Кальций. Что представляет собой кальций, реакция кальция с кислородом Химические соединения кальция


ОПРЕДЕЛЕНИЕ

Кальций - двадцатый элемент Периодической таблицы. Обозначение - Ca от латинского «calcium». Расположен в четвертом периоде, IIА группе. Относится к металлам. Заряд ядра равен 20.

Кальций принадлежит к числу самых распространенных в природе элементов. В земной коре его содержится приблизительно 3% (масс.). Он встречается в виде многочисленных отложений известняков и мела, а также мрамора, которые представляют собой природные разновидности карбоната кальция CaCO 3 . В больших количествах встречаются также гипс CaSO 4 ×2H 2 O, фосфорит Ca 3 (PO 4) 2 и, наконец, различные содержащие кальций силикаты.

В виде простого вещества кальций представляет собой ковкий, довольно твердый металл белого цвета (рис.1). На воздухе быстро покрывается слоем оксида, а при нагревании сгорает ярким красноватым пламенем. С холодной водой кальций реагирует сравнительно медленно, но из горячей воды быстро вытесняет водород, образуя гидроксид.

Рис. 1. Кальций. Внешний вид.

Атомная и молекулярная масса кальция

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии кальций существует в виде одноатомных молекул Ca, значения его атомной и молекулярной масс совпадают. Они равны 40,078.

Изотопы кальция

Известно, что в природе кальций может находиться в виде четырех стабильных изотопов 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, с явным преобладанием изотопа 40 Ca (99,97%). Их массовые числа равны 40, 42, 43, 44, 46 и 48 соответственно. Ядро атома изотопа кальция 40 Ca содержит двадцать протонов и двадцать нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы кальция с массовыми числами от 34-х до 57-ми, среди которых наиболее стабильным является 41 Ca с периодом полураспада равным 102 тысячи лет.

Ионы кальция

На внешнем энергетическом уровне атома кальция имеется два электрона, которые являются валентными:

1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 .

В результате химического взаимодействия кальций отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ca 0 -2e → Ca 2+ .

Молекула и атом кальция

В свободном состоянии кальций существует в виде одноатомных молекул Ca. Приведем некоторые свойства, характеризующие атом и молекулу кальция:

Сплавы кальция

Кальций служит легирующим компонентом некоторых свинцовых сплавов.

Примеры решения задач

ПРИМЕР 1

Задание Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

Ca → Ca(OH) 2 → CaCO 3 →Ca(HCO 3) 2 .

Ответ Растворив кальций в воде можно получить мутный раствор соединения известного под названием «известковое молоко» — гидроксида кальция:

Ca+ 2H 2 O→ Ca(OH) 2 + H 2 .

Пропустив через раствор гидроксида кальция углекислый газ получаем карбонат кальция:

2Ca(OH) 2 + CO 2 → CaCO 3 + H 2 O.

Добавив к карбонату кальция воды и продолжая пропускать через данную смесь углекислый газ получаем гидрокарбонат кальция:

CaCO 3 + H 2 O + CO 2 → Ca(HCO 3) 2 .


Введение

Свойства и применение кальция

1 Физические свойства

2 Химические свойства

3 Применение

Получение кальция

1 Электролитическое получение кальция и его сплавов

2 Термическое получение

3 Вакуум-термический способ получения кальция

3.1 Алюминотермический способ восстановления кальция

3.2 Силикотермический способ восстановления кальция

Практическая часть

Список используемой литературы


Введение

Химический элемент II группы периодической системы Менделеева, атомный номер 20, атомная масса 40,08; серебряно-белый легкий металл. Природный элемент представляет смесь шести стабильных изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, из которых наиболее распространен 40Ca (96, 97%).

Соединения Ca - известняк, мрамор, гипс (а также известь - продукт обжига известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозем и кремнезем - вещества сложные. В 1808 году Г. Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с оксидом ртути, приготовил амальгаму Ca, а отогнав из нее ртуть, получил металл, названный "Кальций" (от лат. calx, род. падеж calcis - известь).

Способность кальция связывать кислород и азот позволила применить его для очистки инертных газов и как геттер (Геттер - вещество, служащее для поглощения газов и создания глубокого вакуума в электронных приборах.) в вакуумной радиоаппаратуре.

Кальций используют и в металлургии меди, никеля, специальных сталей и бронз; им связывают вредные примеси серы, фосфора, избыточного углерода. В тех же целях применяют сплавы кальция с кремнием, литием, натрием, бором, алюминием.

В промышленности кальций получают двумя способами:

) Нагреванием брикетированной смеси СаО и порошка Аl при 1200 °С в вакууме 0,01 - 0,02 мм. рт. ст.; выделяющиеся по реакции:


СаО + 2Аl = 3CaO · Al2O3 + 3Ca


Пары кальция кондонсируются на холодной поверхности.

) Электролизом расплава СаСl2 и КСl с жидким медно-кальциевым катодом приготовляют сплав Сu - Ca (65% Ca), из которого кальций отгоняют при температуре 950 - 1000 °С в вакууме 0,1 - 0,001 мм.рт.ст.

) Разработан также способ получения кальция термической диссоциацией карбида кальция СаС2.

Кальций весьма распространен в природе в форме различных соединений. В земной коре он занимает пятое место, составляя 3,25 %, и чаще всего встречается в виде известняка CaCO3, доломита CaCO3· Mg CO3, гипса CaSO4· 2H2O, фосфорита Ca3(PO4)2 и плавикового шпата CaF2, не считая значительной доли кальция в составе силикатных пород. В морской воде содержится в среднем 0,04% (вес.) кальция.

В данной курсовой работе изучены свойства и применение кальция, а так же подробно рассмотрена теория и технологии вакуум-термических способов его получения.


. Свойства и применение кальция


.1 Физические свойства


Кальций - серебристо-белый металл, но на воздухе тускнеет из-за образования оксида на его поверхности. Это пластичный металл тверже свинца. Кристаллическая решетка ?-формы Ca (устойчивой при обычной температуре) гранецентрированная кубическая, а = 5,56Å. Атомный радиус 1,97Å, ионный радиус Ca2+, 1,04Å. Плотность 1,54 г/см3(20 °C). Выше 464 °C устойчива гексагональная ?-форма. tпл 851 °C, tкип 1482 °C; температурный коэффициент линейного расширения 22·10-6 (0-300 °C); теплопроводность при 20 °C 125,6 Вт/(м·К) или 0,3 кал/(см·сек·°C); удельная теплоемкость (0-100 °C) 623,9 дж/(кг·К) или 0,149 кал/(г·°C); удельное электросопротивление при 20 °C 4,6·10-8 ом·м или 4,6·10-6 ом·см; температурный коэффициент электросопротивления 4,57·10-3 (20 °C). Модуль упругости 26 Гн/м2 (2600 кгс/мм2); предел прочности при растяжении 60 Мн/м2 (6 кгс/мм2); предел упругости 4 Мн/м2 (0,4 кгс/мм2), предел текучести 38 Мн/м2 (3,8 кгс/мм2); относительное удлинение 50%; твердость по Бринеллю 200-300 Мн/м2 (20-30 кгс/мм2). Кальций достаточно высокой чистоты пластичен, хорошо прессуется, прокатывается и поддается обработке резанием .


1.2 Химические свойства


Кальций - активный металл. Так при обычных условиях он легко взаимодействует с кислородом воздуха и галогенами:


Са + О2 = 2 СаО (оксид кальция) (1)

Са + Вr2 = СаВr2 (бромид кальция). (2)


С водородом, азотом, серой, фосфором, углеродом и другими неметаллами кальций реагирует при нагревании:


Са + Н2 = СаН2 (гидрид кальция) (3)

Са + N2 = Са3N2 (нитрид кальция) (4)

Са + S = СаS (сульфид кальция) (5)

Са + 2 Р = Са3Р2 (фосфид кальция) (6)

Са + 2 С = СаС2 (карбид кальция) (7)


С холодной водой кальций взаимодействует медленно, а с горячей - очень энергично, давая сильное основание Са(ОН)2:


Са + 2 Н2О = Са(ОН)2 + Н2 (8)


Будучи энергичным восстановителем, кальций может отнимать кислород или галогены от оксидов и галогенидов менее активных металлов, т. е. обладает восстановительными свойствами:


Са + Nb2О5 = СаО + 2 Nb; (9)

Са + 2 NbСl5 = 5 СаСl2 + 2 Nb (10)


Кальций энергично взаимодействует с кислотами с выделением водорода, реагирует с галогенами, с сухим водородом с образованием гидрида СаН2. При нагревании Кальций с графитом образуется карбид СаС2. Кальций получают электролизом расплавленного CaCl2 или алюминотермическим восстановлением в вакууме:


6СаО + 2Al = 3Ca + 3CaO·Al2О3 (11)


Чистый металл используют для восстановления соединений Cs, Rb, Cr, V, Zr, Th, U до металлов, для раскисления сталей .


1.3 Применение


Кальций находит все возрастающее.применение в различных отраслях производства. В последнее время он приобрел большое значение как восстановитель при получении ряда металлов.

Чистый металлический. уран получается восстановлением металлическим кальцием фтористого урана. Кальцием или его гидридами можно восстанавливать окислы титана, а также окислы циркония, тория, тантала, ниобия, других редких металлов.

Кальций является хорошим раскислителем и дегазатором при получении меди, никеля, хромоникелевых сплавов, специальных сталей, никелевых и оловянистых бронз; он удаляет из металлов и сплавов серу, фосфор, углерод.

Кальций образует с висмутом тугоплавкие соединения, поэтому его применяют для очистки свинца от висмута.

Кальций добавляют в различные легкие сплавы. Он способствует улучшению поверхности слитков, мелкозернистости и понижению окисляемости.

Большое распространение имеют содержащие кальций подшипниковые сплавы. Свинцовые сплавы (0,04 % Са) могут применяться для изготовления оболочек кабеля .

В технике применяются антифрикционные сплавы Кальция со свинцом. Широко применяются минералы Кальция. Так, известняк используют в производстве извести, цемента, силикатного кирпича и непосредственно как строительный материал, в металлургии (флюс), в химической промышленности для производства карбида кальция, соды, едкого натра, хлорной извести, удобрений, в производстве сахара, стекла.

Практическое значение имеют мел, мрамор, исландский шпат, гипс, флуорит и др. . Благодаря способности связывать кислород и азот кальций или сплавы кальция с натрием и другими металлами применяют для очистки благородных газов и как геттер в вакуумной радиоаппаратуре. Кальций так же применяется для получения гидрида, который является источником водорода в полевых условиях .


2. Получение кальция


Существует несколько способов получения кальция, это электролитическое, термическое, вакуум-термическое.


.1 Электролитическое получение кальция и его сплавов


Сущность метода заключается в том, что катод первоначально касается расплавленного электролита. В месте соприкосновения образуется хорошо смачивающая катод жидкая капля металла, которая при медленном и равномерном поднятии катода выводится вместе с ним из расплава и застывает. При этом застывающая капля покрывается твердой пленкой электролита, защищающий металл от окисления и азотирования. Путем непрерывного и осторожного подъема катода кальций вытягивается в стержни.


2.2 Термическое получение

кальций химический электролитический термический

·Хлоридный процесс: технология состоит из расплавления и обезвоживания хлористого кальция, расплавления свинца, получения двойного сплава свинец - натрий, получение тройного сплава свинец - натрий - кальций и разбавления тройного сплава свинцом после удаления солей. Реакция с хлористым кальцием протекает согласно уравнению


CaCl2 + Na2Pb5=2NaCl + PbCa + 2Pb (12)


·Карбидный процесс: в основе получения свинцово-кальциевого сплава лежит реакция между карбидом кальция и расплавленным свинцом согласно уравнению


CaC2 + 3Pb = Pb3Ca + 2C . (13)


2.3 Вакуум-термический способ получения кальция


Сырье для вакуум-термического способа

Сырьем для термического восстановления окиси кальция является известь, получаемая обжигом известняка. Основные требования к сырью заключаются в следующем: известь должна быть как можно чище и содержать минимум примесей, способных восстанавливаться и переходить в металл наряду с кальцием, особенно щелочных металлов и магния. Обжиг известняка должен производиться до полного разложения карбоната, однако не до его спекания, так как восстановимость спеченного материала ниже. Обожженный продукт необходимо предохранять от поглощения им влаги и углекислоты, выделение которых при восстановлении снижает показатели процесса. Технология обжига известняка и переработки обожженного продукта аналогична обработке доломита для силикотермического способа получения магния.


.3.1 Алюминотермический способ восстановления кальция

На диаграмме температурной зависимости изменения свободной энергии окисления ряда металлов (рис. 1) видно, что окись кальция является одним из наиболее прочных и трудно восстанавливаемых окислов. Она не может быть восстановлена другими металлами обычным путем - при относительно невысокой температуре и атмосферном давлении. Напротив, кальций сам является отличным восстановителем других трудно восстанавливаемых соединений и раскислителем для многих металлов и сплавов. Восстановление окиси кальция углеродом вообще невозможно вследствие образования карбидов кальция. Однако благодаря тому, что кальций обладает относительно высокой упругостью пара, его окись может быть восстановлена в вакууме алюминием, кремнием или их сплавами согласно реакции


CaO + Me ? Ca + MeO (14).

Практическое применение пока нашел только алюминотермический способ получения кальция, поскольку восстановить СаО алюминием значительно легче, чем кремнием. По вопросу химизма восстановления окиси кальция алюминием имеются разные взгляды. Л. Пиджен и И. Эткинсон полагают, что реакция протекает с образованием моноалюмината кальция:


СаО + 2Аl = СаО·Al2O3+ 3Са. (15)


В. А. Пазухин и А. Я. Фишер указывают, что процесс идет с образованием трехкальциевого алюмината:


СаО + 2Аl = 3СаО·Al2O3 + 3Са. (16)


По А. И. Войницкому , преобладающим в реакции является образование пятикальциевого трехалюмината:


СаО + 6Аl = 5СаО ·3Al2O3+ 9Са. (17)


Новейшими исследованиями, А. Ю. Тайца и А. И. Войницкого установлено, что алюминотермическое восстановление кальция протекает ступенчато. Вначале выделение кальция сопровождается образованием ЗСаО·AI2O3, который затем реагирует с окисью кальция и алюминием с образованием ЗСаО·3AI2O3. Реакция протекает по следующей схеме:


СаО + 6Аl = 2 (3СаО·Al2O3)+ 2СаО + 2Аl + 6Са

(3СаО·Al2O3) + 2СаО + 2Аl = 5СаО·3Al2O3+ 3Са

CaO+ 6А1 = 5СаО·3Al2O3+ 9Са


Так как восстановление окиси происходит с выделением парообразного кальция, а остальные продукты реакции находятся в конденсированном состоянии, удается легко отделить и сконденсировать его в охлаждаемых участках печи. Основными условиями, необходимыми для вакуум-термического восстановления окиси кальция, являются высокая температура и низкое остаточное давление в системе. Ниже приводится зависимость между температурой и равновесной упругостью паров кальция. Свободная энергия реакции (17), вычисленная для температур 1124-1728° К выражается

FT = 184820 + 6,95Т-12,1 T lg Т.

Отсюда логарифмическая зависимость равновесной упругости пара кальция (мм рт. ст.)

Lg p = 3,59 - 4430\Т.

Л. Пиджен и И. Эткинсон определили экспериментально равновесную упругость пара кальция. Обстоятельный термодинамический анализ реакции восстановления окиси кальция алюминием выполнен И. И. Матвеенко, который дал следующие температурные зависимости равновесного давления паров кальция:

Lg p Ca(1)=8,64 - 12930\T мм рт.ст.

Lg p Ca(2)=8,62 - 11780\Т мм рт.ст.

Lg p Ca(3)=8,75 - 12500\Т мм рт.ст.

Вычисленные и экспериментальные данные сопоставлены в табл. 1.


Таблица 1- Влияние температуры на изменение равновесной упругости паров кальция в системах (1), (2), (3), (3), мм рт.ст.

Температура °СОпытные данныеВычисленные в системах(1)(2)(3)(3)1401 1451 1500 1600 17000,791 1016 - - -0,37 0,55 1,2 3,9 11,01,7 3,2 5,6 18,2 492,7 3,5 4,4 6,6 9,50,66 1,4 2,5 8,5 25,7

Из приведенных данных видно, что в наиболее благоприятных условиях находятся взаимодействия в системах (2) и (3) или (3"). Это отвечает наблюдениям, так как в остатках шихты после восстановления окиси кальция алюминием преобладают пятикальциевый трехалюминат и трехкальциевый алюминат.

Данные о равновесной упругости показывают, что восстановление окиси кальция алюминием возможно при температуре 1100-1150° С. Для достижения практически приемлемой скорости реакции остаточное давление в системе Рост должно быть ниже равновесного Рравн, т. е. должно соблюдаться неравенство Рравност, и процесс должен проводиться при температурах порядка 1200°. Исследованиями установлено, что при температуре 1200-1250° достигается высокое использование (до 70-75%) и низкий удельный расход алюминия (около 0,6-0,65 кг на кг кальция).

Согласно приведенной выше трактовке химизма процесса, оптимальной по составу является шихта, рассчитанная на образование в остатке 5СаО·3Al2O3. Для повышения степени использования алюминия полезно давать некоторый избыток окиси кальция, однако не слишком большой (10-20%), иначе это отрицательно скажется на других показателях процесса. С увеличением степени измельчения алюминия от частиц 0,8-0,2 мм до минус 0,07 мм (по данным В. А. Пазухина и А. Я. Фишера) использование алюминия в реакции возрастает от 63,7 до 78%.

На использование алюминия влияет также режим брикетирования шихты. Смесь извести и порошкового алюминия следует брикетировать без связующих (чтобы избежать выделения газов в вакууме) при давлении 150 кг/см2. При меньших давлениях использование алюминия уменьшается вследствие ликвации расплавленного алюминия в излишне пористых брикетах, а при больших давлениях - из-за плохой газопроницаемости. Полнота и скорость восстановления также зависят от плотности укладки брикетов в реторте. При укладке их без зазоров, когда газопроницаемость всей садки мала, использование алюминия значительно снижается.


Рисунок 2 - Схема получения кальция вакуум-термическим способом.


Технология алюмино-термического способа

Технологическая схема производства кальция алюминотермическим способом изображена на рис. 2. В качестве исходного сырья применяется известняк, в качестве восстановителя - алюминиевый порошок, приготовленный из первичного (лучше) или вторичного алюминия. Применяемый в качестве восстановителя алюминий, так же как и сырье, не должен содержать примесей легко летучих металлов: магния, цинка, щелочей и др., способных испаряться и переходить в конденсат. Это необходимо учитывать при выборе марок вторичного алюминия.

По описанию С. Лумиса и П. Штауба, в США на заводе фирмы Нью Ингленд Лайм Ко в Ханаане (штат Коннектикут), получают кальций алюминотермическим способом. Применяется известь следующего типичного состава, %: 97,5 СаО, 0,65 MgO, 0,7SiO2, 0,6 Fe2Оз + АlОз, 0,09 Na2О + K2О, 0,5 остальное. Обожженный продукт размалывается на мельнице Раймонда с центробежным сепаратором, тонкость помола составляет (60%) минус 200 меш. В качестве восстановителя применяют алюминиевую пыль, являющуюся отходом при производстве алюминиевого порошка. Обожженная известь из закрытых бункеров и алюминий из барабанов поступают на дозировочные весы и затем в смеситель. После смешения шихта брикетируется сухим способом. На упомянутом заводе восстанавливают кальций в ретортных печах, ранее применявшихся для получения магния силикотермическим способом (рис. 3). Печи обогревают генераторным газом. Каждая печь имеет 20 горизонтальных реторт из жароупорной стали, содержащей 28% Сг и 15% Ni.


Рисунок 3- Ретортная печь для получения кальция


Длина реторты 3 м, диаметр 254 мм, толщина стенки 28 мм. Восстановление происходит в обогреваемой части реторты, а конденсация в охлаждаемом конце, выступающем из речи. Брикеты вводятся в реторту в бумажных мешках, затем вставляются конденсаторы и реторту закрывают. Откачка воздуха производится механическими вакуум-насосами вначале цикла. Затем подключают диффузионные насосы и остаточное давление снижается до 20 мк.

Реторты нагревают до 1200°. Через 12 час. после загрузки реторты открывают и разгружают. Полученный кальций имеет форму пустотелого цилиндра из плотной массы больших кристаллов, осажденных на поверхности стальной гильзы. Основной примесью в кальции является магний, который восстанавливается в первую очередь и в основном концентрируется в прилегающем к гильзе слое. В среднем содержание примесей составляет; 0,5- 1% Mg, около 0,2% Аl, 0,005-0,02% Мn, до 0,02% N, остальные примеси - Си, РЬ, Zn, Ni, Si, Fe - встречаются в пределах 0,005-0,04%. А. Ю. Тайц и А. И. Войницкий для получения кальция алюминотермическим способом применяли полузаводcкую электрическую вакуумную печь с угольными нагревателями и достигали степени использования алюминия 60%, удельного расхода алюминия 0,78 кг, удельного расхода шихты соответственно 4,35 кг и удельного расхода электроэнергии 14 квт\ч на 1 кг металла.

Полученный металл, за исключением примеси магния, отличался относительно высокой чистотой. В среднем содержание примесей в нем составляло: 0,003-0,004% Fe, 0,005-0,008% Si, 0,04-0,15% Mn, 0,0025-0,004% Сu, 0,006-0,009% N, 0,25% Al.


2.3.2 Силикотермический способ восстановления кальция

Весьма заманчивым является силикотермический способ; восстановитель - ферросилиций, реагент значительно более дешевый, чем алюминий. Однако силикотермический процесс труднее осуществить, чем алюминотермический. Восстановление окиси кальция кремнием протекает согласно уравнению


СаО + Si = 2СаО ·SiO2 + 2Са. (18)


Равновесная упругость пара кальция, вычисленная по величинам свободной энергии, составляет:


°С1300140015001600Р, мм рт. ст0,080,150,752,05

Следовательно, в вакууме порядка 0,01 мм рт. ст. восстановление окиси кальция термодинамически возможно при температуре 1300°. Практически для обеспечения приемлемой скорости процесс должен проводиться при температуре 1400-1500°.

Несколько легче идет реакция восстановления окиси кальция силикоалюминием, в которой восстановителями служат и алюминий и кремний сплава. Опытами установлено, что вначале преобладает восстановление алюминием; причем реакция протекает с конечным образованием бСаО·3Al2Оз по схеме, изложенной выше (рис. 1). Восстановление кремнием становится значительным при более высокой температуре, когда большая часть алюминия прореагировала; реакция протекает с образованием 2CaO·SiO2. В суммарном виде реакция восстановления окиси кальция силикоалюминием выражается следующим уравнением:


mSi + п Аl + (4m +2 ?) СаО = m(2СаО ·SiO2) + ?n(5СаО·Al2O3) + (2m +1, 5n) Са.


Исследованиями A. Ю. Тайца и A. И. Войницкого установлено, что окись кальция восстанавливается 75%-ным ферросилицием с выходом металла 50-75% при температуре 1400-1450° в вакууме 0,01-0,03 мм рт. ст.; силикоалюминий, содержащий 60-30% Si и 32-58% Аl (остальное железо, титан и пр.), восстанавливает окись кальция с выходом металла примерно 70% при температурах 1350-1400° в вакууме 0,01-0,05 мм рт. ст. Опытами в полузаводском масштабе доказана принципиальная возможность получения кальция на извести ферросилицием и силикоалюминием. Основной аппаратурной трудностью является подбор стойкой в условиях этого процесса футеровки.

При решении этой задачи способ может быть реализован в промышленности. Разложение карбида кальция Получение металлического кальция разложением карбида кальция


СаС2 = Са + 2С


следует отнести к перспективным способам. При этом в качестве второго продукта получают графит. В. Маудерли, Е. Мозер, И В. Тредвелл вычислив свободную энергию образования карбида кальция из термохимических данных, получили следующее выражение для упругости пара кальция над чистым карбидом кальция:

ca= 1,35 - 4505\Т (1124- 1712° К),

lgpca = 6,62 - 13523\Т(1712-2000° К).


По-видимому, технический карбид кальция разлагается при значительно более высоких температурах, чем это следует из данных выражений. Те же авторы сообщают о термическом разложении карбида кальция в компактных кусках при 1600-1800° в вакууме 1 мм рт. ст. Выход графита составил 94%, кальций получался в виде плотного налета на холодильнике. А. С. Микулинский, Ф. С. Мории, Р. Ш. Шкляр для определения свойств графита, полученного разложением карбида кальция, нагревали последний в вакууме 0,3-1 мм рт. ст. при температуре 1630-1750°. Полученный графит отличается от ачесоновского более крупными зернами, большей электропроводностью и меньшим объемным весом .


3. Практическая часть


Суточная выливка магния из электролизера на силу тока 100 кА составила 960 кг при питании ванны хлористым магнием. Напряжение на шутне электролизера 0,6 В. Определить:

)Выход по току на катоде;

)Количество хлора, полученного за сутки, при условии, что выход по току на аноде равен выходу по току на ктоде;

)Суточную заливку MgCl2 в электролизер при условии, что потери MgCl2 происходят в основном со шламом и возгоном. Количество шлама 0,1 на 1т Mg, содержащего MgCl2 в возгоне 50%. Количество возгона 0,05 т на 1т Mg. Состав заливаемого хлорида магния, %: 92 MgCl2 и 8 NaCl.

.Определить выход по току на катоде:


mпр=I·?·kMg·?

?=mпр\I·?· kMg=960000\100000·0,454·24=0,881 или 88,1%


.Определить количество Cl, полученного за сутки:

x=960000г \ 24 г\моль=40000 моль

Переводим в объем:

х=126785,7 м3

3.а) Находим чистый MgCl2, для производства 960 кг Mg.

x=95·960\24,3=3753 кг=37,53 т.

б) потери со шламом. Из состава магниевых электролизеров, %: 20-35 MgO, 2-5 Mg, 2-6 Fe, 2-4 SiO2, 0,8-2 TiO2, 0,4-1,0 C, 35 MgCl2 .

кг - 1000 кг

mшл=960 кг - масса шлама за сутки.

За сутки 96 кг шлама: 96·0,35 (MgCl2 со шламом).

в) потери с возгонами:

кг - 1000 кг

кг возгонов: 48·0,5=24 кг MgCl2 с возгонами.

Всего надо залить Mg:

33,6+24=3810,6 кг MgCl2 в сут.


Список используемой литературы


Основы металлургии III

<#"justify"> металлургия Al и Mg. Ветюков М.М., Цыплоков А.М.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Электроотрицательность 1,00 (шкала Полинга) Электродный потенциал −2,76 Степени окисления 2 Энергия ионизации
(первый электрон) 589,4 (6,11) кДж /моль (эВ) Термодинамические свойства простого вещества Плотность (при н. у.) 1,55 г/см³ Температура плавления 1112 К; 838,85 °C Температура кипения 1757 К; 1483,85 °C Уд. теплота плавления 9,20 кДж/моль Уд. теплота испарения 153,6 кДж/моль Молярная теплоёмкость 25,9 Дж/(K·моль) Молярный объём 29,9 см ³/моль Кристаллическая решётка простого вещества Структура решётки кубическая гранецентрированная Параметры решётки 5,580 Температура Дебая 230 Прочие характеристики Теплопроводность (300 K) (201) Вт/(м·К) Номер CAS 7440-70-2 Эмиссионный спектр

История и происхождение названия

Название элемента происходит от лат. calx (в родительном падеже calcis ) - «известь», «мягкий камень». Оно было предложено английским химиком Гемфри Дэви , в 1808 г. выделившим металлический кальций электролитическим методом . Дэви подверг электролизу смесь влажной гашёной извести с на платиновой пластине, которая являлась анодом . Катодом служила платиновая проволока, погруженная в жидкую . В результате электролиза получалась амальгама кальция. Отогнав из неё ртуть, Дэви получил металл , названный кальцием.

Изотопы

Кальций встречается в природе в виде смеси шести изотопов : 40 Ca, 42 Ca, 43 Ca, 44 Ca, 46 Ca и 48 Ca, среди которых наиболее распространённый - 40 Ca - составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20 . Изотопы 40
20 Ca20
и 48
20 Ca28
являются двумя из пяти существующих в природе дважды магических ядер .

Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48 Ca, самый тяжёлый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада (4,39 ± 0,58)⋅10 19 лет .

В горных породах и минералах

Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты , гнейсы и т. п.), особенно в полевом шпате - анортите Ca.

Довольно широко распространены такие минералы кальция, как кальцит CaCO 3 , ангидрит CaSO 4 , алебастр CaSO 4 ·0.5H 2 O и гипс CaSO 4 ·2H 2 O, флюорит CaF 2 , апатиты Ca 5 (PO 4) 3 (F,Cl,OH), доломит MgCO 3 ·CaCO 3 . Присутствием солей кальция и магния в природной воде определяется её жёсткость .

Осадочная порода, состоящая в основном из скрытокристаллического кальцита - известняк (одна из его разновидностей - мел). Под действием регионального метаморфизма известняк преобразуется в мрамор .

Миграция в земной коре

В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната:

C a C O 3 + H 2 O + C O 2 ⇄ C a (H C O 3) 2 ⇄ C a 2 + + 2 H C O 3 − {\displaystyle {\mathsf {CaCO_{3}+H_{2}O+CO_{2}\rightleftarrows Ca(HCO_{3})_{2}\rightleftarrows Ca^{2+}+2HCO_{3}^{-}}}}

(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).

Огромную роль играет биогенная миграция.

В биосфере

Соединения кальция находятся практически во всех животных и растительных тканях (см. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca 5 (PO 4) 3 OH, или, в другой записи, 3Ca 3 (PO 4) 2 ·Са(OH) 2 - основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO 3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция - около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Получение

Свободный металлический кальций получают электролизом расплава , состоящего из CaCl 2 (75-80 %) и KCl или из CaCl 2 и CaF 2 , а также алюминотермическим восстановлением CaO при 1170-1200 °C 4 C a O + 2 A l → C a A l 2 O 4 + 3 C a {\displaystyle {\mathsf {4CaO+2Al\rightarrow CaAl_{2}O_{4}+3Ca}}}

Физические свойства

Металл кальций существует в двух аллотропных модификациях . До 443 °C устойчив α -Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм ), выше устойчив β -Ca с кубической объемно-центрированной решеткой типа α -Fe (параметр a = 0,448 нм ). Стандартная энтальпия Δ H 0 {\displaystyle \Delta H^{0}} перехода α → β составляет 0,93 кДж/моль .

При постепенном повышении давления начинает проявлять свойства полупроводника , но не становится полупроводником в полном смысле этого слова (металлом уже тоже не является). При дальнейшем повышении давления возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций (то есть параллели в периодической системе сохраняются) .

Химические свойства

В ряду стандартных потенциалов кальций расположен слева от водорода . Стандартный электродный потенциал пары Ca 2+ /Ca 0 −2,84 В , так что кальций активно реагирует с водой, но без воспламенения:

C a + 2 H 2 O → C a (O H) 2 + H 2 . {\displaystyle {\mathsf {Ca+2H_{2}O\rightarrow Ca(OH)_{2}+H_{2}\uparrow .}}}

Наличие в воде растворенного гидрокарбоната кальция во многом определяет вре́менную жёсткость воды. Вре́менной её называют потому, что при кипячении воды гидрокарбонат разлагается, и в осадок выпадает СаСО 3 . Это явление приводит, например, к тому, что в чайнике со временем образуется накипь .

Применение

Главное применение металлического кальция - это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудно восстанавливаемых металлов, таких, как хром , торий и уран . Сплавы кальция со свинцом применяются в некоторых видах аккумуляторных батарей и при производстве подшипников. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов. Чистый металлический кальций широко применяется в металлотермии при получении редкоземельных элементов .

Кальций широко применяется в металлургии для раскисления стали наряду с алюминием или в сочетании с ним. Внепечная обработка кальцийсодержащими проволоками занимает ведущее положение в связи с многофакторностью влияния кальция на физико-химическое состояние расплава, макро- и микроструктуры металла, качество и свойства металлопродукции и является неотъемлемой частью технологии производства стали . В современной металлургии для ввода в расплав кальция используется инжекционная проволока, представляющая из себя кальций (иногда силикокальций или алюмокальций) в виде порошка или прессованного металла в стальной оболочке. Наряду с раскислением (удалением растворенного в стали кислорода) использование кальция позволяет получить благоприятные по природе, составу и форме неметаллические включения, не разрушающиеся в ходе дальнейших технологических операций .

Изотоп 48 Ca - один из эффективных и употребительных материалов для производства сверхтяжёлых элементов и открытия новых элементов таблицы Менделеева . Это связано с тем, что кальций-48 является дважды магическим ядром , поэтому его устойчивость позволяет ему быть достаточно нейтроноизбыточным для лёгкого ядра; при синтезе сверхтяжёлых ядер необходим избыток нейтронов.

Биологическая роль

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза , а в младенчестве вызывает рахит .

Примечания

  1. Твёрдость по Бринеллю 200-300 МПа
  2. Michael E. Wieser, Norman Holden, Tyler B. Coplen, John K. Böhlke, Michael Berglund, Willi A. Brand, Paul De Bièvre, Manfred Gröning, Robert D. Loss, Juris Meija, Takafumi Hirata, Thomas Prohaska, Ronny Schoenberg, Glenda O’Connor, Thomas Walczyk, Shige Yoneda, Xiang‑Kun Zhu. Atomic weights of the elements 2011 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry . - 2013. - Vol. 85 , no. 5 . - P. 1047-1078 . - DOI :10.1351/PAC-REP-13-03-02 .
  3. Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т. - Москва: Советская энциклопедия, 1990. - Т. 2. - С. 293. - 671 с. - 100 000 экз.
  4. Riley J.P. and Skirrow G. Chemical Oceanography V. 1, 1965.
  5. Pritychenko B. Systematics of Evaluated Half-lives of Double-beta Decay // Nuclear Data Sheets. - 2014. - Июнь (т. 120 ). - С. 102-105 . - ISSN 0090-3752 . - DOI :10.1016/j.nds.2014.07.018 . [исправить]
  6. Pritychenko B. List of Adopted Double Beta (ββ) Decay Values (неопр.) . National Nuclear Data Center, Brookhaven National Laboratory. Проверено 6 декабря 2015.
  7. Справочник химика / Редкол.: Никольский Б. П. и др. - 2-е изд., испр. - М.-Л.: Химия, 1966. - Т. 1. - 1072 с.
  8. Газета. Ру: Элементы под давлением
  9. Кальций // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М. : Советская энциклопедия, 1969-1978.
  10. Дюдкин Д. А., Кисиленко В. В. Влияние различных факторов на усвоение кальция из порошковой проволоки с комплексным наполнителем СК40 (рус.) // Электрометаллургия: журнал. - 2009. - Май (№ 5 ). - С. 2-6 .
  11. Михайлов Г. Г., Чернова Л. А. Термодинамический анализ процессов раскисления стали кальцием и алюминием (рус.) // Электрометаллургия: журнал. - 2008. - Март (№ 3 ). - С. 6-8 .
  12. Shell Model of Nucleus
  13. Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium; Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors (2011).

Кальций — химический элемент II группы с атомным номером 20 в периодической системе, обозначается символом Ca (лат. Calcium). Кальций - мягкий щелочно-земельный металл серебристо-серого цвета.

20 элемент таблицы МенделееваНазвание элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций.
Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад.
Кальций один из наиболее распространенных на Земле элементов. Соединения кальция находятся практически во всех животных и растительных тканях. На его долю приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Нахождение кальция в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.
На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа). Содержание элемента в морской воде — 400 мг/л.

Изотопы

Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20. Изотопы
40
20
Ca20 и
48
20
Ca28 являются двумя из пяти существующих в природе ядер с дважды магическим числом.
Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада 1,6·1017 лет.

В горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca.
В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.
Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.
Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Биологическая роль кальция

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция (извести) состоят «скелеты» большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Концентрация кальция в цитоплазме клеток человека составляет около 10−4 ммоль/л, в межклеточных жидкостях около 2,5 ммоль/л.

Потребность в кальции зависит от возраста. Для взрослых в возрасте 19-50 лет и детей 4-8 лет включительно дневная потребность (RDA) составляет 1000 мг (содержится примерно в 790 мл молока с жирностью 1 %), а для детей в возрасте от 9 до 18 лет включительно — 1300 мг в сутки (содержится примерно в 1030 мл молока жирностью 1 %). В подростковом возрасте потребление достаточного количества кальция очень важно из-за интенсивного роста скелета. Однако по данным исследований в США всего 11 % девочек и 31 % мальчиков в возрасте 12-19 лет достигают своих потребностей. В сбалансированной диете большая часть кальция (около 80 %) поступает в организм ребёнка с молочными продуктами. Оставшийся кальций приходится на зерновые (в том числе цельнозерновой хлеб и гречку), бобовые, апельсины, зелень, орехи. В «молочных» продуктах на основе молочного жира (сливочном масле, сливках, сметане, мороженом на основе сливок) кальция практически не содержится. Чем больше в молочном продукте молочного жира, тем меньше в нём кальция. Всасывание кальция в кишечнике происходит двумя способами: чрезклеточно (трансцеллюлярно) и межклеточно (парацелюллярно). Первый механизм опосредован действием активной формы витамина D (кальцитриола) и её кишечными рецепторами. Он играет большую роль при малом и умеренном потреблении кальция. При большем содержании кальция в диете основную роль начинает играть межклеточная абсорбция, которая связана с большим градиентом концентрации кальция. За счёт чрезклеточного механизма кальций всасывается в большей степени в двенадцатиперстной кишке (из-за наибольшей концентрации там рецепторов в кальцитриолу). За счёт межклеточного пассивного переноса абсорбция кальция наиболее активна во всех трёх отделах тонкого кишечника. Всасыванию кальция парацеллюлярно способствует лактоза (молочный сахар).

Усвоению кальция препятствуют некоторые животные жиры (включая жир коровьего молока и говяжий жир, но не сало) и пальмовое масло. Содержащиеся в таких жирах пальмитиновая и стеариновая жирные кислоты отщепляются при переваривании в кишечнике и в свободном виде прочно связывают кальций, образуя пальмитат кальция и стеарат кальция (нерастворимые мыла). В виде этого мыла со стулом теряется как кальций, так и жир. Этот механизм ответственен за снижение всасывания кальция, снижение минерализации костей и снижение косвенных показателей их прочности у младенцев при использовании детских смесей на основе пальмового масла (пальмового олеина). У таких детей образование кальциевых мыл в кишечнике ассоциируется с уплотнением стула, уменьшением его частоты, а также более частым срыгиванием и коликами.

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза, а в младенчестве вызывает рахит.

Избыточные дозы кальция и витамина D могут вызвать гиперкальцемию. Максимальная безопасная доза для взрослых в возрасте от 19 до 50 лет включительно составляет 2500 мг в сутки (около 340 г сыра Эдам).

Теплопроводность

Среди всех элементов периодической системы можно выделить несколько таких, без которых не просто развиваются различные заболевания у живых организмов, но и вообще невозможно нормально жить и расти. Один из таких - кальций.

Интересно, что когда речь идет об этом металле, как простом веществе, то никакой пользы для человека он не имеет, даже вред. Однако стоит только упомянуть об ионах Са 2+ , как сразу возникает масса пунктов, характеризующих их важное значение.

Положение кальция в периодической системе

Характеристика кальция, как и любого другого элемента, начинается с указания его места положения в периодической системе. Ведь она дает возможность многое узнать о данном атоме:

  • заряд ядра;
  • количество электронов и протонов, нейтронов;
  • степень окисления, высшую и низшую;
  • электронную конфигурацию и прочие важные вещи.

Рассматриваемый нами элемент располагается в четвертом большом периоде второй группе, главной подгруппе и имеет порядковый номер 20. Также химическая таблица Менделеева показывает атомный вес кальция - 40,08, что является усредненным значением существующих изотопов данного атома.

Степень окисления одна, всегда постоянна, равна +2. Формула СаО. Латинское название элемента calcium, отсюда символ атома Са.

Характеристика кальция как простого вещества

При обычных условиях данный элемент представляет собой металл, серебристо-белого цвета. Формула кальция как простого вещества - Са. Вследствие высокой химической активности, способен образовывать множество соединений, относящихся к разным классам.

В твердом агрегатном состоянии в состав организма человека не входит, поэтому представляет значение для промышленных и технических нужд (в основном химические синтезы).

Является одним из самых распространенных по доле в земной коре металлов, около 1,5 %. Относится к группе щелочноземельных, так как при растворении в воде дает щелочи, но в природе встречается в виде множественных минералов и солей. Очень много кальция (400 мг/л) включено в состав морской воды.

Кристаллическая решетка

Характеристика кальция объясняется строением кристаллической решетки, которая у него может быть двух типов (так как существует альфа и бета форма):

  • кубическая гранецентрическая;
  • объемноцентрическая.

Тип связи в молекуле - металлическая, в узлах решетки, как и у всех металлов - атом-ионы.

Нахождение в природе

Существует несколько основных веществ в природе, которые содержат данный элемент.

  1. Морская вода.
  2. Горные породы и минералы.
  3. Живые организмы (раковины и панцири, костные ткани и так далее).
  4. Подземные воды в земной коре.

Можно обозначить следующие виды горных пород и минералов, которые являются природными источниками кальция.

  1. Доломит - смесь карбоната кальция и магния.
  2. Флюорит - фторид кальция.
  3. Гипс - CaSO 4 · 2H 2 O.
  4. Кальцит - мел, известняк, мрамор - карбонат кальция.
  5. Алебастр - CaSO 4 ·0.5H 2 O.
  6. Апатиты.

Всего выделяют около 350 различных минералов и горных пород, которые содержат кальций.

Способы получения

В свободном виде выделить металл долгое время не удавалось, так как его химическая активность высока, в природе в чистом виде не встретишь. Поэтому вплоть до XIX века (1808 года) рассматриваемый элемент был еще одной загадкой, которую несла таблица Менделеева.

Кальций как металл сумел синтезировать английский химик Гемфри Дэви. Именно он первым обнаружил особенности взаимодействия расплавов твердых минералов и солей с электрическим током. На сегодняшний день до сих пор самым актуальным способом получения данного металла является электролиз его солей, таких как:

  • смесь хлоридов кальция и калия;
  • смесь фторида и хлорида кальция.

Также можно извлечь кальций из его оксида при помощи распространенного в металлургии метода алюминотермии.

Физические свойства

Характеристика кальция по физическим параметрам может быть описана несколькими пунктами.

  1. Агрегатное состояние - при обычных условиях твердое.
  2. Температура плавления - 842 0 С.
  3. Металл мягкий, может резаться ножом.
  4. Цвет - серебристо-белый, блестящий.
  5. Обладает хорошими проводниковыми и теплопроводными свойствами.
  6. При длительном нагревании переходит в жидкое, затем парообразное состояние, теряя металлические свойства. Температура кипения 1484 0 С.

Физические свойства кальция имеют одну особенность. Когда на металл оказывается давление, то он в какой-то момент времени теряет свои металлические свойства и способность к электропроводимости. Однако при дальнейшем увеличении воздействия вновь восстанавливается и проявляет себя как сверхпроводник, в несколько раз превышающий по данным показателям остальные элементы.

Химические свойства

Активность данного металла очень высока. Поэтому существует множество взаимодействий, в которые вступает кальций. Реакции со всеми неметаллами для него - обычное дело, ведь как восстановитель он очень силен.

  1. При нормальных условиях легко реагирует с образованием соответствующих бинарных соединений с: галогенами, кислородом.
  2. При нагревании: водород, азот, углерод, кремний, фосфор, бор, сера и прочие.
  3. На открытом воздухе сразу взаимодействует с углекислым газом и кислородом, поэтому покрывается серым налетом.
  4. С кислотами реагирует бурно, иногда с воспламенением.

Интересные свойства кальция проявляются, когда речь идет о нем в составе солей. Так, красивые пещерные вырастающие на потолке и стенах, это не что иное, как образовавшийся со временем из воды, углекислого газа и гидрокарбоната под влиянием процессов внутри подземных вод.

Учитывая, насколько металл активен в обычном состоянии, хранят его в лабораториях, как и щелочные. В темной стеклянной посуде, с плотно закрытой крышкой и под слоем керосина или парафина.

Качественная реакция на ион кальция - это окраска пламени в красивый, насыщенный кирпично-красный цвет. Также идентифицировать металл в составе соединений можно по нерастворимым выпадающим осадкам некоторых его солей (карбонат кальция, фторид, сульфат, фосфат, силикат, сульфит).

Соединения металла

Разновидности соединений металла следующие:

  • оксид;
  • гидроксид;
  • соли кальция (средние, кислые, основные, двойные, комплексные).

Оксид кальция известен как СаО используется для создания строительного материала (извести). Если загасить оксид водой, то получится соответствующий гидроксид, проявляющий свойства щелочи.

Большое практическое значение имеют именно различные соли кальция, которые используются в разных отраслях хозяйства. Какие именно существуют соли, мы уже упоминали выше. Приведем примеры по типам этих соединений.

  1. Средние соли - карбонат СаСО 3 , фосфат Са 3 (РО 4) 2 и другие.
  2. Кислые - гидросульфат CaHSO 4 .
  3. Основные - гидрокарбонат (СаОН) 3 PO 4 .
  4. Комплексные - Cl 2.
  5. Двойные - 5Ca(NO 3) 2 *NH 4 NO 3 *10H 2 O.

Именно в форме соединений данного класса кальций имеет значение для биологических систем, так как источником ионов для организма являются соли.

Биологическая роль

Чем же важен кальций для организма человека? Причин несколько.

  1. Именно ионы этого элемента входят в состав межклеточного вещества и тканевой жидкости, участвуя в регуляции механизмов возбуждения, выработки гормонов и нейромедиаторов.
  2. Кальций накапливается в костях, зубной эмали в количестве около 2,5% от общей массы тела. Это достаточно много и играет важную роль в укреплении этих структур, сохранении их прочности и устойчивости. Рост организма без этого невозможен.
  3. Свертываемость крови также зависит от рассматриваемых ионов.
  4. Входит в состав сердечной мышцы, участвуя в ее возбуждении и сокращении.
  5. Является участником процессов экзоцитоза и других внутриклеточных изменений.

Если количество потребляемого кальция будет недостаточно, то возможно развитие таких заболеваний, как:

  • рахит;
  • остеопороз;
  • заболевания крови.

Суточная норма для взрослого человека - 1000 мг, а для детей от 9 лет 1300 мг. Для того чтобы не допустить переизбыток этого элемента в организме, следует не превышать указанной дозы. В противном случае могут развиться заболевания кишечника.

Для всех остальных живых существ кальций не менее важен. Например, многие хоть и не имеют скелета, однако наружные средства укрепления их также являются образованиями этого металла. Среди них:

  • моллюски;
  • мидии и устрицы;
  • губки;
  • коралловые полипы.

Все они носят на своей спине или в принципе формируют в процессе жизнедеятельности некий наружный скелет, защищающий их от внешних воздействий и хищников. Основная составная часть его - соли кальция.

Позвоночные животные, как и человек, нуждаются в рассматриваемых ионах для нормального роста и развития и получают их с пищей.

Есть много вариантов, при помощи которых возможно восполнить недостающую норму элемента в организме. Лучше всего, конечно, естественные методы - продукты, содержащие нужный атом. Однако если это по каким-либо причинам недостаточно или невозможно, медицинский путь также приемлем.

Так, список продуктов, содержащих кальций, примерно такой:

  • молочные и кисломолочные изделия;
  • рыба;
  • зелень;
  • зерновые культуры (гречка, рис, выпечка из цельнозерновой муки);
  • некоторые цитрусовые (апельсины, мандарины);
  • бобовые;
  • все орехи (особенно, миндаль и грецкие).

Если же на какие-то продукты аллергия или нельзя употреблять их по другой причине, то восполнить уровень нужного элемента в организме помогут кальций содержащие препараты.

Все они представляют собой соли этого металла, обладающие способностью легко усваиваться организмом, быстро всасываясь в кровь и кишечник. Среди них самыми популярными и используемыми являются следующие.

  1. Хлорид кальция - раствор для инъекций или для приема внутрь взрослым и детям. Отличается концентрацией соли в составе, используется для "горячих уколов", поскольку вызывает именно такое ощущение при вкалывании. Есть формы с фруктовым соком для облегчения приема внутрь.
  2. Выпускается как таблетками (0,25 или 0,5 г), так и растворами для внутривенных инъекций. Часто в виде таблеток содержит различные фруктовые добавки.
  3. Лактат кальция - выпускается в таблетках по 0,5 г.