Логарифмические характеристики и как с помощью. Что такое логарифм? Решение логарифмов. Примеры. Свойства логарифмов


Логарифмом положительного числа b по основанию a (a>0, a не равно 1) называют такое число с, что a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Обратите внимание: логарифм от неположительного числа не определен. Кроме того, в основании логарифма должно быть положительное число, не равное 1. Например, если мы возведем -2 в квадрат, получим число 4, но это не означает, что логарифм по основанию -2 от 4 равен 2.

Основное логарифмическое тождество

a log a b = b (a > 0, a ≠ 1) (2)

Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического "тождества" при решении уравнений и неравенств может привести к изменению ОДЗ.

Два очевидных следствия определения логарифма

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень - единицу.

Логарифм произведения и логарифм частного

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании "слева направо" происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного - расширение ОДЗ.

Действительно, выражение log a (f (x) g (x)) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.

Преобразуя данное выражение в сумму log a f (x) + log a g (x) , мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).

Степень можно выносить за знак логарифма

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

Log a (f (x) 2 = 2 log a f (x)

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть - только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

Формула перехода к новому основанию

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Несколько простых примеров с логарифмами

Пример 1. Вычислите: lg2 + lg50.
Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.


Пример 2. Вычислите: lg125/lg5.
Решение. lg125/lg5 = log 5 125 = 3. Мы использовали формулу перехода к новому основанию (8).

Таблица формул, связанных с логарифмами

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Логарифмом числа N по основаниюа называется показатель степених , в которую нужно возвестиа , чтобы получить числоN

При условии, что
,
,

Из определения логарифма следует, что
, т.е.
- это равенство является основным логарифмическим тождеством.

Логарифмы по основанию 10 называются десятичными логарифмами. Вместо
пишут
.

Логарифмы по основанию e называются натуральными и обозначаются
.

Основные свойства логарифмов.

    Логарифм единицы при любом основании равен нулю

    Логарифм произведения равен сумме логарифмов сомножителей.

3) Логарифм частного равен разности логарифмов


Множитель
называется модулем перехода от логарифмов при основанииa к логарифмам при основанииb .

С помощью свойств 2-5 часто удается свести логарифм сложного выражения к результату простых арифметических действий над логарифмами.

Например,

Такие преобразования логарифма называются логарифмированием. Преобразования обратные логарифмированию называются потенцированием.

Глава 2. Элементы высшей математики.

1. Пределы

Пределом функции
является конечное число А, если при стремлении xx 0 для каждого наперед заданного
, найдется такое число
, что как только
, то
.

Функция, имеющая предел, отличается от него на бесконечно малую величину:
, где- б.м.в., т.е.
.

Пример. Рассмотрим функцию
.

При стремлении
, функцияy стремится к нулю:

1.1. Основные теоремы о пределах.

    Предел постоянной величины равен этой постоянной величине

.

    Предел суммы (разности) конечного числа функций равен сумме (разности) пределов этих функций.

    Предел произведения конечного числа функций равен произведению пределов этих функций.

    Предел частного двух функций равен частному пределов этих функций, если предел знаменателя не равен нулю.

Замечательные пределы

,
, где

1.2. Примеры вычисления пределов

Однако, не все пределы вычисляются так просто. Чаще вычисление предела сводится к раскрытию неопределенности типа: или .

.

2. Производная функции

Пусть мы имеем функцию
, непрерывную на отрезке
.

Аргумент получил некоторое приращение
. Тогда и функция получит приращение
.

Значению аргумента соответствует значение функции
.

Значению аргумента
соответствует значение функции .

Следовательно, .

Найдем предел этого отношения при
. Если этот предел существует, то он называется производной данной функции.

Определение 3Производной данной функции
по аргументу называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента произвольным образом стремится к нулю.

Производная функции
может быть обозначена следующим образом:

; ; ; .

Определение 4Операция нахождения производной от функции называетсядифференцированием.

2.1. Механический смысл производной.

Рассмотрим прямолинейное движение некоторого твердого тела или материальной точки.

Пусть в некоторый момент времени движущаяся точка
находилась на расстоянии от начального положения
.

Через некоторый промежуток времени
она переместилась на расстояние
. Отношение =- средняя скорость материальной точки
. Найдем предел этого отношения, учитывая что
.

Следовательно, определение мгновенной скорости движения материальной точки сводится к нахождению производной от пути по времени.

2.2. Геометрическое значение производной

Пусть у нас есть графически заданная некоторая функция
.

Рис. 1. Геометрический смысл производной

Если
, то точка
, будет перемещаться по кривой, приближаясь к точке
.

Следовательно
, т.е. значение производной при данном значении аргумента численно равняется тангенсу угла образованного касательной в данной точке с положительным направлением оси
.

2.3. Таблица основных формул дифференцирования.

Степенная функция

Показательная функция

Логарифмическая функция

Тригонометрическая функция

Обратная тригонометрическая функция

2.4. Правила дифференцирования.

Производная от

Производная суммы (разности) функций


Производная произведения двух функций


Производная частного двух функций


2.5. Производная от сложной функции.

Пусть дана функция
такая, что ее можно представить в виде

и
, где переменнаяявляется промежуточным аргументом, тогда

Производная сложной функции равна произведению производной данной функции по промежуточному аргументу на производную промежуточного аргумента по x.

Пример1.

Пример2.

3. Дифференциал функции.

Пусть есть
, дифференцируемая на некотором отрезке
и пустьу этой функции есть производная

,

тогда можно записать

(1),

где - бесконечно малая величина,

так как при

Умножая все члены равенства (1) на
имеем:

Где
- б.м.в. высшего порядка.

Величина
называется дифференциалом функции
и обозначается

.

3.1. Геометрическое значение дифференциала.

Пусть дана функция
.

Рис.2. Геометрический смысл дифференциала.

.

Очевидно, что дифференциал функции
равен приращению ординаты касательной в данной точке.

3.2. Производные и дифференциалы различных порядков.

Если есть
, тогда
называется первой производной.

Производная от первой производной называется производной второго порядка и записывается
.

Производной n-го порядка от функции
называется производная (n-1)-го порядка и записывается:

.

Дифференциал от дифференциала функции называется вторым дифференциалом или дифференциалом второго порядка.

.

.

3.3 Решение биологических задач с применением дифференцирования.

Задача1. Исследования показали, что рост колонии микроорганизмов подчиняется закону
, гдеN – численность микроорганизмов (в тыс.),t –время (дни).

б) Будет ли в этот период численность колонии увеличиваться или уменьшаться?

Ответ. Численность колонии будет увеличиваться.

Задача 2. Вода в озере периодически тестируется для контроля содержания болезнетворных бактерий. Черезt дней после тестирования концентрация бактерий определяется соотношением

.

Когда в озере наступит минимальная концентрация бактерий и можно будет в нем купаться?

РешениеФункция достигает max или min, когда ее производная равна нулю.

,

Определим max или min будет через 6 дней. Для этого возьмем вторую производную.


Ответ: Через 6 дней будет минимальная концентрация бактерий.

И логарифм тесно взаимосвязаны. И по сути, является математической записью определения логарифма . Разберем подробно, что такое логарифм, откуда он произошел.

Рассмотрим алгебраическое действие - вычисление показателя х по заданным определенным значениям степени b и основанию а . Это задание в принципе заключается в решении уравнения a x = b , где а и b — некоторые заданные величины, x - неизвестная величина. Обратим внимание, что у данной задачи решения существуют не всегда.

Когда, к примеру, в уравнении a x = b число а положительно, а число b отрицательно , то у такого уравнения корней нет. Но если только а и b положительны и а ≠ 1, то оно непременно имеет исключительно один единственный корень . Достаточно известный факт, что график показательной функции у = а х непременно пересекается с прямой у = b и притом исключительно в одной точке. Абсцисса точки пересечения и будут корнем уравнения .

Для обозначения корня уравнения a x = b принято употреблять log a b (произносим: логарифм числа b по основанию а).

Логарифм числа b по основанию а это показатель степени , в которую нужно возвести число а , чтобы получить число b причем a > 0, a ≠ 1, b > 0.

Исходя из определения, получаем основное логарифмическое тождество :

Примеры :

Следствием основного логарифмического тождества является нижеследующее правило .

Из равенства двух вещественных логарифмов получаем равенство логарифмируемых выражений.

Действительно, когда log a b = log a с, то , откуда, b = c .

Рассмотрим, почему для логарифмического тождества взяты ограничения a > 0, a ≠ 1, b > 0 .

Первое условие a ≠ 1 .

Общеизвестно, что единица в любой степени будет единица, и равенство x = log a b может существовать лишь при b = 1 , но при этом log 1 1 будет любым действительным числом . Для недопущения этой неоднозначности и принимается a ≠ 1 .

Обоснуем необходимость условия a > 0 .

При a = 0 по определению логарифма может существовать только при b = 0 . И следовательно тогда log 0 0 может быть любым отличным от нуля действительным числом , так как нуль в любой отличной от нуля степени есть нуль. Не допустить эту неоднозначность дает условие a ≠ 0 . А при a < 0 нам бы пришлось отказаться от разбора рациональных и иррациональных значений логарифма , поскольку степень с рациональным и иррациональным показателем определена лишь для положительных оснований. Именно по этой причине и оговорено условие a > 0 .

И заключительное условие b > 0 является следствием из неравенства a > 0 , так как x = log a b, а значение степени с положительным основанием a всегда положительно.

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Понятие логарифма и основного логарифмичесгого тождества

Понятие логарифма и основного логарифмическое тождества состоят в тесной зависимости, т.к. определение логарифма в математической записи и является .

Основное логарифмическое тождество вытекает из определения логарифма:

Определение 1

Логарифмом называют показатель степени $n$, при возведении в которую числа $а$ получают число $b$.

Замечание 1

Показательное уравнение $a^n=b$ при $a > 0$, $a \ne 1$ не имеет решений при неположительном $b$ и имеет единственный корень при положительном $b$. Этот корень называется логарифмом числа $b$ по основанию $а$ и записывают:

$a^{\log_{a} b}=b$.

Определение 2

Выражение

$a^{\log_{a} b}=b$

называют основным логарифмическим тождеством при условии, что $a,b > 0$, $a \ne 1$.

Пример 1

$17^{\log_{17} 6}=6$;

$e^{\ln⁡13} =13$;

$10^{\lg23}=23$.

Основное логарифмическое тождество

Основным логарифмическое тождество называется, т.к. оно используется практически всегда при работе с логарифмами. К тому же с его помощью обосновываются основные свойства логарифмов.

Пример 2

$7^5=16 807$, следовательно $\log_{7}16 807=5$.

$3^{-5}=\frac{1}{243}$, следовательно $\log_{3}\frac{1}{243}=-5$.

$11^0=1$, следовательно $\log_{11}⁡1=0$.

Рассмотрим следствие основного логарифмического тождества :

Определение 3

Если два логарифма с одинаковыми основаниями равны, значит равны и логарифмируемые выражения:

если $\log_{a}⁡b=\log_{a}⁡c$, то $b=c$.

Рассмотрим ограничения , которые применяются для логарифмического тождества:

    Т.к. при возведении в любую степень единицы всегда получим единицу, а равенство $x=\log_{a}⁡b$ существует только при $b=1$, то при этом $\log_{1}⁡1$ будет любое действительное число . Чтобы не допустить эту неоднозначность принимают $a \ne 1$.

    Логарифм для $a=0$ согласно определению может существовать лишь при $b=0$. Т.к. при возведении в любую степень нуля всегда получим нуль, то $\log_{0}⁡0$ может быть любое действительное число. Чтобы не допустить эту неоднозначность принимают $a \ne 0$. При $a рациональных и иррациональных значений логарифма, т.к. степень с рациональным и иррациональным показателем может вычисляться только для положительных оснований. Чтобы не допустить такую ситуацию принимают $a > 0$.

    $b > 0$ следует из условия $a > 0$, т.к. $x=\log_{a}⁡b$, а значение степени положительного числа a всегда будет положительным.

Основным логарифмическим тождеством зачастую пользуются для упрощения логарифмических выражений.

Пример 3

Вычислить $81^{\log_{9} 7}$.

Решение .

Для того, чтобы можно было использовать основное логарифмическое тождество необходимо, чтобы основание логарифма и степени были одинаковыми. Запишем основание степени в виде:

Теперь можем записать:

$81^{\log_{9}7}=(9^2)^{\log_{9}7}=$

воспользуемся свойством степени:

$=9^{2 \cdot \log_{9}7}=9^{\log_{9}7} \cdot 9^{\log_{9}7}=$

к каждому множителю теперь можно применить основное логарифмическое тождество:

$=7 \cdot 7=49$.

Замечание 2

Для применения основного логарифмического тождества также можно прибегнуть к замене основания логарифма на выражение, которое стоит под знаком логарифма, и наоборот.

Пример 4

Вычислить $7^{\frac{1}{\log_{11} 7}}$.

Решение .

$7^{\frac{1}{\log_{11} 7}}=7^{\log_{7} 11}=11$.

Ответ : $11$.

Пример 5

Вычислить $7^{\frac{3}{\log_{11} 7}}$.