Калькулятор онлайн.Сокращение дробей (неправильных, смешанных). Как сокращать алгебраические дроби


Калькулятора онлайн выполняет сокращение алгебраических дробей в соответствии с правилом сокращения дробей: замена исходной дроби равной дробью, но с меньшими числителем и знаменателем, т.е. одновременное деление числителя и знаменателя дроби на их общий наибольший общий делитель (НОД). Также калькулятор выводит подробное решение, которое поможет понять последовательность выполнения сокращения.

Дано:

Решение:

Выполнение сокращения дробей

проверка возможности выполнения сокращения алгебраической дроби

1) Определение наибольшего общего делителя (НОД) числителя и знаменателя дроби

определение наибольшего общего делителя (НОД) числителя и знаменателя алгебраической дроби

2) Сокращение числителя и знаменателя дроби

сокращение числителя и знаменателя алгебраической дроби

3) Выделение целой части дроби

выделение целой части алгебраической дроби

4) Перевод алгебраической дроби в десятичную дробь

перевод алгебраической дроби в десятичную дробь


Помощь на развитие проекта сайт

Уважаемый Посетитель сайта.
Если Вам не удалось найти, то что Вы искали - обязательно напишите об этом в комментариях, чего не хватает сейчас сайту. Это поможет нам понять в каком направлении необходимо дальше двигаться, а другие посетители смогут в скором времени получить необходимый материал.
Если же сайт оказался Ваме полезен - подари проекту сайт всего 2 ₽ и мы будем знать, что движемся в правильном направлении.

Спасибо, что не прошели мимо!


I. Порядок действий при сокращении алгебраической дроби калькулятором онлайн:

  1. Чтобы выполнить сокращение алгебраической дроби введите в соответствующие поля значения числителя, знаменателя дроби. Если дробь смешанная, то также заполните поле, соответствующее целой части дроби. Если дробь простая, то оставьте поле целой части пустым.
  2. Чтобы задать отрицательную дробь, поставьте знак минус в целой части дроби.
  3. В зависимости от задаваемой алгебраической дроби автоматически выполняется следующая последовательность действий:
  • определение наибольшего общего делителя (НОД) числителя и знаменателя дроби ;
  • сокращение числителя и знаменателя дроби на НОД ;
  • выделение целой части дроби , если числитель итоговой дроби больше знаменателя.
  • перевод итоговой алгебраической дроби в десятичную дробь с округлением до сотых.
  • В результате сокращения может получиться неправильная дробь. В этом случае у итоговой неправильной дроби будет выделена целая часть и итоговая дробь будет переведена в правильную дробь.
  • II. Для справки:

    Дробь - число, состоящее из одной или нескольких частей (долей) единицы. Обыкновенная дробь (простая дробь) записывается в виде двух чисел (числитель дроби и знаменатель дроби), разделенных горизонтальной чертой (дробной чертой), обозначающей знак деления. числитель дроби - число, стоящее над дробной чертой. Числитель показывает, сколько долей взяли у целого. знаменатель дроби - число, стоящее под дробной чертой. Знаменатель показывает, на сколько равных долей разделено целое. простая дробь - дробь, не имеющая целой части. Простая дробь может быть правильной или неправильной. правильная дробь - дробь, у которой числитель меньше знаменателя, поэтому правильная дробь всегда меньше единицы. Пример правильных дроби: 8/7, 11/19, 16/17. неправильная дробь - дробь, у которой числитель больше или равен знаменателю, поэтому неправильная дробь всегда больше единицы или равна ей. Пример неправильных дроби: 7/6, 8/7, 13/13. смешанная дробь - число, в состав которого входит целое число и правильная дробь, и обозначает сумму этого целого числа и правильной дроби. Любая смешанная дробь может быть преобразована в неправильную простую дробь. Пример смешанных дробей: 1¼, 2½, 4¾.

    III. Примечание:

    1. Блок исходных данных выделен желтым цветом , блок промежуточных вычислений выделен голубым цветом , блок решения выделен зеленым цветом .
    2. Для сложения, вычитания, умножения и деления обыкновенных или смешанных дробей воспользуйтесь онлайн калькулятором дробей с подробным решением.

    Основано на их основном свойстве: если числитель и знаменатель дроби разделить на один и тот же ненулевой многочлен, то получится равная ей дробь.

    Сокращать можно только множители!

    Члены многочленов сокращать нельзя!

    Чтобы сократить алгебраическую дробь, многочлены, стоящие в числителе и знаменателе, нужно предварительно разложить на множители.

    Рассмотрим примеры сокращения дробей.

    В числителе и знаменателе дроби стоят одночлены. Они представляют собой произведение (чисел, переменных и их степеней), множители сокращать можем.

    Числа сокращаем на их наибольший общий делитель, то есть на наибольшее число, на которое делится каждое из данных чисел. Для 24 и 36 это — 12. После сокращения от 24 остается 2, от 36 — 3.

    Степени сокращаем на степень с наименьшим показателем. Сократить дробь — значит, разделить числитель и знаменатель на один и тот же делитель, а показатели вычитаем.

    a² и a⁷ сокращаем на a². При этом в числителе от a² остается единица (1 пишем только в том случае, когда кроме нее после сокращения других множителей не осталось. От 24 осталась 2, поэтому 1, оставшуюся от a², не пишем). От a⁷ после сокращения остается a⁵.

    b и b сокращаем на b, полученные в результате единицы не пишем.

    c³º и с⁵ сокращаем на с⁵. От c³º остается c²⁵, от с⁵ — единица (ее не пишем). Таким образом,

    Числитель и знаменатель данной алгебраической дроби — многочлены. Сокращать члены многочленов нельзя! (нельзя сократить, к примеру, 8x² и 2x!). Чтобы сократить эту дробь, надо . В числителе есть общий множитель 4x. Выносим его за скобки:

    И в числителе, и в знаменателе есть одинаковый множитель (2x-3). Сокращаем дробь на этот множитель. В числителе получили 4x, в знаменателе — 1. По 1 свойству алгебраических дробей, дробь равна 4x.

    Сокращать можно только множители (сократить данную дробь на 25x² нельзя!). Поэтому многочлены, стоящие в числителе и знаменателе дроби, нужно разложить на множители.

    В числителе — полный квадрат суммы, в знаменателе — разность квадратов. После разложения по формулам сокращенного умножения получаем:

    Сокращаем дробь на (5x+1) (для этого в числителе зачеркнем двойку в показатель степени, от (5x+1)² при этом останется (5x+1)):

    В числителе есть общий множитель 2, вынесем его за скобки. В знаменателе — формула разности кубов:

    В результате разложения в числителе и знаменателе получили одинаковый множитель (9+3a+a²). Сокращаем дробь на него:

    Многочлен в числителе состоит из 4 слагаемых. первое слагаемое со вторым, третье — с четвертым и выносим из первых скобок общий множитель x². Знаменатель раскладываем по формуле суммы кубов:

    В числителе вынесем за скобки общий множитель (x+2):

    Сокращаем дробь на (x+2):


    В этой статье мы подробно разберем, как проводится сокращение дробей . Сначала обговорим, что называют сокращением дроби. После этого поговорим о приведении сократимой дроби к несократимому виду. Дальше получим правило сокращения дробей и, наконец, рассмотрим примеры применения этого правила.

    Навигация по странице.

    Что значит сократить дробь?

    Мы знаем, что обыкновенные дроби подразделяются на сократимые и несократимые дроби . По названиям можно догадаться, что сократимые дроби можно сократить, а несократимые – нельзя.

    Что же значит сократить дробь? Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы . Понятно, что в результате сокращения дроби получается новая дробь с меньшим числителем и знаменателем, причем, в силу основного свойства дроби , полученная дробь равна исходной.

    Для примера, проведем сокращение обыкновенной дроби 8/24 , разделив ее числитель и знаменатель на 2 . Иными словами, сократим дробь 8/24 на 2 . Так как 8:2=4 и 24:2=12 , то в результате такого сокращения получается дробь 4/12 , которая равна исходной дроби 8/24 (смотрите равные и неравные дроби). В итоге имеем .

    Приведение обыкновенных дробей к несократимому виду

    Обычно конечной целью сокращения дроби является получение несократимой дроби, которая равна исходной сократимой дроби. Эта цель может быть достигнута, если провести сокращение исходной сократимой дроби на ее числителя и знаменателя. В результате такого сокращения всегда получается несократимая дробь. Действительно, дробь является несократимой, так как из известно, что и - . Здесь же скажем, что наибольший общий делитель числителя и знаменателя дроби является наибольшим числом, на которое можно сократить эту дробь.

    Итак, приведение обыкновенной дроби к несократимому виду заключается в делении числителя и знаменателя исходной сократимой дроби на их НОД.

    Разберем пример, для чего вернемся к дроби 8/24 и сократим ее на наибольший общий делитель чисел 8 и 24 , который равен 8 . Так как 8:8=1 и 24:8=3 , то мы приходим к несократимой дроби 1/3 . Итак, .

    Заметим, что под фразой «сократите дробь» часто подразумевают приведение исходной дроби именно к несократимому виду. Другими словами, сокращением дроби очень часто называют деление числителя и знаменателя на их наибольший общий делитель (а не на любой их общий делитель).

    Как сократить дробь? Правило и примеры сокращения дробей

    Осталось лишь разобрать правило сокращения дробей, которое и объясняет, как сократить данную дробь.

    Правило сокращения дробей состоит из двух шагов:

    • во-первых, находится НОД числителя и знаменателя дроби;
    • во-вторых, проводится деление числителя и знаменателя дроби на их НОД, что дает несократимую дробь, равную исходной.

    Разберем пример сокращения дроби по озвученному правилу.

    Пример.

    Сократите дробь 182/195 .

    Решение.

    Выполним оба шага, предписанные правилом сокращения дроби.

    Сначала находим НОД(182, 195) . Наиболее удобно воспользоваться алгоритмом Евклида (смотрите ): 195=182·1+13 , 182=13·14 , то есть, НОД(182, 195)=13 .

    Теперь делим числитель и знаменатель дроби 182/195 на 13 , при этом получаем несократимую дробь 14/15 , которая равна исходной дроби. На этом сокращение дроби закончено.

    Кратко решение можно записать так: .

    Ответ:

    На этом с сокращением дробей можно и закончить. Но для полноты картины рассмотрим еще два способа сокращения дробей, которые обычно применяются в легких случаях.

    Иногда числитель и знаменатель сокращаемой дроби несложно . Сократить дробь в этом случае очень просто: нужно лишь убрать все общие множители из числителя и знаменателя.

    Стоит отметить, что этот способ напрямую следует из правила сокращения дробей, так как произведение всех общих простых множителей числителя и знаменателя равно их наибольшему общему делителю.

    Разберем решение примера.

    Пример.

    Сократите дробь 360/2 940 .

    Решение.

    Разложим числитель и знаменатель на простые множители: 360=2·2·2·3·3·5 и 2 940=2·2·3·5·7·7 . Таким образом, .

    Теперь избавляемся от общих множителей в числителе и знаменателе, для удобства, их просто зачеркиваем: .

    Наконец, перемножаем оставшиеся множители: , и сокращение дроби закончено.

    Вот краткая запись решения: .

    Ответ:

    Рассмотрим еще один способ сокращения дроби, который состоит в последовательном сокращении. Здесь на каждом шаге проводится сокращение дроби на некоторый общий делитель числителя и знаменателя, который либо очевиден, либо легко определяется с помощью

    В прошлый раз мы составили план, следуя которому, можно научиться быстро сокращать дроби. Теперь рассмотрим конкретные примеры сокращения дробей.

    Примеры .

    Проверяем, а не делится ли бо́льшее число на меньшее (числитель на знаменатель или знаменатель на числитель)? Да, во всех трех этих примерах бо́льшее число делится на меньшее. Таким образом, каждую дробь сокращаем на меньшее из чисел (на числитель либо на знаменатель). Имеем:

    Проверяем, а не делится ли бо́льшее число на меньшее? Нет, не делится.

    Тогда переходим к проверке следующего пункта: а не оканчивается ли запись и числителя, и знаменателя одним, двумя или несколькими нулями? В первом примере запись числителя и знаменателя оканчивается нулем, во втором — двумя нулями, в третьем — тремя нулями. Значит, первую дробь сокращаем на 10, вторую — на 100, третью — на 1000:

    Получили несократимые дроби.

    Бо́льшее число на меньшее не делится, запись чисел нулями не оканчивается.

    Теперь проверяем, а не стоят ли числитель и знаменатель в одном столбце в таблице умножения? 36 и 81 оба делятся на 9, 28 и 63 — на 7, а 32 и 40 — на 8 (они делятся еще и на 4, но если есть возможность выбора, всегда сокращать будем на бо́льшее). Таким образом, приходим к ответам:

    Все полученные числа являются несократимыми дробями.

    Бо́льшее число на меньшее не делится. А вот запись и числителя, и знаменателя оканчивается нулем. Значит, сокращаем дробь на 10:

    Эту дробь еще можно сократить. Проверяем по таблице умножения: и 48, и 72 делятся на 8. Сокращаем дробь на 8:

    Полученную дробь еще можем сократить на 3:

    Эта дробь — несократимая.

    Бо́льшее из чисел на меньшее не делится. Запись числителя и знаменателя оканчивается на нуль.Значит, сокращаем дробь на 10.

    Полученные в числителе и знаменателе числа проверяем на и . Так как сумма цифр и 27, и 531 делятся на 3 и на 9, то эту дробь можно сократить как на 3, так и на 9. Выбираем большее и сокращаем на 9. Полученный результат — несократимая дробь.

    Без знания того, как сократить дробь, и наличия устойчивого навыка в решении подобных примеров очень непросто изучать в школе алгебру. Чем дальше, тем больше на базовые знания о сокращении обыкновенных дробей накладывается новой информации. Сначала появляются степени, потом множители, которые позже становятся многочленами.

    Как тут не запутаться? Основательно закреплять умения в предыдущих темах и постепенно готовиться к знаниям о том, как сократить дробь, усложняющуюся год от года.

    Базовые знания

    Без них не удастся справиться с заданиями любого уровня. Чтобы понять, нужно уяснить два простых момента. Первый: сокращать можно только множители. Этот нюанс оказывается очень важным при появлении многочленов в числителе или знаменателе. Тогда нужно четко различать, где находится множитель, а где стоит слагаемое.

    Второй момент говорит о том, что любое число можно представить в виде множителей. Причем результатом сокращения является такая дробь, числитель и знаменатель которых уже невозможно сократить.

    Правила сокращения обыкновенных дробей

    Для начала стоит проверить, делится ли числитель на знаменатель или наоборот. Тогда именно на это число нужно провести сокращение. Это самый простой вариант.

    Вторым является анализ внешнего вида чисел. Если оба заканчиваются на один или несколько нолей, то их можно сократить на 10, 100 или тысячу. Здесь же можно заметить, являются ли числа четными. Если да, то смело можно сокращать на два.

    Третьим правилом того, как сократить дробь, становится разложение на простые множители числителя и знаменателя. В это время нужно активно использовать все знания о признаках делимости чисел. После такого разложения остается только найти все повторяющиеся, перемножить их и произвести сокращение на получившееся число.

    Как быть, если в дроби стоит алгебраическое выражение?

    Здесь появляются первые трудности. Потому что именно здесь появляются слагаемые, которые могут быть идентичны множителям. Их очень хочется сократить, а нельзя. До того как сократить алгебраическую дробь, ее нужно преобразовать так, чтобы она имела множители.

    Для этого потребуется выполнить несколько действий. Возможно, потребуется пройти их все, а может, уже первое даст подходящий вариант.

      Проверить, не отличаются ли числитель и знаменатель или какое-либо выражение в них на знак. В этом случае необходимо просто вынести за скобки минус единицу. Так получаются одинаковые множители, которые можно сократить.

      Посмотреть, можно ли вынести из многочлена за скобки общий множитель. Возможно, так получится скобка, которую также можно сократить, или это будет вынесенный одночлен.

      Попробовать провести группировку одночленов с тем, чтобы потом в них вынести общий множитель. После этого может оказаться, что появятся множители, которые можно сократить, или снова повторить вынесение за скобки общих элементов.

      Попытаться рассмотреть в записи формулы сокращенного умножения. С их помощью легко удастся преобразовать многочлен в множители.

    Последовательность действий с дробями со степенями

    Для того чтобы без проблем разобраться в вопросе о том, как сократить дробь со степенями, необходимо твердо запомнить основные действия с ними. Первое из них связано с умножением степеней. В этом случае, если основания одинаковые, показатели необходимо сложить.

    Второе — деление. Опять же у тех, которые имеют одинаковые основания, показатели потребуется вычесть. Причем вычитать нужно из того числа, которое стоит в делимом, а не наоборот.

    Третье — возведение в степень степени. В этой ситуации показатели перемножаются.

    Для успешного сокращения потребуется также умение приводить степени к одинаковым основаниям. То есть видеть, что четыре — это два в квадрате. Или 27 — куб трех. Потому что сократить 9 в квадрате и 3 в кубе сложно. Но если преобразовать первое выражение как (3 2) 2 , то сокращение пройдет успешно.