Криволинейное движение. Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью


При помощи данного урока вы сможете самостоятельно изучить тему «Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью». Вначале мы охарактеризуем прямолинейное и криволинейное движение, рассмотрев, как при этих видах движения связаны вектор скорости и приложенная к телу сила. Далее рассмотрим частный случай, когда происходит движение тела по окружности с постоянной по модулю скоростью.

На предыдущем уроке мы рассмотрели вопросы, связанные с законом всемирного тяготения. Тема сегодняшнего урока тесно связана с этим законом, мы обратимся к равномерному движению тела по окружности.

Ранее мы говорили, что движение - это изменение положения тела в пространстве относительно других тел с течением времени. Движение и направление движения характеризуются в том числе и скоростью. Изменение скорости и сам вид движения связаны с действием силы. Если на тело действует сила, то тело изменяет свою скорость.

Если сила направлена параллельно движению тела, то такое движение будет прямолинейным (рис. 1).

Рис. 1. Прямолинейное движение

Криволинейным будет такое движение, когда скорость тела и сила, приложенная к этому телу, направлены друг относительно друга под некоторым углом (рис. 2). В этом случае скорость будет изменять свое направление.

Рис. 2. Криволинейное движение

Итак, при прямолинейном движении вектор скорости направлен в ту же сторону, что и сила, приложенная к телу. А криволинейным движением является такое движение, когда вектор скорости и сила, приложенная к телу, расположены под некоторым углом друг к другу.

Рассмотрим частный случай криволинейного движения, когда тело движется по окружности с постоянной по модулю скоростью. Когда тело движется по окружности с постоянной скоростью, то меняется только направление скорости. По модулю она остается постоянной, а направление скорости изменяется. Такое изменение скорости приводит к наличию у тела ускорения, которое называется центростремительным .

Рис. 6. Движение по криволинейной траектории

Если траектория движения тела является кривой, то ее можно представить как совокупность движений по дугам окружностей, как это изображено на рис. 6.

На рис. 7 показано, как изменяется направление вектора скорости. Скорость при таком движении направлена по касательной к окружности, по дуге которой движется тело. Таким образом, ее направление непрерывно меняется. Даже если скорость по модулю остается величиной постоянной, изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет направлено к центру окружности. Поэтому оно называется центростремительным.

Почему центростремительное ускорение направлено к центру?

Вспомним, что если тело движется по криволинейной траектории, то его скорость направлена по касательной. Скорость является векторной величиной. У вектора есть численное значение и направление. Скорость по мере движения тела непрерывно меняет свое направление. То есть разность скоростей в различные моменты времени не будет равна нулю (), в отличие от прямолинейного равномерного движения.

Итак, у нас есть изменение скорости за какой-то промежуток времени . Отношение к - это ускорение. Мы приходим к выводу, что, даже если скорость не меняется по модулю, у тела, совершающего равномерное движение по окружности, есть ускорение.

Куда же направлено данное ускорение? Рассмотрим рис. 3. Некоторое тело движется криволинейно (по дуге). Скорость тела в точках 1 и 2 направлена по касательной. Тело движется равномерно, то есть модули скоростей равны: , но направления скоростей не совпадают.

Рис. 3. Движение тела по окружности

Вычтем из скорость и получим вектор . Для этого необходимо соединить начала обоих векторов. Параллельно перенесем вектор в начало вектора . Достраиваем до треугольника. Третья сторона треугольника будет вектором разности скоростей (рис. 4).

Рис. 4. Вектор разности скоростей

Вектор направлен в сторону окружности.

Рассмотрим треугольник, образованный векторами скоростей и вектором разности (рис. 5).

Рис. 5. Треугольник, образованный векторами скоростей

Данный треугольник является равнобедренным (модули скоростей равны). Значит, углы при основании равны. Запишем равенство для суммы углов треугольника:

Выясним, куда направлено ускорение в данной точке траектории. Для этого начнем приближать точку 2 к точке 1. При таком неограниченном прилежании угол будет стремиться к 0, а угол - к . Угол между вектором изменения скорости и вектором самой скорости составляет . Скорость направлена по касательной, а вектор изменения скорости направлен к центру окружности. Значит, ускорение тоже направлено к центру окружности . Именно поэтому данное ускорение носит название центростремительное .

Как найти центростремительное ускорение?

Рассмотрим траекторию, по которой движется тело. В данном случае это дуга окружности (рис. 8).

Рис. 8. Движение тела по окружности

На рисунке представлены два треугольника: треугольник, образованный скоростями, и треугольник, образованный радиусами и вектором перемещения. Если точки 1 и 2 очень близки, то вектор перемещения будет совпадать с вектором пути. Оба треугольника являются равнобедренными с одинаковыми углами при вершине. Таким образом, треугольники подобны. Это значит, что соответствующие стороны треугольников относятся одинаково:

Перемещение равно произведению скорости на время: . Подставив данную формулу, можно получить следующее выражение для центростремительного ускорения:

Угловая скорость обозначается греческой буквой омега (ω), она говорит о том, на какой угол поворачивается тело за единицу времени (рис. 9). Это величина дуги в градусной мере, пройденной телом за некоторое время.

Рис. 9. Угловая скорость

Обратим внимание, что если твердое тело вращается, то угловая скорость для любых точек на этом теле будет величиной постоянной. Ближе точка располагается к центру вращения или дальше - это не важно, т. е. от радиуса не зависит.

Единицей измерения в этом случае будет либо градус в секунду (), либо радиан в секунду (). Часто слово «радиан» не пишут, а пишут просто . Для примера найдем, чему равна угловая скорость Земли. Земля делает полный поворот на за ч, и в этом случае можно говорить о том, что угловая скорость равна:

Также обратите внимание на взаимосвязь угловой и линейной скоростей:

Линейная скорость прямо пропорциональна радиусу. Чем больше радиус, тем больше линейная скорость. Тем самым, удаляясь от центра вращения, мы увеличиваем свою линейную скорость.

Необходимо отметить, что движение по окружности с постоянной скоростью - это частный случай движения. Однако движение по окружности может быть и неравномерным. Скорость может изменяться не только по направлению и оставаться одинаковой по модулю, но и меняться по своему значению, т. е., кроме изменения направления, существует еще изменение модуля скорости. В этом случае мы говорим о так называемом ускоренном движении по окружности.

Что такое радиан?

Существует две единицы измерения углов: градусы и радианы. В физике, как правило, радианная мера угла является основной.

Построим центральный угол , который опирается на дугу длиной .

Вопросы.

1. Рассмотрите рисунок 33 а) и ответьте на вопросы: под действием какой силы шарик приобретает скорость и движется от точки В к точке А? В результате чего эта сила возникла? Как направлены ускорение, скорость шарика и действующая на него сила? По какой траектории движется шарик?

Шарик преобретает скорость и движется от точки В к точке А под действием силы упругости F упр, возникающей из-за растяжения шнура. Ускорение а, скорость шарика v, и действующая на него сила упругости F упр, направлены от точки В к точке А, и поэтому шарик движется по прямой.

2. Рассмотрите рисунок 33 б) и ответьте на вопросы: почему в шнуре возникла сила упругости и как она направлена по отношению к самому шнуру? Что можно сказать о направлении скорости шарика и действующей на него силы упругости шнура? Как движется шарик: прямолинейно или криволинейно?

Сила упругости F упр в шнуре возникает из-за его растяжения, она направлена вдоль шнура по направлению к точке О. Вектор скорости v и сила упругости F упр лежат на пересекающихся прямых, скорость направлена по касательной к траектории, а сила упругости к точке О, поэтому шарик движется криволинейно.

3. При каком условии тело под действием силы движется прямолинейно, а при каком - криволинейно?

Тело под действием силы движется прямолинейно если его скорость v и сила F, действующая на него, направлены вдоль одной прямой, и, криволинейно если они направлены вдоль пересекающихся прямых.

Упражнения.

1. Шарик катился по горизонтальной поверхности стола от точки А к точке В (рис.35). В точке В на шарик подействовали силой F. В результате он стал двигаться к точке С. В каком из направлений, обозначенных стрелками 1, 2, 3 и 4, могла действовать сила F?

Сила F подействовала в направлении 3, т.к. у шарика появилась составляющая скорости перпендикулярная к начальному направлению скорости.

2. На рисунке 36 изображена траектория движения шарика. На ней кружочками отмечены положения шарика через каждую секунду после начала движения. Действовала ли на шарик сила на участке 0-3, 4-6, 7-9, 10-12, 13-15, 16-19? Если сила действовала, то как она была направлена по отношению к вектору скорости? Почему на участке 7-9 шарик повернул налево, а на участке 10-12 - направо по отношению к направлению движения перед поворотом? Сопротивление движению не учитывайте.

На участках 0-3, 7-9, 10-12, 16-19 на шарик действовала внешняя сила изменяющая направление его движения. На участках 7-9 и 10-12 на шарик действовала сила, которая с одной стороны изменяла его направление, а с другой - тормозила его движение в направлении по которому он двигался.

3. На рисунке 37 линией ABCDE изображена траектория движения некоторого тела. На каких участках на тело наверняка действовала сила? Могла ли на тело действовать какая-нибудь сила при его движении на других участках этой траектории? Все ответы обоснуйте.

Сила действовала на участках АВ и CD, так как шарик изменил направление, однако и на других участках могла действовать сила, но не изменяющая направление, а изменяющая скорость его движения, что не отразилось бы на его траектории.

Движение – это изменение положения
тела в пространстве относительно других
тел с течением времени. Движение и
направление движения характеризуются в
том числе и скоростью. Изменение
скорости и сам вид движения связаны с
действием силы. Если на тело действует
сила, то тело изменяет свою скорость.

Если сила направлена параллельно
движению тела, в одну сторону, то такое
движение будет прямолинейным.

Криволинейным будет такое движение,
когда скорость тела и сила, приложенная к
этому телу, направлены друг относительно
друга под некоторым углом. В этом случае
скорость будет изменять свое
направление.

Итак, при прямолинейном
движении вектор скорости направлен в ту
же сторону, что и сила, приложенная к
телу. А криволинейным
движением является такое движение,
когда вектор скорости и сила,
приложенная к телу, расположены под
некоторым углом друг к другу.

Центростремительное ускорение

ЦЕНТРОСТРЕМИТЕЛЬНОЕ
УСКОРЕНИЕ
Рассмотрим частный случай
криволинейного движения, когда тело
движется по окружности с постоянной по
модулю скоростью. Когда тело движется
по окружности с постоянной скоростью, то
меняется только направление скорости. По
модулю она остается постоянной, а
направление скорости изменяется. Такое
изменение скорости приводит к наличию у
тела ускорения, которое
называется центростремительным.

Если траектория движения тела является
кривой, то ее можно представить как
совокупность движений по дугам
окружностей, как это представлено на рис.
3.

На рис. 4 показано, как изменяется направление
вектора скорости. Скорость при таком движении
направлена по касательной к окружности, по дуге
которой движется тело. Таким образом, ее
направление непрерывно меняется. Даже если
скорость по модулю остается величиной постоянной,
изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет
направлено к центру окружности. Поэтому
оно называется центростремительным.
Рассчитать его можно по следующей
формуле:

Угловая скорость. связь угловой и линейной скоростей

УГЛОВАЯ СКОРОСТЬ. СВЯЗЬ
УГЛОВОЙ И ЛИНЕЙНОЙ
СКОРОСТЕЙ
Некоторые характеристики движения по
окружности
Угловая скорость обозначается греческой
буквой омега (w), она говорит о том, на какой
угол поворачивается тело за единицу времени.
Это величина дуги в градусной мере,
пройденной телом за некоторое время.
Заметьте, если твердое тело вращается, то
угловая скорость для любых точек на этом теле
будет величиной постоянной. Ближе точка
располагается к центру вращения или дальше –
это не важно, т.е. от радиуса не зависит.

Единицей измерения в этом случае будет
либо градус в секунду, либо радиан в
секунду. Часто слово «радиан» не пишут, а
пишут просто с-1. Для примера найдем,
чему равна угловая скорость Земли. Земля
делает полный поворот на 360° за 24 ч, и в
этом случае можно говорить о том, что
угловая скорость равна.

Также обратите внимание на взаимосвязь угловой
скорости и линейной скорости:
V = w . R.
Необходимо отметить, что движение по
окружности с постоянной скоростью – это частный
случай движения. Однако движение по окружности
может быть и неравномерным. Скорость может
изменяться не только по направлению и оставаться
одинаковой по модулю, но и меняться по своему
значению, т.е., кроме изменения направления,
существует еще и изменение модуля скорости. В
этом случае мы говорим о так называемом
ускоренном движении по окружности.

6. Криволинейное движение. Угловое перемещение, угловые скорость и ускорение тела. Путь и перемещение при криволинейном движении тела.

Криволинейное движение – это движение, траектория которого представляет собой кривую линию (например, окружность, эллипс, гиперболу, параболу). Примером криволинейного движения является движение планет, конца стрелки часов по циферблату и т.д. В общем случае скорость при криволинейном движении изменяется по величине и по направлению.

Криволинейное движение материальной точки считается равномерным движением, если модульскорости постоянен (например, равномерное движение по окружности), и равноускоренным, если модуль и направление скорости изменяется (например, движение тела, брошенного под углом к горизонту).

Рис. 1.19. Траектория и вектор перемещения при криволинейном движении.

При движении по криволинейной траектории вектор перемещения направлен по хорде (рис. 1.19), аl – длина траектории . Мгновенная скорость движения тела (то есть скорость тела в данной точке траектории) направлена по касательной в той точке траектории, где в данный момент находится движущееся тело (рис. 1.20).

Рис. 1.20. Мгновенная скорость при криволинейном движении.

Криволинейное движение – это всегда ускоренное движение. То есть ускорение при криволинейном движении присутствует всегда, даже если модуль скорости не изменяется, а изменяется только направление скорости. Изменение величины скорости за единицу времени – это тангенциальное ускорение :

или

Где v τ , v 0 – величины скоростей в момент времени t 0 + Δt и t 0 соответственно.

Тангенциальное ускорение в данной точке траектории по направлению совпадает с направлением скорости движения тела или противоположно ему.

Нормальное ускорение - это изменение скорости по направлению за единицу времени:

Нормальное ускорение направлено по радиусу кривизны траектории (к оси вращения). Нормальное ускорение перпендикулярно направлению скорости.

Центростремительное ускорение – это нормальное ускорение при равномерном движении по окружности.

Полное ускорение при равнопеременном криволинейном движении тела равно:

Движение тела по криволинейной траектории можно приближённо представить как движение по дугам некоторых окружностей (рис. 1.21).

Рис. 1.21. Движение тела при криволинейном движении.

Криволинейное движение

Криволинейные движения – движения, траектории которых представляют собой не прямые, а кривые линии. По криволинейным траекториям движутся планеты, воды рек.

Криволинейное движение – это всегда движение с ускорением, даже если по модулю скорость постоянна. Криволинейное движение с постоянным ускорением всегда происходит в той плоскости, в которой находятся векторы ускорения и начальные скорости точки. В случае криволинейного движения с постоянным ускорением в плоскости xOy проекции v x и v y ее скорости на оси Ox и Oy и координаты x и y точки в любой момент времениt определяется по формулам

Частным случаем криволинейного движения – является движение по окружности. Движение по окружности, даже равномерное, всегда есть движение ускоренное: модуль скорости все время направлен по касательной к траектории, постоянно меняет направление, поэтому движение по окружности всегда происходит с центростремительным ускорением где r – радиус окружности.

Вектор ускорения при движении по окружности направлен к центру окружности и перпендикулярно вектору скорости.

При криволинейном движении ускорение можно представить как сумму нормальной и тангенциальной составляющих:

Нормальное (центростремительное) ускорение, направлено к центру кривизны траектории и характеризует изменение скорости по направлению:

v – мгновенное значение скорости, r – радиус кривизна траектории в данной точке.

Тангенциальное (касательное) ускорение, направлено по касательной к траектории и характеризует изменение скорости по модулю.

Полное ускорение, с которым движется материальная точка, равно:

Кроме центростремительного ускорения, важнейшими характе­ристиками равномерного движения по окружности являются период и частота обращения.

Период обращения - это время, за которое тело совершается один оборот.

Обозначается период буквой Т (с) и определяется по формуле:

где t - время обращения, п - число оборотов, совершенных за это время.

Частота обращения - это величина, численно равная числу оборотов, совершенных за единицу времени.

Обозначается частота греческой буквой (ню) и находится по формуле:

Измеряется частота в 1/с.

Период и частота - величины взаимно обратные:

Если тело, двигаясь по окружности со скоростью v, делает один оборот, то пройденный этим телом путь можно найти, умножив ско­рость v на время одного оборота:

l = vT. С другой стороны, этот путь равен длине окружности 2πr . Поэтому

vT = r,

где w (с -1) - угловая скорость.

При неизменной частоте обращения центростремительное ускорение прямо пропорционально расстоянию от движущейся частицы до центра вращения.

Угловая скорость (w ) – величина, равная отношению угла поворота радиуса, на котором находится вращающаяся точка, к промежутку времени, за который произошел этот поворот:

.

Связь между линейной и угловой скоростями:

Движение тела можно считать известным лишь тогда, когда известно, как движется каждая его точка. Самое простое движение твердых тел – поступательное. Поступательным называется движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается параллельно самой себе.