Общее микробное число для питьевой воды нормирование. Определение общего микробного числа (ОМЧ) в исследуемой пробе воды Омч кое


Общее микробное число

Общее микробное число отражает общий уровень содержания бактерий в воде, а не только тех из них, которые образуют колонии, видимые невооруженным глазом на питательных средах при определенных условиях культивирования. Эти данные не имеют большого значения для обнаружения фекального загрязнения и не должны считаться важным показателем при оценке безопасности систем питьевого водоснабжения, хотя внезапное увеличение числа колоний при анализе воды из подземного водоисточника может служить ранним сигналом загрязнения водоносного горизонта.

Общее микробное число полезно при оценке эффективности процессов водоочистки, особенно коагуляции, фильтрации и обеззараживания, при этом основная задача заключается в поддержании их количества в воде на возможно более низком уровне. Общее микробное число может быть использовано также для оценки незагрязненности и целостности распределительной сети и пригодности воды для производства пищевых продуктов и напитков, где число микроорганизмов должно быть низким для сведения до минимума риска порчи. Ценность данного метода заключается в возможности сравнения результатов при исследовании регулярно отбираемых проб из одной и той же системы водоснабжения для обнаружения отклонений.

Общее микробное число, т. е. число колоний бактерий в 1 мл питьевой воды, не должно быть более 50.

Вирусологические показатели качества воды

К вирусам, вызывающим особое беспокойство в связи с передачей водным путем инфекционных заболеваний, относятся главным образом те, которые размножаются в кишечнике и в больших количествах (десятки миллиардов на 1 г кала) выделяются с фекалиями зараженных людей. Хотя репликации вирусов вне организма не происходит, энтеровирусы обладают способностью к выживанию во внешней среде в течение нескольких дней и месяцев. Особенно много энтеровирусов в сточных водах. При водозаборе на водоочистных сооружениях в воде обнаруживают до 43 вирусных частиц на 1 л.

Высокая выживаемость вирусов в воде и незначительная заражающая доза для человека приводят к эпидемическим вспышкам вирусного гепатита и гастроэнтерита, но через источники водоснабжения, а не питьевую воду. Однако потенциально такая возможность сохраняется.

Вопрос о количественной оценке допустимого содержания вирусов в воде очень сложен. Сложно и определение вирусов в воде, особенно питьевой, так как возможен риск случайного загрязнения воды при отборе проб. В Российской Федерации согласно СанПиНу оценку вирусного загрязнения (определение содержания колифагов) проводят по подсчету числа бляшкообразующих единиц, создаваемых колифагом. Прямое определение вирусов очень сложно. Колифаги присутствуют совместно с кишечными вирусами. Количество фагов обычно больше, чем вирусных частиц. По своей величине колифаги и вирусы очень близки, что важно для процесса фильтрации. Согласно СанПиНу в 100 мл пробы бляшкообразующих единиц быть не должно.

Простейшие

Из всех известных простейших патогенными для человека, передающимися через воду, могут быть возбудители амебиаза (амебной дизентерии), лямблиоза и балантидиаза (инфузории). Однако через питьевую воду возникновение данных инфекций происходит редко, лишь при попадании в нее сточных вод. Наиболее опасен человек, являющийся источником-носителем резервуара цист лямблий. Попадая в сточные и питьевые воды, а затем опять в организм человека, они могут вызвать лямблиоз, протекающий с хроническими диареями. Возможен смертельный исход.

По принятому нормативу цист лямблий в питьевой воде объемом 50 л наблюдаться не должно.

Должны отсутствовать в питьевой воде и гельминты, а также их яйца и личинки.

Цель работы: изучение методов оценки санитарнобактериологического состояния питьевой воды и воды из естественных водоемов.

Вода, используемая на предприятиях пищевой промышленности, должна отвечать требованиям, предъявляемым к питьевой воде действующими нормативными документами. Безопасность воды в эпидемиологическом отношении определяют по общему числу микроорганизмов и количеству бактерий группы кишечных палочек в ее определенном объеме.

Качество воды централизованных систем питьевого водоснабжения определяют в соответствии с санитарными правилами и нормами. Питьевая вода должна быть безопасна в эпидемиологическом и радиационном отношениях, безопасна по химическому составу и иметь благоприятные органолептические свойства (табл. 12.1).

Показатели

* БОЕ - бляшкообразующие единицы.

12.1. Отбор проб и подготовка их к анализу

Воду для санитарно-бактериологического контроля отбирают в количестве 500 см 3 в бутылки, предварительно простерилизованные в бумажных пакетах, с ватно-марлевой пробкой, покрытой сверху бумажным колпачком.

Перед отбором пробы кран или край трубы обжигают зажженным ватным тампоном, пропитанным спиртом. Открывают кран и в течение 10-15 мин воду спускают, затем производят отбор пробы. Вода подлежит анализу не позже чем через 2 ч после отбора.

Пробы воды из открытых водоемов - колодцев, бассейнов, рек, озер - отбирают с помощью батометров, представляющих собой металлический каркас с массивным свинцовым дном - грузилом. В металлический каркас вставлена бутылка. Батометр погружают на заданную глубину и открывают бутылку, потягивая за веревку, привязанную к пробке. После наполнения бутылки батометр извлекают и закрывают ее стерильной пробкой.

Пробы хлорированной воды берут во флаконы с дехлоратором, так как под действием хлора микробы в воде погибают. В качестве дехлоратора используют серноватистый натрий из расчета 10 мг на 500 см исследуемой воды.

К отобранным пробам воды прилагают сопроводительный документ с указанием соответствующих данных. Доставку проб питьевой воды осуществляют в контейнерах-холодильниках при температуре от 4 до 10 °С.

12.2. Определение общего микробного числа воды

Общее микробное число (ОМЧ) - это количество мезофильных аэробных и факультативно-анаэробных микроорганизмов, образующих колонии на мясопептонном агаре при посеве 1 см 3 воды с последующей инкубацией посевов при температуре 37±0,5 °С в течение 48 ч. ОМЧ должно быть не более 50 КОЕ/см 3 .

В зависимости от степени предполагаемого загрязнения производят посев не менее двух различных объемов воды, выбранных с таким расчетом, чтобы на чашках вырастало от 30 до 300 колоний. Водопроводную и артезианскую воду засевают в неразведенном виде по 1 см 3 . При бактериологическом исследовании загрязненных вод делают посевы разведенной воды. Разведения готовят так, как указано в разделе 8.3.

Из исследуемого образца и из пробирок с его разведениями в соответствии со степенью предполагаемого микробного загрязнения отбирают по 1 см 3 , вносят в стерильные чашки Петри и заливают 10-12 см расплавленного и остуженного до температуры 45 °С мясопептонного агара. Круговыми движениями руки, вращая чашки по горизонтальной поверхности стола, распределяют их содержимое равномерным слоем по всей площади дна. После застывания агара чашки с посевами помещают на 24 ч в термостат при температуре 37 °С. После инкубации подсчитывают число выросших колоний.

Определение микробного числа указанным методом позволяет выявить лишь мезофильные аэробные и факультативно-анаэробные микроорганизмы.

12.3. Определение содержания колиформных бактерий в воде

С эпидемиологической точки зрения особенно важным является обнаружение в воде патогенных микроорганизмов - возбудителей кишечных инфекций (брюшного тифа, дизентерии, холеры и др.) Однако в связи с большой трудностью обнаружения патогенных микроорганизмов при бактериологических анализах ограничиваются определением так называемых санитарно-показательных микроорганизмов (СПМ). К санитарно-показательным относят микроорганизмы, постоянно находящиеся в естественных полостях человека или животных. Присутствие СПМ в различных объектах внешней среды является индикатором их загрязнения человеком. Чем больше СПМ во внешней среде, тем более вероятным становится присутствие специфических возбудителей инфекционных заболеваний.

В качестве СПМ наибольшее значение имеют бактерии группы кишечных палочек (БГКП). К группе кишечных палочек относят колиформные бактерии родов Escherichia, Enterobacter, Citrobacter, Klebsiella, Serratia.

При определении количества СПМ в воде используют следующие характеристики:

. коли-титр - наименьший объем воды, в котором обнаружена одна кишечная палочка. Для питьевой воды, прошедшей очистку, титр кишечной палочки должен быть не менее 300 см 3 ;

. коли-индекс - количество кишечных палочек в 1 дм 3 воды. Коли-индекс для питьевой воды должен быть не более 3.

Колиформные бактерии определяют в воде методом мембранных фильтров или бродильным методом.

Бродильный метод. Сущность бродильного метода заключается в посеве определенных объемов исследуемой воды, инкубации

посевов при температуре 37 °С в средах накопления с последующим высевом на среду Эндо, дифференциацией выросших колоний и определением наиболее вероятного числа БГКП в 1 дм 3 воды.

При исследовании воды централизованного водоснабжения исследуемый материал дважды засевают в три объема: 100, 10 и 1 см 3 . Для исследования речной, озерной, прудовой воды готовят десятикратные разведения 1:10, 1:100, 1:1000 и засевают еще 10 см 3 и 1 см 3 без разведения. Посев воды производят в бродильные сосуды (колбы, бутылки, пробирки с поплавками), заполненные глюкозопептонной средой Эйкмана. Посевы инкубируют в термостате при температуре 37 °С в течение 24 ч.

а) при отсутствии газообразования и изменения цвета среды дают отрицательный ответ на наличие БГКП в исследуемом объеме воды, дающим право закончить исследование через 24 ч;

б) при образовании кислоты и газа производится высев материала из бродильных сосудов на среду Эндо. Высев делается бактериологической петлей густым штрихом для получения изолированных колоний. Чашки с посевами инкубируют при температуре 37 °С в течение 24 ч. После инкубации посевы просматривают. Отсутствие на среде Эндо характерных для кишечных палочек колоний дает основание на выдачу отрицательного ответа и окончание исследования;

в) при обнаружении на среде Эндо лактозоположительных темно-красных колоний, с металлическим блеском или без него, необходимо установить принадлежность выросших микроорганизмов к семейству кишечных бактерий. С этой целью производится микроскопирование препарата из колоний и постановка оксидазного теста.

Оксидазный тест предложен для дифференциации бактерий семейства Enterobacteriaceae от грамотрицательных бактерий семейства Pseudomonodaceae и других водных сапрофитов, которые, в отличие от кишечных бактерий, вырабатывают фермент оксидазу.

Для постановки оксидазного теста со среды Эндо снимают петлей по 2-3 колонии каждого типа. Микробную массу наносят штрихом на фильтровальную бумагу, смоченную специальным реактивом (30 г α-д-нафтола растворяют в 2,5 см 3 этанола, прибавляют 7,5 см 3 дистиллированной воды и 40 мг диметил-парафенилендиамина. Раствор готовят непосредственно перед определением).

При отрицательном результате оксидазного теста бумага при контакте с колонией цвета не меняет. Если же бумага синеет в течение 1 мин при контакте с колонией, то оксидазный тест считают положительным.

Наличие в препарате грамотрицательных неспорообразующих палочек, не обладающих оксидазной активностью, позволяет немедленно дать ответ о наличии в воде БГКП.

При обнаружении на среде Эндо розовых и бесцветных колоний ведут подсчет и пересевают 2-3 изолированные колонии каждого типа в глюкозо-пептонную среду Эйкмана. Посевы инкубируют при температуре 37 °С в течение 3-4 ч. При образовании кислоты (изменение цвета среды) и газа, накапливающегося в поплавке, результат считается положительным, при отсутствии кислото- и газообразования - отрицательным.

После проведения анализа записывают в лабораторный журнал окончательные результаты (положительные и отрицательные) по каждому засеянному объему и определяют коли-титр и коли-индекс.

Метод мембранных фильтров. Сущность метода заключается в концентрировании бактерий из определенного объема воды на мембранных фильтрах с последующим выращиванием их на среде Эндо при температуре 37 °С, дифференцированием выросших колоний и подсчетом количества БГКП в 1 см 3 воды.

Подготовка мембранных фильтров. Для фильтрования воды отбирают мембранные фильтры № 3, помещают их в подогретую до температуры 80 °С дистиллированную воду и ставят на небольшой огонь для кипячения. Кипячение проводят трижды по 10 мин. После первого и второго кипячения воду сливают, а после третьего фильтры оставляют в воде до употребления.

Подготовка фильтровального аппарата. Фильтровальный аппарат стерилизуют в автоклаве или протирают ватным тампоном, смоченным в спирте, и обжигают в целях стерилизации. На столик фильтровального аппарата стерильным пинцетом помещают мембранный фильтр. Во избежание повреждения фильтра под него подкладывают кружок стерильной фильтровальной бумаги. На фильтровальный столик с положенными на него фильтрами устанавливают и закрепляют верхнюю часть прибора - воронку (рис. 12.1).

Рис. 12.1. Определение количества микроорганизмов методом мембранных фильтров

Фильтрование воды и выращивание микроорганизмов. В воронку фильтровального аппарата стерильно наливают исследуемый объем воды и с помощью водоструйного насоса создают вакуум в приемном сосуде. При анализе питьевой воды, поступающей в водопроводную сеть, необходимо брать объем не менее 333 см 3 . По окончании фильтрования мембранный фильтр профламбированным пинцетом переносят на поверхность питательной среды Эндо в чашки Петри. В настоящее время выпускают фильтры, пропитанные соответствующими питательными средами. Посевы инкубируют в термостате при температуре 37 °С в течение 18-24 ч.

Обработка результатов анализа. По окончании инкубации посевы просматривают и делают следующие выводы:

а) отсутствие микробного роста на фильтрах или обнаружение на них колоний, не характерных для БГКП, позволяет закончить исследования на этом этапе анализа с выдачей отрицательного результата на присутствие БГКП в анализируемом объеме воды;

б) при обнаружении на фильтре колоний, характерных для БГКП, исследование продолжают. Из нескольких колоний каждого типа готовят мазки, окрашивают их по Граму и микроскопируют. Отсутствие в мазках мелких грамотрицательных неспороносных палочек является основанием для прекращения анализа с выдачей отрицательного результата на присутствие БГКП в исследуемом объеме воды;

в) при наличии в мазках грамотрицательных палочек, морфологически сходных с кишечными, ставится оксидазная проба. При обнаружении на мембранных фильтрах однотипных лактозоположительных колоний (темно-красных с металлическим блеском или без него), не вырабатывающих оксидазы, анализ воды на этом этапе заканчивают и подсчитывают число выросших на мембранном фильтре колоний кишечных палочек. Результат выражают в виде коли- индекса в пересчете на 1 дм 3 воды;

г) при обнаружении на мембранных фильтрах розовых и бесцветных колоний подсчитывают их число и пересевают 2-3 изолированные колонии каждого типа в глюкозо-пептонную среду Эйкмана. После инкубации в течение 3-4 ч при температуре 37 °С отмечают изменение цвета среды за счет образования кислоты и накопления газа в поплавке. В этом случае результат считается положительным. Если изменений в среде нет, то дают отрицательный результат на присутствие БГКП.

Пример определения колииндекса: профильтровано три объема воды по 100 см 3 . На первом и втором фильтрах выросло по три колонии, на третьем - девять колоний. Всего выросло пятнадцать колоний. Таким образом, колииндекс исследуемого образца воды равен: (1000 х 15):300 = 50. Колииндекс переводится в колититр следующим образом: 1000:50 = 20.

Контрольные вопросы

1. Какие Вы знаете показатели эпидемиологической безопасности питьевой воды?

2. Что такое общее микробное число, колититр и колииндекс?

3. Какие роды микроорганизмов входят в БГКП?

4. Какими методами определяют колиформные бактерии?

5. Каковы основные критерии, по которым устанавливают присутствие колиформных бактерий в питьевой воде?

6. С какой целью проводят тест на оксидазу?

Природная вода из различных источников всегда содержит некоторое количество химических соединений, разнообразную микрофлору, яйца гельминтов, вирусы, которые могут быть причиной интоксикации, а также заболеваний эпидемиологического и эндемического характера. Вода – один из путей передачи возбудителей заболеваний, в частности инфекционных. Инфекции, предающиеся преимущественно через воду, называются водными. К ним относятся: брюшной тиф, дизентерия, сальмонеллезы, холера, инфекционный гепатит, полиомиелит, туляремия, лептоспирозы. Передаются через воду заболевания кожных покровов и слизистых оболочек (трахома, чесотка, грибковые заболевания, аденовирусные конъюнктивиты). Вода может играть важную роль и в передаче возбудителей ряда зоонозных инфекций, главным образом среди животных (сап, ящур, сибирская язва, сальмонеллез). Загрязнение воды патогенными микробами происходит многими путями. Наиболее распространенный из них – спуск в водоемы неочищенных сточных вод, в частности инфекционных больниц, ветеринарных лечебниц, промышленных предприятий, перерабатывающих животное сырье, банно-прачечных предприятий. Фекальное загрязнение водоемов, в частности колодцев, может вызываться кроме этого поверхностными водами в периоды ливневых дождей и таяния снегов, а также почвенными водами, если в них проникают нечистоты из выгребных ям. При центральном водоснабжении становится возможным загрязнение воды не только в месте водозабора, но и в головных сооружениях, а также в водоразводящей сети, чаще всего в случаях нарушения герметичности водопроводных труб и других аварий или подсоединения технических водопроводов к водопроводам питьевым. Водоемы могут загрязняться и выделениями диких животных, главным образом грызунов, которые с мочой и фекалиями могут выделять в воду возбудителей таких, например болезней как туляремия и лептоспирозы. Вода, загрязненная патогенными микробами, может вызвать массовые заболевания (эпидемии). Вода искусственных бассейнов при недостаточной очистке и обеззараживании может также быть передатчиком ряда инфекционных заболеваний. В загрязненной воде часто присутствуют стафилококки, стрептококки, возбудители дизентерии, полиомиелита и др.


Показатели бактериологического загрязнения воды:

Микробное число воды общее количество микробов, содержащихся в 1 мл воды ;
Титр кишечной палочки наименьший объем воды, в котором обнаруживается одна кишечная палочка ;
Индекс кишечной палочки количество кишечных палочек в 1 л воды .

Микробное число воды показывает, насколько благоприятны или неблагоприятны условия для жизни микробов. В норме в 1 мл водопроводной воды не должно быть более 100, а в колодезной –более 1000 микробов.

Кишечная палочка, обычно обитающая в толстом кишечнике человека и животных, служит показателем свежего загрязнения воды экскрементами животных и человека. В соответствии с гигиеническими нормами титр кишечной палочки для водопроводной питьевой воды установлен не менее 300 мл. Индекс кишечной палочки - 3 (наличие в 100 мл воды не более 3 кишечных палочек). Для колодезной воды титр кишечной палочки не должен быть более 100.

Гигиеническим показателем качества воды является также наличие в ней яиц гельминтов. В питьевой воде и воде крытых бассейнов яйца гельминтов должны отсутствовать.

Флора и фауна воды. Не допускает содержания в питьевой воде видимых на глаз водных организмов.

Источники водоснабжения. Основные источники водоснабжения – закрытые водоемы (подземные воды) и открытые озера, пруды, водохранилища).

Показатели качества источника централизованного хозяйственно-питьевого водоснабжения.

Определяемые показатели 1-й класс 2-й класс 3-й класс
Подземные источники
Мутность, мг/дм³не более 1,5 1,5 10
Цветность, град, не более 20 20 50
Водородный показатель (рН) 6-9 6-9 6-9
Железо,мг/дм³не более 0,3 10 20
Марганец, мг/дм³ 0,1 1
Сероводород.мг/дм³ отсутствие 3 10
Фтор,мг/дм³ 1,5-0,7 1,5-0,7 5
Число бактерий группы кишечной палочки в 1 дм³ 3 100 1000
Поверхностные источники водоснабжения
Мутность 20 1500 10000
Цветность 35 120 200
Запах при 20° и 60° более, баллы 2 3 4
Водородный показатель 6,5-8,5 6,5-8,5 6,5-8,5
Железо 1 3 5
Марганец 0,1 1 2
БПК полное, мг по килороду/дм³с 3 5 7
Число лактозоположительных кишечных палочек в дм³воды 1000 10000 50000

Очистка и обеззараживание воды :

Первый этап – очистка воды от взвешенных частиц отстаиванием в специальных отстойниках (горизонтальных и вертикальных) и фильтрацией. Для ускорения используется коагуляция – очистка воды с помощью специальных химических соединений – коагулянтов (сернокислый алюминий – глинозем), он вступает в реакцию с солями кальция и магния, образует с ними гидраты в виде хлопьев, оседающих на дно очистных сооружений.

Второй этап- фильтрация. После коагуляции вода фильтруется. Фильтры: прямоугольные резервуары площадью 50-100 м², с речным песком высотой 0,6-1м, под которым слой гравия и дренажные трубы для отвода профильтрованной воды. После 8-12 часов фильтр промывается обратным током воды.

Третий этап – дезинфекция. В нашей стране – это хлорирование газообразным хлором. Это один из самых старых, дешевых простых и достаточно надежных способов обеззараживания воды. Применяется также озонирование, и обработка УФЛ. Озонирование улучшает вкус воды и органолептические свойства воды, но это дорого, требует сложной и дорогой аппаратуры, тщательного контроля

Общее микробное число отражает общий уровень содержания бактерий в воде, а не только тех из них, которые образуют колонии, видимые невооруженным глазом на питательных средах при определенных условиях культивирования. Эти данные не имеют большого значения для обнаружения фекального загрязнения и не должны считаться важным показателем при оценке безопасности систем питьевого водоснабжения, хотя внезапное увеличение числа колоний при анализе воды из подземного водоисточника может служить ранним сигналом загрязнения водоносного горизонта.

Общее микробное число полезно при оценке эффективности процессов водоочистки, особенно коагуляции, фильтрации и обеззараживания, при этом основная задача заключается в поддержании их количества в воде на возможно более низком уровне. Общее микробное число может быть использовано также для оценки незагрязненности и целостности распределительной сети и пригодности воды для производства пищевых продуктов и напитков, где число микроорганизмов должно быть низким для сведения до минимума риска порчи. Ценность данного метода заключается в возможности сравнения результатов при исследовании регулярно отбираемых проб из одной и той же системы водоснабжения для обнаружения отклонений.

Общее микробное число, т. е. число колоний бактерий в 1 мл питьевой воды, не должно быть более 50.

Характеристика водоисточников и систем водоснабжения.

Различают подземные и поверхностные воды, проточные и стоячие.

Подземные водоисточники в зависимости от глубин залегания и отношения к породам делятся на:

1) почвенные;

2) грунтовые;

3) межпластовые.

Почвенные водоисточники залегают неглубоко (2-3 м), фактически лежат у поверхности. Они обильны весной, летом пересыхают, зимой промерзают. Как источники водоснабжения эти воды интереса не представляют. Качество вод определяется загрязненностью атмосферных осадков. Количество этих вод сравнительно невелико, органолептические свойства неудовлетворительные.

2. Грунтовые воды – расположены в 1-ом от поверхности водоносном горизонте (от 10-15 м до нескольких десятков метров). Питание этих горизонтов осуществляется в основном за счет фильтрации атмосферных осадков. Режим питания не постоянен. Атмосферные осадки фильтруются через большую толщу грунта, поэтому в бактериальном отношении эти воды чище, чем почвенные, но еще не всегда надежны. Грунтовые воды имеют более или менее стабильный химический состав, могут содержать значительное количество двухвалентного железа, которое при подъеме воды наверх переходит в трехвалентное (бурые хлопья). Грунтовые воды могут использоваться для децентрализованного, местного водоснабжения, так как мощность их невелика.



Межпластовые воды лежат глубоко в водоносном горизонте, залегающем (до 100 м) между двумя водонепроницаемыми пластами, один из которых – нижний – водонепроницаемое ложе, а верхний – водонепроницаемая кровля. Поэтому они надежно изолированы от атмосферных осадков и грунтовых вод. Это предопределяет свойства воды, в частности ее бактериальный состав. Эти воды могут заполнить все пространство между пластами (как правило, глиняными) и испытывают гидростатическое давление. Это так называемые напорные, или артезианские, воды.

Качество артезианских вод по физическим и органолептическим свойствам вполне удовлетворительно. Надежны такие воды и в бактериальном отношении, они имеют стабильный химический состав. В таких водах, как указывалось выше, нередко находят сероводород (результат действия микробов на сернистые соединения железа) и аммиак, в них мало кислорода, отсутствуют гуминовые вещества.

Поверхностные воды – озера, реки, ручьи, каналы, водохранилища. Все открытые водоемы загрязняются атмосферными осадками, талыми водами, промышленными сточными водами.

Характеристика систем водоснабжения:

1.Местная (децентрализованная).

2.Центролизованная.

При местном водоснабжении население использует воды подземных источников -

Колодцы, каптажи (камеры накопления воды ключей и родников). Вода источни-

кв местного водоснабжения употребляется населением без предварительной очистки, поэтому она должна быть безопасной по эпидемическим показателям, безвредной по химическому составу и иметь приятные органолептические свойства. Колодцы бывают: шахтные и боровые (трубчатые).

Место для колодца должно быть расположено:

Незагрязненном возвышенном участке.

Удаленным не менее, чем на 50м от уборных, выгребных ям, сети канализации,

скотных дворов, мест захоронения людей и животных,

складов удобрений, выше источников загрязнения.

Для устройства колодцев и каптажей должны использоваться водоносные горизонты под водонепроницаемыми породами.

Требования к устройству и оборудованию водозаборных сооружений:

Стенки шахты колодца облицовывают водонепроницаемыми креплениями

У края шахты устраивают глиняный замок глубиной 2м и шириной 1м.

Поверх глины оборудуют отмосток из асфальта, бетона, кирпича с уклоном от колодца.

Необходим навес, крышка, общественное ведро.

Верх колодца не менее 0,8м выше поверхности земли.

Должн быть фильтрующий слой из гравия толщиной 20..30см.

Не разрешается поднимать воду личным ведром и черпать воду черпаком из общественного ведра.

В радиусе 20м от колодца не допускается полоскание и стирка белья, водопой животных, мытье разных предметов.

Территория вокруг колодцев и каптажей должна содержаться в чистоте и быть огорожена.

1-2 раза в год колодец необходимо чистить и дренировать – для этого весной колодец заполняют раствором хлорной извести 3-5%, добавляют по 1 ведру 2%раствор дезинфицирующего раствора, оставляют на 6-10часов, затем воду выкачивают. Также используют метод непрерывного хлорирования дозивным

патроном, емкостью до 1л, действует до 20-30 суток.

Трубчатые (буровые, абессинские) колодцы – мелкотрубчатые сооружения глубиной до 30м, устанавливают их путем бурения, вокруг делают глиняный замок, используют местно.

Водоснабжение на полевых станах – вода привозная, тара 50-70л на 1 человека, должна соответствовать гигиеническим нормативам.

Централизованное водоснабжение – водопровод – система сооружений, которая добывает, очищает, обеззараживает, доставляет воду населению. Если водоснабжению служат подземные воды и соответствуют СТ 2784-82, то они не нуждаются в обработке.

Водопровод состоит:

Сооружение для забора и улучшения качества воды

Резервуар для чистой воды

Насосное хозяйство

Водонапорная башня

Водовод и разводящая сеть труб.

Чаще всего используют поверхностные воды, которые должны подвергаться очистке, обеззараживанию, поскольку, вода в открытых водоемах подвержена за-

грязнениям.

Методы очистки и обеззараживания воды:

1 этап – осветление и обесцвечивание, достигается путем длительного отстаивания, поэтому на водопроводных станциях применяют химическую обработку коагулянтами, которые ускоряют осаждение взвешенных частиц.

2этап – фильтрование воды через слой зернистого материала (песок, антрацит).

Фильтрование бывает медленное и скорое.

Медленное - проводят через специальные фильтры (бетонный резервуар, на дне устраивают дренаж, поверх дренажа загружают поддерживающий слой щебня, гальки, гравия– толщина -0,7м. На поддерживающий слой загружают фильтрующий слой – 1м. Скорость фильтрации 0,1-0,3 м/ч

Скорые фильтры – толщина 0,8м, скорость фильтрации 5-12м/ч. Очистку фильтров проводят путем подачи воды в обратном направлении со скоростью в5-6 раз быстрее фильтрования.

3 этап – обеззараживание, которое проводится химическими и физическими методами.

Химические методы:

1.хлорирование используют газообразный хлор, другие хлоросодержащие вещества.

При введении в воду хлоросодержащего реагента, 95% его идет на окисление веществ, на окисление бактериальных клеток расходуется 2-3% общего количества хлора.

Количество хлора, которое при хлорировании 1л воды расходуется на окисление в течении 30 минут, называется ХЛОРПОГЛОЩАЕМОСТЬЮ воды. По окончанию процесса связывания хлора в воде появляется остаточный активный хлор. Его появление подтверждает завершение процесса хлорирования. Если в воде остаточного активного хлора 0,3-0,5 мг/л - это гарантия эффективности обеззараживания.

Существует несколько способов хлорирования воды:

Хлорирование нормальными дозами

Хлорирование с аммонизацией – в воду вводят раствор аммиака, а через 2мин раствор хлора.

Двойное хлорирование – хлор подается дважды – 1 раз перед отстойниками,2раз после фильтров.

Перехлорирование – заведомо большие дозы хлора 10-20мг/л.

2.озонирование – при разложении озона в воде, образуются свободные радикалы НО/2, ОН, которые являются сильными окислителями и обуславливают бактерицидные свойства озона. Озон обессвечивает и устраняет привкусы и запахи,

не образует в воде токсические соединения.

Физические методы:

Кипячение – 3-5 мин кипячения есть полная гарантия безопасности, но необходимо тару менять ежедневно,т.к. в кипяченой воде интенсивно размножаются м/о.

Облучение УФ – не изменяют органолептические свойства, уничтожают вирусы, споры бацилл, яйца гельминтов.

Воздействие ультразвуковыми волнами – обеззараживание бытовых сточных вод.

Токами высокой частот

Гамма-лучами – мгновенно уничтожает все виды м/о, но в практике не применяется.

Физические методы не изменяют химический состав воды.

Специальные методы улучшения качества питьевой воды.

Дезодорация – устранение запахов, путем обработки окислителями и фильтрованием через активированный уголь.

Обезжелезивание – путем разбрызгивания воды с целью аэрации в специальных устройствах – градирнях, образуется гидрат окиси железа, который осаждается в отстойнике.

Умягчение воды – достигается фильтрованием через ионообменные фильтры.

Опреснение – последовательным фильтрованием освобождают воду от всех растворенных в ней солей (выпаривание, вымораживание, электродиализ).

Обезфторивание – фильтрование через ионообменные фильтры.

Форирование – добавляют фтор

Охрана источников водоснабжения.

Разработан и утвержден новый нормативный документ СанПиН – 2.1.4.559 – 96

О необходимости гармонизации российских нормативов с рекомендациями ВОЗ,

Новыми научными знаниями о влиянии питьевой воды на здоровье человека, а также повсеместным ухудшения качества воды поверхностных и подземных водо-

источников.

Согласно «Водному кодексу РФ для поддержания объектов в состоянии, соответс-

твующим экологическим требованиям, для предотвращения загрязнения и истощения поверхностных вод, а также сохранения среды обитания объектов животного и растительного мира устанавливаются водоохранные зоны.

Зоны санитарной охраны (ЗСО) организуются на всех водопроводах вне зависимости от ведомственной принадлежности, подающих воду как из поверхностных, так и подземных источников. ЗСО – организуются в составе трех поясов:

По законодательству эта зона делится на 3 пояса:

1) пояс строгого режима;

2) пояс ограничений;

3) пояс наблюдения.

В отношении воды из источников естественного происхождения различают микроорганизмы - сапробионты и катаробионты, которые рассматриваются в качестве показателя микробиологического загрязнения водоемов. К группе катаробионтов (катаробов) относятся микроорганизмы, живущие только в чистой ключевой воде. Группу сапробионтов (сапробов) составляет микрофлора всех остальных пресных водоемов.

Сапробностью называют определенные физиологические особенности конкретного вида микроорганизмов, определяющие их способность к жизнедеятельности в водной среде, загрязненной соединениями органики. Индексы сапробности для водных объектов вычисляют на основе индивидуальной видовой сапробности организмов, составляющих комплекс их микрофлоры.

В представленной ниже таблице отражена зависимость класса чистоты и уровня загрязненности природных водоемов от микробиологических показателей их воды.

Таблица 1

Показатели микробиологического загрязнения применимы ко многим промышленным отраслям. Требования к чистоте водоемов регламентируются ГОСТами, ТУ (тех. условиями), другой нормативной документацией и имеют существенные отличия в отношении различных объектов. Например, эксплуатация бассейна невозможна без разработки программы производственного контроля. Она должна пройти согласование с главврачом Госсанэпиднадзора данной административной территориальной единицы и получить разрешение от руководства организации, собирающейся эксплуатировать данный плавательный объект.

Таблица 2


Таблица 3

Уважаемые господа, если у Вас возникла потребность коррекции показателей микробиологического загрязнения в природной или технической воде, сделайте запрос специалистам компании Waterman . Мы разработаем оптимальную схему обеззараживания воды.