2 ≤ 0.

Таким образом, мы получили две системы уравнений:

6х 2 - х - 2 ≤ 0
х ≥ 0

6х 2 + х - 2 ≤ 0
х < 0

Надо решить неравенства в системах - а это значит, надо найти корни двух квадратных уравнений. Для этого приравняем левые части неравенств к нулю.

Начнем с первого:

6х 2 - х - 2 = 0.

Как решается квадратное уравнение - см. раздел «Квадратное уравнение». Мы же сразу назовем ответ:

х 1 = -1/2, х 2 = 2/3.

Из первой системы неравенств мы получаем, что решением исходного неравенства является все множество чисел от -1/2 до 2/3. Пишем объединение решений при х ≥ 0:
[-1/2; 2/3].

Теперь решим второе квадратное уравнение:

6х 2 + х - 2 = 0.

Его корни:

х 1 = -2/3, х 2 = 1/2.

Вывод: при х < 0 корнями исходного неравенства являются также все числа от -2/3 до 1/2.

Объединим два ответа и получим итоговый ответ: решением является все множество чисел от -2/3 до 2/3, включая и эти крайние числа.

Ответ : -2/3 ≤ х ≤ 2/3.

Или: х ∈ [-2/3; 2/3].

Существует несколько способов решения неравенств, содержащих модуль. Рассмотрим некоторые из них.

1) Решение неравенства с помощью геометрического свойства модуля.

Напомню, что такое геометрическое свойство модуля: модуль числа x – это расстояние от начала координат до точки с координатой x.

В ходе решения неравенств этим способом может возникнуть 2 случая:

1. |x| ≤ b,

И неравенство с модулем очевидно сводится к системе двух неравенств. Тут знак может быть и строгим, в этом случае точки на картинке будут «выколотыми».

2. |x| ≥ b, тогда картинка решения выглядит так:

И неравенство с модулем очевидно сводится к совокупности двух неравенств. Тут знак может быть и строгим, в этом случае точки на картинке будут «выколотыми».

Пример 1.

Решить неравенство |4 – |x|| 3.

Решение.

Данное неравенство равносильно следующей совокупности:

U [-1;1] U

Пример 2.

Решить неравенство ||x+2| – 3| 2.

Решение.

Данное неравенство равносильно следующей системе.

{|x + 2| – 3 ≥ -2
{|x + 2| – 3 ≤ 2,
{|x + 2| ≥ 1
{|x + 2| ≤ 5.

Решим отдельно первое неравенство системы. Оно эквивалентно следующей совокупности:

U [-1; 3].

2) Решение неравенств, используя определение модуля.

Напомню для начала определение модуля.

|a| = a, если a 0 и |a| = -a, если a < 0.

Например, |34| = 34, |-21| = -(-21) = 21.

Пример 1.

Решить неравенство 3|x – 1| x + 3.

Решение.

Используя определение модуля получим две системы:

{x – 1 ≥ 0
{3(x – 1) ≤ x + 3

{x – 1 < 0
{-3(x – 1) ≤ x + 3.

Решая первую вторую системы в отдельности, получим:

{x ≥ 1
{x ≤ 3,

{x < 1
{x ≥ 0.

Решением исходного неравенства будут все решения первой системы и все решения второй системы.

Ответ: x € .

3) Решение неравенств методом возведения в квадрат.

Пример 1.

Решить неравенство |x 2 – 1| < | x 2 – x + 1|.

Решение.

Возведем обе части неравенства в квадрат. Замечу, что возводить обе части неравенства в квадрат можно только в том случае, когда они обе положительные. В данном случае у нас и слева и справа стоят модули, поэтому мы можем это сделать.

(|x 2 – 1|) 2 < (|x 2 – x + 1|) 2 .

Теперь воспользуемся следующим свойством модуля: (|x|) 2 = x 2 .

(x 2 – 1) 2 < (x 2 – x + 1) 2 ,

(x 2 – 1) 2 – (x 2 – x + 1) 2 < 0.

(x 2 – 1 – x 2 + x – 1)(x 2 – 1 + x 2 – x + 1) < 0,

(x – 2)(2x 2 – x) < 0,

x(x – 2)(2x – 1) < 0.

Решаем методом интервалов.

Ответ: x € (-∞; 0) U (1/2; 2)

4) Решение неравенств методом замены переменных.

Пример.

Решить неравенство (2x + 3) 2 – |2x + 3| 30.

Решение.

Заметим, что (2x + 3) 2 = (|2x + 3|) 2 . Тогда получим неравенство

(|2x + 3|) 2 – |2x + 3| ≤ 30.

Сделаем замену y = |2x + 3|.

Перепишем наше неравенство с учетом замены.

y 2 – y ≤ 30,

y 2 – y – 30 ≤ 0.

Разложим квадратный трехчлен, стоящий слева, на множители.

y1 = (1 + 11) / 2,

y2 = (1 – 11) / 2,

(y – 6)(y + 5) ≤ 0.

Решим методом интервалов и получим:

Вернемся к замене:

5 ≤ |2x + 3| ≤ 6.

Данное двойное неравенство равносильно системе неравенств:

{|2x + 3| ≤ 6
{|2x + 3| ≥ -5.

Решим каждое из неравенств в отдельности.

Первое равносильно системе

{2x + 3 ≤ 6
{2x + 3 ≥ -6.

Решим ее.

{x ≤ 1.5
{x ≥ -4.5.

Второе неравенство очевидно выполняется для всех x, так как модуль по определению число положительное. Так как решение системы – это все x, которые удовлетворяют одновременно и первому и второму неравенству системы, то решением исходной системы будет решение ее первого двойного неравенства (ведь второе верно для всех x).

Ответ: x € [-4,5; 1,5].

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.