Перед логарифмом стоит число. Что такое логарифм? Решение логарифмов. Примеры. Свойства логарифмов


Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

274. Замечания.

а) Если в выражении, которое требуется вычислить, встречается сумма или разность чисел, то их надо находить без помощи таблиц обыкновенным сложением или вычитанием. Напр.:

log (35 +7,24) 5 = 5 log (35 + 7,24) = 5 log 42,24.

б) Умея логарифмировать выражения, мы можем, обратно, по данному результату логарифмирования найти то выражение, от которого получился этот результат; так, если

log х = log a + log b - 3 log с ,

то легко сообразить, что

в) Прежде чем перейти к рассмотрению устройства логарифмических таблиц, мы укажем некоторые свойства десятичных логарифмов, т.е. таких, в которых за основание принято число 10 (только такие логарифмы употребляются для вычислений).

Глава вторая.

Свойства десятичных логарифмов.

275 . а ) Так как 10 1 = 10, 10 2 = 100, 10 3 =1000, 10 4 = 10000 и т. д., то log 10 = 1, log 100 = 2, log 1000 = 3, log 10000 = 4, и т. д.

Значит, логарифм целого числа, изображаемого единицею с нулями, есть целое положительное число, содержащее столько единиц, сколько нулей в изображении числа.

Таким образом: log 100 000 = 5 , log 1000 000 = 6 , и т. д.

б ) Так как

log 0,1 = -l; log 0,01 = - 2; log 0,001 == -3; log 0,0001 = - 4, и т. д.

Значит, логарифм десятичной дроби, изображаемой единицею с предшествующими нулями, есть целое отрицательное число содержащее столько отрицательных единиц, сколько нулей в изображении дроби, считая в том числе и 0 целых.

Таким образом: log 0,00001= - 5, log 0,000001 = -6, и т. д.

в) Возьмем целое число, не изображаемое единицею с нулями, напр. 35, или целое число с дробью, напр. 10,7. Логарифм такого числа не может быть целым числом, так как, возвысив 10 в степень с целым показателем (положительным или отрицательным), мы получим 1 с нулями (следующими за 1, или ей предшествующими). Предположим теперь, что логарифм такого числа есть какая-нибудь дробь a / b . Тогда мы имели бы равенства

Но эти равенства невозможны, как как 10 а есть 1 с нулями, тогда как степени 35 b и 10,7 b ни при каком показателе b не могут дать 1 c нулями. Значит, нельзя допустить, чтобы log 35 и log 10,7 были равны дробям. Но из свойств логарифмической функции мы знаем (), что всякое положительное число имеет логарифм; следовательно, каждое из чисел 35 и 10,7 имеет свой логарифм, и так как он не может быть ни числом целым, ни числом дробным, то он есть число иррациональное и, следовательно, не может быть выражен точно посредством цифр. Обыкновенно иррациональные логарифмы выражают приближенно в виде десятичной дроби с несколькими десятичными знаками. Целое число этой дроби (хотя бы это было „0 целых") называется характеристикой , а дробная часть - мантиссой логарифма. Если, напр., логарифм есть 1,5441 , то характеристика его равна 1 , а мантисса есть 0,5441 .

г) Возьмем какое-нибудь целое или смешанное число, напр. 623 или 623,57 . Логарифм такого числа состоит из характеристики и мантиссы. Оказывается, что десятичные логарифмы обладают тем удобством, что характеристику их мы всегда можем найти по одному виду числа . Для этого сосчитаем, сколько цифр в данном целом числе, или в целой части смешанного числа, В наших примерах этих цифр 3 . Поэтому каждое из чисел 623 и 623,57 больше 100, но меньше 1000; значит, и логарифм каждого из них больше log 100 , т. е. больше 2 , но меньше log 1000 , т. е. меньше 3 (вспомним, что большее число имеет и больший логарифм). Следовательно, log 623 = 2 ,..., и log 623,57 = 2 ,... (точки заменяют собою неизвестные мантиссы).

Подобно этому найдем:

10 < 56,7 < 100

1 < log56,7 < 2

log 56,7 = 1,...

1000 < 8634 < 10 000

3 < log8634 < 4

log 8634 = 3,...

Пусть вообще в данной целом числе, или в целой части данного смешанного числа, содержится m цифр. Так как самое малое целое число, содержащее m цифр, есть 1 с m - 1 нулями на конце, то (обозначая данное число N ) можем написать неравенства:

и следовательно,

m - 1 < log N < m ,

log N = (m - 1) + положительная дробь .

Значит, характеристика logN = m - 1 .

Мы видим таким образом, что характеристика логарифма целого или смешанного числа содержит столько положительных единиц, сколько цифр в целой части числа без одной.

Заметив это, мы можем прямо писать:

log 7,205 = 0,...; log 83 = 1,...; log 720,4 = 2,... и т. п.

д) Возьмем несколько десятичных дробей, меньших 1 (т. е. имеющих 0 целых): 0,35; 0,07; 0,0056; 0,0008, и т. п.

Таким образом, каждый из этих логарифмов заключен между двумя целыми отрицательными числами, различающимися на одну единицу; поэтому каждый из них равен меньшему из этих отрицательных чисел, увеличенному на некоторую положительную дробь. Напр., log0,0056= -3 + положительная дробь . Предположим, что эта дробь будет 0,7482. Тогда, значит:

log 0,0056 = - 3 + 0,7482 (= - 2,2518).

Такие суммы, как - 3 + 0,7482 , состоящие из целого oтрицательного числа.и положительной десятичной дроби, условились при логарифмических вычислениях писать сокращенно так: 3 ,7482 (Такое число читается: 3 с минусом, 7482 десятитысячных .), т. е. ставят знак минус над характеристикой с целью показать, что он относится только к этой характеристике, а не к мантиссе, которая остается положительной. Таким образом, из приведенной выше таблички видно, что

log 0,35 == 1 ,....; log 0,07 = 2 ,....; log 0,0008 = 4 ,....

Пусть вообще . есть десятичная дробь, у которой перед первой значащей цифрой α стоит m нулей, считая в том числе и 0 целых. Тогда, очевидно, что

- m < log A < - (m - 1).

Так как из двух целых чисел:- m и - (m - 1) меньшее есть - m , то

log А = - m + положительная дробь ,

и потому характеристика log А = - m (при положительной мантиссе).

Таким образом, характеристика логарифма десятичной дроби, меньшей 1, содержит в себе столько отрицательных единиц, сколько нулей в изображении десятичной дроби перед первой значащей цифрой, считая в том числе и нуль целых; мантисса же такого логарифма положительна.

е) Умножим какое-нибудь число N (целое или дробное - всe равно) на 10, на 100 на 1000..., вообще на 1 c нулями. Посмотрим, как от этого изменится log N . Так как логарифм произведения равен сумме логарифмов сомножителей, то

log (N 10) = log N + log 10 = log N + 1;

log (N 100) = log N + log 100 = log N + 2;

log (N 1000) = log N + log 1000 = log N + 3; и т. д.

Когда к log N мы прибавляем какое-нибудь целое число, то это число мы может всегда прибавлять к характеристике, а не к мантиссе.

Так, если log N = 2,7804, то 2,7804 + 1 =3,7804; 2,7804 + 2 = 4,7801 и т. п.;

или если log N = 3 ,5649, то 3 ,5649 + 1 = 2 ,5649; 3 ,5649 + 2 = 1 ,5649, и т. п.

От умножения числа на 10, 100, 1000,.., вообще на 1 с нулями, мантисса логарифма не изменяется, а характеристика увеличивается на столько единиц, сколько нулей во множителе .

Подобно этому, приняв во внимание, что логарифм частного равен логарифму делимого без логарифма делителя, мы получим:

log N / 10 = log N- log 10 = log N -1;

log N / 100 = log N- log 100 = log N -2;

log N / 1000 = log N- log 1000 = log N -3; и т. п.

Если условимся при вычитании целого числа из логарифма вычитать это целое число всегда из характеристики, а мантиссу оставлять без изменения, то можно сказать:

От деления числа на 1 с нулями мантисса логарифма не изменяется, а характеристика уменьшается на столько единиц, сколько нулей в делителе.

276. Следствия. Из свойства (е ) можно вывести следующие два следствия:

а) Мантисса логарифма десятичного числа не изменяется от перенесения в числе запятой , потому что перенесение запятой равносильно умножению или делению на 10, 100, 1000 и т. д. Таким образом, логарифмы чисел:

0,00423, 0,0423, 4,23, 423

отличаются только характеристиками, но не мантиссами (при условии, что все мантиссы положительны).

б) Мантиссы чисел, имеющих одну и ту же значащую часть, но отличающихся только нулями на конце, одинаковы: так, логарифмы чисел: 23, 230, 2300, 23 000 отличаются только характеристиками.

Замечание. Из указанных свойств десятичных логарифмов видно, что характеристику логарифма целого числа и десятичной дроби мы можем находить без помощи таблиц (в этом заключается большое удобство десятичных логарифмов); вследствие этого в логарифмических таблицах помещаются только одни мантиссы; кроме того, так как нахождение логарифмов дробей сводится к нахождению логарифмов целых чисел (логарифм дроби = логарифму числителя без логарифма знаменателя), то в таблицах помещаются мантиссы логарифмов только целых чисел.

Глава третья.

Устройство и употребление четырехзначных таблиц.

277. Системы логарифмов. Системою логарифмов называется совокупность логарифмов, вычисленных для ряда последовательных целых чисел по одному и тому же основанию. Употребительны две системы: система обыкновенных или десятичных логарифмов, в которых за основание взято число 10 , и система так называемых натуральных логарифмов, в которых за основание (по некоторым причинам, которые уясняются в других отделах математики) взято иррациональное число 2,7182818 ... Для вычислений употребляются десятичные логарифмы, вследствие тех удобств, которые были нами указаны, когда мы перечисляли свойства таких логарифмов.

Натуральные логарифмы называются также Неперовыми по имени изобретателя логарифмов, шотландского математика Непера (1550-1617 гг.), а десятичные логарифмы - Бригговыми по имени профессора Бригга (современника и друга Непера), впервые составившего таблицы этих логарифмов .

278. Преобразование отрицательного логарифма в такой, у которого мантисса положительна, и обратное преобразование. Мы видели, что логарифмы чисел, меньших 1, отрицательны. Значит, они состоят из отрицательной характеристики и отрицательной мантиссы. Такие логарифмы всегда можно преобразовать так, что у них мантисса будет положительная, а характеристика останется отрицательной. Для этого достаточно прибавить к мантиссе положительную единицу, а к характеристике - отрицательную (от чего, конечно, величина логарифма не изменится).

Если, напр., мы имеем логарифм - 2,0873 , то можно написать:

- 2,0873 = - 2 - 1 + 1 - 0,0873 = - (2 + 1) + (1 - 0,0873) = - 3 + 0,9127,

или сокращенно:

Обратно, всякий логарифм с отрицательной характеристикой и положительной мантиссой можно превратить в отрицательный. Для этого достаточно к положительной мантиссе приложить отрицательную единицу, а к отрицательной характеристике - положительную : так, можно написать:

279. Описание четырехзначных таблиц. Для решения большинства практических задач вполне достаточны четырехзначные таблицы, обращение с которыми весьма просто . Таблицы эти (с надписью на верху их „логарифмы") помещены в конце этой книги, а небольшая часть их (для объяснения расположения) напечатана на этой странице. В них содержатся мантиссы

Логарифмы.

логарифмов всех целых чисел от 1 до 9999 включительно, вычисленные с четырьмя десятичными знаками, причем последний из этих знаков увеличен на 1 во всех тех случаях, когда 5-й десятичный знак должен был бы оказаться 5 или более 5; следовательно, 4-значные таблицы дают приближенные мантиссы с точностью до 1 / 2 десятитысячной доли (с недостатком или с избытком).

Так как характеристику логарифма целого числа или десятичной дроби мы можем, на основании свойств десятичных логарифмов, проставить непосредственно, то из таблиц мы должны взять только мантиссы; при этом надо вспомнить, что положение запятой в десятичном числе, а также число нулей, стоящих в конце числа, не имеют влияния на величину мантиссы. Поэтому при нахождении мантиссы по данному числу мы отбрасываем в этом числе запятую, а также и нули на конце его, если таковые есть, и находим мантиссу образовавшегося после этого целого числа. При этом могут представиться следующие случаи.

1) Целое число состоит из 3-х цифр. Напр., пусть надо найти мантиссу логарифма числа 536. Первые две цифры этого числа, т. е. 53, находим в таблицах в первом слева вертикальном столбце (см. таблицу). Найдя число 53, продвигаемся от него по горизонтальной строке вправо до пересечения этой строчки с вертикальным столбцом, проходящим через ту из цифр 0, 1, 2, 3,... 9, поставленных наверху (и внизу) таблицы, которая представляет собою 3-ю цифру данного числа, т. е. в нашем примере цифру 6. В пересечении получим мантиссу 7292 (т. е. 0,7292), принадлежащую логарифму числа 536. Подобно этому для числа 508 найдем мантиссу 0,7059, для числа 500 найдем 0,6990 и т. п.

2) Целое число состоит из 2-х или из 1-й цифры. Тогда мысленно приписываем к этому числу один или два нуля и находим мантиссу для образовавшегося таким образом трехзначного числа. Напр., к числу 51 приписываем один нуль, от чего получаем 510 и находим мантиссу 7070; к числу 5 приписываем 2 нуля и находим мантиссу 6990 и т. д.

3) Целое число выражается 4 цифрами. Напр., надо найти мантиссу log 5436. Тогда сначала находим в таблицах, как было сейчас указано, мантиссу для числа, изображенного первыми 3-мя цифрами данного числа, т. е. для 543 (эта мантисса будет 7348); затем продвигаемся от найденной мантиссы по горизонтальной строке направо (в правую часть таблицы, расположенную за жирной вертикальной чертой) до пересечения с вертикальным столбцом, проходящим через ту из цифр: 1, 2 3,... 9, стоящих на верху (и в низу) этой части таблицы, которая представляет собою 4-ю цифру данного числа, т. е. в нашем примере цифру 6. В пересечении находим поправку (число 5), которую надо приложить в уме к мантиссе 7348, чтобы получить мантиссу числа 5436; мы получим таким образом мантиссу 0,7353.

4) Целое число выражается 5-ю или более цифрами. Тогда отбрасываем все цифры, кроме первых 4-х, и берем приближенное четырехзначное число, причем последнюю цифру этого числа увеличиваем на 1 в том. случае, когда отбрасываемая 5-я цифра числа есть 5 или больше 5. Так, вместо 57842 мы берем 5784, вместо 30257 берем 3026, вместо 583263 берем 5833 и т. и. Для этого округленного четырехзначного числа находим мантиссу так, как было сейчас объяснено.

Руководствуясь этими указаниями, найдем для примера логарифмы следующих чисел:

36,5; 804,7; 0,26; 0,00345; 7,2634; 3456,06.

Прежде всего, не обращаясь пока к таблицам, проставим одни характеристики, оставляя место для мантисс, которые выпишем после:

log 36,5 = 1,.... log 0,00345 = 3 ,....

log 804,7 = 2,.... log 7,2634 = 0,....

log 0,26 = 1 ,.... log 3456,86 = 3,....

log 36,5 = 1,5623; log 0,00345 = 3 ,5378;

log 804,7 = 2,9057; log 7,2634 = 0,8611;

log 0,26 = 1 ,4150; log 3456,86 = 3,5387.

280. Замечание . В некоторых четырехзначных таблицах (напр, в таблицах В. Лорченко и Н. Оглоблина, С. Глазенапа, Н. Каменьщикова ) поправки на 4-ю цифру данного числа не помещены. Имея дело с такими таблицами, приходится поправки эти находить при помощи простого вычисления, которое можно выполнять на основании следующей истины: если числа превосходят 100, а разности между ними меньше 1, то без чувствительной погрешности можно принять, что разности между логарифмами пропорциональны разностям между соответствующими числами . Пусть, напр., надо найти мантиссу, соответствующую числу 5367. Мантисса эта, конечно, та же самая, что и для числа 536,7. Находим в таблицах для числа 536 мантиссу 7292. Сравнивая эту мантиссу с соседней вправо мантиссой 7300, соответствующей числу 537, мы замечаем, что если число 536 увеличится на 1, то мантисса его увеличится на 8 десятитысячных (8 есть так называемая табличная разность между двумя соседними мантиссами); если же число 536 увеличится на 0,7, то мантисса его увеличится не на 8 десятитысячных, а на некоторое меньшее число х десятитысячных, которое, согласно допущенной пропорциональности, должно удовлетворять пропорции:

х : 8 = 0,7: 1; откуда х = 8 07 = 5,6,

что по округлении составляет 6 десятитысячных. Значит, мантисса для числа 536,7 (и следовательно, для числа 5367) будет: 7292 + 6 = 7298.

Заметим, что нахождение по двум рядом стоящим в таблицах числам промежуточного числа называется интерполированием. Интерполирование, описанное здесь, называется пропорциональным , так как оно основано на допущении, что изменение логарифма пропорционально изменению числа. Оно называется также линейным , так как предполагает, что графически изменение логарифмической функции выражается прямою линией.

281. Предел погрешности приближенного логарифма. Если число, которого логарифм отыскивается, есть число т о ч н о е, то за предел погрешности его логарифма, найденного но 4-значным таблицам, можно, как мы говорили в , принять 1 / 2 десятитысячной доли. Если же данное число не точное , то к этому пределу погрешности надо еще добавить предел другой погрешности, происходящей от неточности самого числа. Доказано (мы опускаем это доказательство), что за такой предел можно принять произведение

a (d +1) десятитысячных.,

в котором а есть предел погрешности самого неточного числа в предположении, что в его целой части взяты 3 цифры , a d табличная разность мантисс, соответствующих двум последовательным трехзначным числам, между которыми заключается данное неточное число. Таким образом предел окончательной погрешности логарифма выразится тогда формулой:

1 / 2 + a (d +1) десятитысячных

Пример . Найти log π , принимая за π приближенное число 3,14, точное до 1 / 2 сотой.

Перенеся в числе 3,14 запятую после 3-й цифры, считая слева, мы получим трехзначное число 314, точное до 1 / 2 единицы; значит, предел погрешности неточного числа, т. е. то, что мы обозначили буквой а , есгь 1 / 2 Из таблиц находим:

log 3,14 = 0,4969.

Табличная разность d между мантиссами чисел 314 и 315 равна 14, поэтому погрешность найденного логарифма будет менее

1 / 2 + 1 / 2 (14 +1) = 8 десятитысячных .

Так как о логарифме 0,4969 мы не знаем, с недостатком ли он или с избытком, то можем только ручаться, что точный логарифм π заключается между 0,4969 - 0,0008 и 0,4969 + 0,0008, т. е. 0,4961 < log π < 0,4977.

282. Найти число по данному логарифму . Для нахождения числа по данному логарифму могут служить те же таблицы, по которым отыскиваются мантиссы данных чисел; но удобнее пользоваться другими таблицами, в которых помещены так называемые антилогарифмы, т. е. числа, соответствующие данным мантиссам. Таблицы эти, обозначенные надписью сверху „антилогарифмы", помещены в конце этой книги вслед за таблицами логарифмов; небольшая часть их помещена на этой странице (для объяснения).

Пусть дана 4-значная мантисса 2863 (на характеристику не обращаем внимания) и требуется найти соответствующее целое число. Тогда, имея таблицы антилогарифмов, надо пользоваться ими совершенно так же, как было раньше объяснено для нахождения мантисс по данному числу, а именно: первые 2 цифры мантиссы мы находим в первом слева столбце. Затем продвигаемся от этих цифр по горизонтальной строке вправо до пересечения с вертикальным столбцом, идущим от 3-й цифры мантиссы, которую надо искать в верхней строке (или в нижней). В пересечении находим четырехзначное число 1932, соответствующее мантиссе 286. Затем от этого числа продвигаемся дальше по горизонтальной строке направо до пересечения с вертикальным столбцом, идущим от 4-й цифры мантиссы, которую надо найти наверху (или внизу) среди поставленных там цифр 1, 2, 3,... 9. В пересечении мы находим поправку 1, которую надо приложить (в уме) к найденному раньше числу 1032, чтобы получить число, соответствующее мантиссе 2863.

Таким образом, число это будет 1933. После этого, обращая внимание на характеристику, надо в числе 1933 поставить занятую на надлежащем месте. Например:

если log x = 3,2863, то х = 1933,

log x = 1,2863, „ х = 19,33,

, log x = 0,2&63, „ х = 1,933,

log x = 2 ,2863, „ х = 0,01933

Вот еще примеры:

log x = 0,2287, х = 1,693,

log x = 1 ,7635, х = 0,5801,

log x = 3,5029, х = 3184,

log x = 2 ,0436, х = 0,01106.

Если в мантиссе указано 5 или более цифр, то берем только первые 4 цифры, отбрасывая остальные (и увеличивая 4-ю цифру на 1, если 5-я цифра есть пять или более). Напр., вместо мантиссы 35478 берем 3548, вместо 47562 берем 4756.

283. Замечание. Поправку на 4-ю и следующие цифры мантиссы можно находить и посредством интерполирования. Так, если мантисса будет 84357, то, найдя число 6966, соответствущее мантиссе 843 мы можем рассуждать далее так:: если мантисса увеличивается на 1 (тысячную), т. е. сделаетоя 844, то число, как видно из таблиц, увеличится на 16 единиц; если же мантисса увеличится не на 1 (тысячную), а на 0,57 (тысячной), то число увеличится на х единиц, причем х должно удовлетворять пропорции:

х : 16 = 0,57: 1, откуда х = 16 0,57 = 9,12.

Значит, искомое число будет 6966+ 9,12 = 6975,12 или (ограничиваясь только четырьмя цифрами) 6975.

284. Предел погрешности найденного числа. Доказано, что в том случае, когда в найденном числе запятая стоит после 3-й слева цифры, т. е. когда характеристика логарифма есть 2, за предел погрешности можно принять сумму

где а есть предел погрешности логарифма (выраженный в десятитысячных долях), по которому отыскивалось число, и d - разность между мантиссами двух трехзначных последовательных чисел, между которыми заключается найденное число (с запятой после 3-й цифры слева). Когда характеристика будет не 2, а какая-нибудь иная, то в найденном числе запятую придется перенести влево или вправо, т. е. разделить или умножить число на некоторую степень 10. При этом погрешность результата также разделится или умножится на ту же степень 10.

Пусть, например, мы отыскиваем число по логарифму 1,5950 , о котором известно, чго он точен до 3 десятитысячных; значит, тогда а = 3 . Число, соответствующее этому логарифму, найденное по таблице антилогарифмов, есть 39,36 . Перенеся запятую после 3-й цифры слева, будем иметь число 393,6 , заключающееся между 393 и 394 . Из таблиц логарифмов видим, что разность между мантиссами, соответствующими этим двум числам, составляет 11 десятитысячных; значит d = 11 . Погрешность числа 393,6 будет меньше

Значит, погрешность числа 39,36 будет меньше 0,05 .

285. Действия над логарифмами с отрицательными характеристиками. Сложение и вычитание логарифмов не представляют никаких затруднений, как это видно из следующих примеров:

Не представляет никаких затруднений также и умножение логарифма на положительное число, напр.:

В последнем примере отдельно умножена положительная мантисса на 34, затем отрицательная характеристика на 34.

Если логарифм о отрицательной характеристикой и положительной мантиссой умножается на отрицательное число, то поступают двояко: или предварительно данный логарифм обращают в отрицательный, или же умножают отдельно мантиссу и характеристику и результаты соединяют вместе, например:

3 ,5632 (- 4) = - 2,4368 (- 4) = 9,7472;

3 ,5632 (- 4) = + 12 - 2,2528 = 9,7472.

При делении могут представиться два случая: 1) отрицательная характеристика делится и 2) не делится на делитель. В первом случае отдельно делят характеристику и мантиссу:

10 ,3784: 5 = 2 ,0757.

Во втором случае прибавляют к характеристике столько отрицательных единиц, чтобы образовавшееся число делилось на делитель; к мантиссе прибавляют столько же положительных единиц:

3 ,7608: 8 = (- 8 + 5,7608) : 8 = 1 ,7201.

Это преобразование надо совершать в уме, так что действие располагается так:

286. Замена вычитаемых логарифмов слагаемыми. При вычислении какого-нибудь сложного выражения помощью логарифмов приходится некоторые логарифмы складывать, другие вычитать; в таком случае, при обыкновенном способе совершения действий, находят отдельно сумму слагаемых логарифмов, потом сумму вычитаемых и из первой суммы вычитают вторую. Напр., если имеем:

log х = 2,7305 - 2 ,0740 + 3 ,5464 - 8,3589 ,

то обыкновенное выполнение действий расположится так:

Есть однако возможность заменить вычитание сложением. Так:

Теперь можно расположить вычисление так:

287. Примеры вычислений.

Пример 1 . Вычислить выражение:

если А = 0,8216, В = 0,04826, С= 0,005127 и D = 7,246.

Логарифмируем данное выражение:

log х = 1 / 3 log A + 4 log В - 3 log С - 1 / 3 log D

Теперь, для избежания излишней потери времени и для уменьшения возможности ошибок, прежде всего расположим все вычисления, не исполняя пока их и не обращаясь, следовательно, к таблицам:

После этого берем таблицы и проставляем логарифмы на оставленных свободных местах:

Прeдел погрешности. Сначала найдем предел погрешности числа x 1 = 194,5 , равный:

Значит, прежде всего надо найти а , т. е. предел погрешности приближенного логарифма, выраженный в десятитысячных долях. Допустим, что данные числа А, В, С и D все точные. Тогда погрешности в отдельных логарифмах будут следующие (в десятитысячных долях):

в logА .......... 1 / 2

в 1 / 3 log A ......... 1 / 6 + 1 / 2 = 2 / 3

( 1 / 2 прибавлена потому, что при делении на 3 логарифма 1,9146 мы округлили частное, отбросив 5-ю цифру его, и, следовательно, сделали еще ошибку,меньшую 1 / 2 десятитысячной).

Теперь находим предел погрешности логарифма:

а = 2 / 3 + 2 + 3 / 2 + 1 / 6 = 4 1 / 3 (десятитысячных).

Определим далее d . Так как x 1 = 194,5 , то 2 целых последовательных числа, между которыми заключается x 1 будут 194 и 195 . Табличная разность d между мантиссами, соответствующими этим числам, равна 22 . Значит, предел погрешности числа x 1 есть:

Так как x = x 1 : 10, то предел погрешности в числе x равен 0,3:10 = 0,03 . Таким образом, найденное нами число 19,45 разнится от точного числа менее, чем на 0,03 . Так как мы не знаем, с недостатком или с избытком найдено наше приближение, то можем только ручаться, что

19,45 + 0,03 > х > 19,45 - 0,03 , т. е.

19,48 > х > 19,42 ,

и потому, если примем х =19,4 , то будем иметь приближение с недостатком с точностью до 0,1.

Пример 2. Вычислить:

х = (- 2,31) 3 5 √72 = - (2,31) 3 5 √72 .

Так как отрицательные числа не имеют логарифмов, то предварительно находим:

х" = (2,31) 3 5 √72

по разложению:

log х" = 3 log 2,31 + 1 / 5 log72 .

После вычисления окажется:

х" = 28,99 ;

следовательно,

x = - 28,99 .

Пример 3 . Вычислить:

Сплошного логарифмирования здесь применить нельзя, так как под знаком корня стоит с у м м а. В подобных случаях вычисляют формулу по частям .

Сначала находим N = 5 √8 , потом N 1 = 4 √3 ; далее простым сложением определяем N + N 1 , и, наконец, вычисляем 3 √N + N 1 ; окажется:

N = 1,514 , N 1 = 1,316 ; N + N 1 = 2,830 .

log x = log 3 √2,830 = 1 / 3 log 2,830 = 0,1506 ;

x = 1,415 .

Глава четвертая.

Показательные и логарифмические уравнения.

288. Показательными уравнениями называются такие, в которых неизвестное входит в показатель степени, а логарифмическими - такие, в которых неизвестное входит под знаком log . Такие уравнения могут быть разрешаемы только в частных случаях, причем приходится основываться на свойствах логарифмов и на том начале, что если числа равны, то равны и их логарифмы, и, обратно, если логарифмы равны, то равны и соответствующие им числа.

Пример 1. Решить уравнение: 2 x = 1024 .

Логарифмируем обе части уравнения:

Пример 2. Решить уравнение: a 2x - a x = 1 . Положив a x = у , получим квадратное уравнение:

y 2 - у - 1 = 0 ,

Так как 1-√5 < 0 , то последнее уравнение невозможно (функция a x всегда есть число положительное), а первое дает:

Пример 3. Решить уравнение:

log (а + x ) + log (b + х ) = log (с + x ) .

Уравнение можно написать так:

log [(а + x ) (b + х )] = log (с + x ) .

Из равенства логарифмов заключаем о равенстве чисел:

(а + x ) (b + х ) = с + x .

Это есть квадратное уравнение, решение которого не представляет затруднений.

Глава пятая.

Сложные проценты, срочные уплаты и срочные взносы.

289. Основная задача на сложные проценты. В какую сумму обратится капитал а рублей, отданный в рост по р сложных процентов, по прошествии t лет (t - целое число)?

Говорят, что капитал отдан по сложным процентам, если принимаются во внимание так называемые „проценты на проценты", т. е. если причитающиеся на капитал процентные деньги присоединяются в конце каждого года к капиталу для наращения их процентами в следующие годы.

Каждый рубль капитала, отданного по р %, в течение одного года принесет прибыли p / 100 рубля, и, следовательно, каждый рубль капитала через 1 год обратится в 1 + p / 100 рубля (напр., если капитал отдан по 5 % , то каждый рубль его через год обратится в 1 + 5 / 100 , т. е. в 1,05 рубля).

Обозначив для краткости дробь p / 100 одною буквою, напр, r , можем сказать, что каждый рубль капитала через год обратится в 1 + r рублей; следовательно, а рублей обратятся через 1 год в а (1 + r ) руб. Еще через год, т. е. через 2 года от начала роста, каждый рубль из этих а (1 + r ) руб. обратится снова в 1 + r руб.; значит, весь капитал обратится в а (1 + r ) 2 руб. Таким же образом найдем, что через три года капитал будет а (1 + r ) 3 , через четыре года будет а (1 + r ) 4 ,... вообще через t лет, если t есть целое число, он обратится в а (1 + r ) t руб. Таким образом, обозначив через А окончательный капитал, будем иметь следующую формулу сложных процентов:

А = а (1 + r ) t где r = p / 100 .

Пример. Пусть a =2 300 руб., p = 4, t =20 лет; тогда формула дает:

r = 4 / 100 = 0,04 ; А = 2 300 (1,04) 20 .

Чтобы вычислить А , применяем логарифмы:

log a = log 2 300 + 20 log 1,04 = 3,3617 + 20 0,0170 = 3,3617+0,3400 = 3,7017.

A = 5031 рубль.

Замечание. В этом примере нам пришлось log 1,04 умножить на 20 . Так как число 0,0170 есть приближенное значение log 1,04 с точностью до 1 / 2 десятитысячной доли, то произведение этого числа на 20 будет точно только до 1 / 2 20, т. е. до 10 десятитысячных =1 тысячной. Поэтому в сумме 3,7017 мы не можем ручаться не только за цифру десятитысячных, но и за цифру тысячных. Чтобы в подобных случаях можно было получить большую точность, лучше для числа 1 + r брать логарифмы не 4-значные, а с большим числом цифр, напр. 7-значные. Для этой цели мы приводим здесь небольшую табличку, в которой выписаны 7-значные логарифмы для наиболее употребительных значений р .

290. Основная задача на срочные уплаты. Некто занял а рублей по р % с условием погасить долг, вместе с причитающимися на него процентами, в t лет, внося в конце каждого года одну и ту же сумму. Какова должна быть эта сумма?

Сумма x , вносимая ежегодно при таких условиях, называется срочною уплатою. Обозначим опять буквою r ежегодные процентные деньги с 1 руб., т. е. число p / 100 . Тогда к концу первого года долг а возрастает до а (1 + r ), аза уплатою х рублей он сделается а (1 + r )-х .

К концу второго года каждый рубль этой суммы снова обратится в 1 + r рублей, и потому долг будет [а (1 + r )-х ](1 + r ) = а (1 + r ) 2 - x (1 + r ), а за уплатою x рублей окажется: а (1 + r ) 2 - x (1 + r ) - х . Таким же образом убедимся, что к концу 3-го года долг будет

а (1 + r ) 3 - x (1 + r ) 2 - x (1 + r ) - x ,

и вообще и концу t -го года он окажется:

а (1 + r ) t - x (1 + r ) t -1 - x (1 + r ) t -2 ... - x (1 + r ) - x , или

а (1 + r ) t - x [ 1 + (1 + r ) + (1 + r ) 2 + ...+ (1 + r ) t -2 + (1 + r ) t -1 ]

Многочлен, стоящий внутри скобок , представляет сумму членов геометрической прогрессии; у которой первый член есть 1 , последний (1 + r ) t -1 , а знаменатель (1 + r ). По формуле для суммы членов геометрической прогрессии (отдел 10 глава 3 § 249) находим:

и величина долга после t -ой уплаты будет:

По условию задачи, долг в конце t -го года должен равняться 0 ; поэтому:

откуда

При вычислении этой формулы срочных уплат помощью логарифмов мы должны сначала найти вспомогательное число N = (1 + r ) t по логарифму: log N= t log (1 + r ) ; найдя N , вычтем из него 1, тогда получим знаменатель формулы для х, после чего вторичным логарифмированием найдем:

log х = log a + log N + log r - log (N - 1) .

291. Основная задача на срочные взносы. Некто вносит в банк в начале каждого года одну и ту же сумму а руб. Определить, какой капитал образуется из этих взносов по прошествии t лет, если банк платит по р сложных процентов.

Обозначив через r ежегодные процентные деньги с 1 рубля, т. е. p / 100 , рассуждаем так: к концу первого года капитал будет а (1 + r );

в начале 2-го года к этой сумме прибавится а рублей; значит, в это время капитал окажется а (1 + r ) + a . К концу 2-го года он будет а (1 + r ) 2 + а (1 + r );

в начале 3-го года снова вносится а рублей; значит, в это время капитал будет а (1 + r ) 2 + а (1 + r ) + а ; к концу 3-го он окажется а (1 + r ) 3 + а (1 + r ) 2 + а (1 + r ) Продолжая эти рассуждения далее, найдем, чтo к концу t -го года искомый капитал A будет:

Такова формула срочных взносов, делаемых в начале каждого года.

Ту же формулу можно получить и таким рассуждением:. первый взнос в а рублей, находясь в банке t лет, обратится, согласно формуле сложных процентов, в а (1 + r ) t руб. Второй взнос, находясь в банке одним годом меньше, т. е. t - 1 лет, обратится в а (1 + r ) t- 1 руб. Подобно этому третий взнос даст а (1 + r ) t- 2 и т. д., и, наконец, последний взнос, находясь в банке только 1 год, обратится в а (1 + r ) руб. Значит, окончательный капитал A руб. будет:

A = а (1 + r ) t + а (1 + r ) t- 1 + а (1 + r ) t- 2 + . . . + а (1 + r ),

что, после упрощения, дает найденную выше формулу.

При вычислении помощью логарифмов этой формулы надо поступить так же, как и при вычислении формулы срочных уплат, т. е. сначала найти число N = (1 + r ) t по его логарифму: log N= t log (1 + r ), затем число N- 1 и уже тогда логарифмировить формулу:

log A = log a + log (1 + r ) + log (N - 1) - 1оg r

Замечание. Если бы срочный взнос в а руб. производился не в начале, а в конце каждого года (как, напр., вносится срочная уплата х для погашения долга), то, рассуждая подобно предыдущему, найдем, что к концу t -го года искомый капитал А" руб. будет (считая в том числе и последний взнос а руб., не приносящий процентов):

A" = а (1 + r ) t- 1 + а (1 + r ) t- 2 + . . . + а (1 + r ) + а

что равно:

т. е. А" оказывается в (1 + r ) pаз менее А , что и надо было ожидать, так как каждый рубль капитала А" лежит в банке годом меньше, чем соответствующий рубль капитала А .

Логарифмом положительного числа b по основанию a (a>0, a не равно 1) называют такое число с, что a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Обратите внимание: логарифм от неположительного числа не определен. Кроме того, в основании логарифма должно быть положительное число, не равное 1. Например, если мы возведем -2 в квадрат, получим число 4, но это не означает, что логарифм по основанию -2 от 4 равен 2.

Основное логарифмическое тождество

a log a b = b (a > 0, a ≠ 1) (2)

Важно, что области определения правой и левой частей этой формулы отличаются. Левая часть определена только при b>0, a>0 и a ≠ 1. Правая часть определена при любом b, а от a вообще не зависит. Таким образом, применение основного логарифмического "тождества" при решении уравнений и неравенств может привести к изменению ОДЗ.

Два очевидных следствия определения логарифма

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень - единицу.

Логарифм произведения и логарифм частного

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании "слева направо" происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного - расширение ОДЗ.

Действительно, выражение log a (f (x) g (x)) определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.

Преобразуя данное выражение в сумму log a f (x) + log a g (x) , мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).

Степень можно выносить за знак логарифма

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

Log a (f (x) 2 = 2 log a f (x)

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть - только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

Формула перехода к новому основанию

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Несколько простых примеров с логарифмами

Пример 1. Вычислите: lg2 + lg50.
Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.


Пример 2. Вычислите: lg125/lg5.
Решение. lg125/lg5 = log 5 125 = 3. Мы использовали формулу перехода к новому основанию (8).

Таблица формул, связанных с логарифмами

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

Объясним проще. Например, \(\log_{2}{8}\) равен степени, в которую надо возвести \(2\), чтоб получить \(8\). Отсюда понятно, что \(\log_{2}{8}=3\).

Примеры:

\(\log_{5}{25}=2\)

т.к. \(5^{2}=25\)

\(\log_{3}{81}=4\)

т.к. \(3^{4}=81\)

\(\log_{2}\)\(\frac{1}{32}\) \(=-5\)

т.к. \(2^{-5}=\)\(\frac{1}{32}\)

Аргумент и основание логарифма

Любой логарифм имеет следующую «анатомию»:

Аргумент логарифма обычно пишется на его уровне, а основание - подстрочным шрифтом ближе к знаку логарифма. А читается эта запись так: «логарифм двадцати пяти по основанию пять».

Как вычислить логарифм?

Чтобы вычислить логарифм - нужно ответить на вопрос: в какую степень следует возвести основание, чтобы получить аргумент?

Например , вычислите логарифм: а) \(\log_{4}{16}\) б) \(\log_{3}\)\(\frac{1}{3}\) в) \(\log_{\sqrt{5}}{1}\) г) \(\log_{\sqrt{7}}{\sqrt{7}}\) д) \(\log_{3}{\sqrt{3}}\)

а) В какую степень надо возвести \(4\), чтобы получить \(16\)? Очевидно во вторую. Поэтому:

\(\log_{4}{16}=2\)

\(\log_{3}\)\(\frac{1}{3}\) \(=-1\)

в) В какую степень надо возвести \(\sqrt{5}\), чтобы получить \(1\)? А какая степень делает любое число единицей? Ноль, конечно!

\(\log_{\sqrt{5}}{1}=0\)

г) В какую степень надо возвести \(\sqrt{7}\), чтобы получить \(\sqrt{7}\)? В первую – любое число в первой степени равно самому себе.

\(\log_{\sqrt{7}}{\sqrt{7}}=1\)

д) В какую степень надо возвести \(3\), чтобы получить \(\sqrt{3}\)? Из мы знаем, что – это дробная степень, и значит квадратный корень - это степень \(\frac{1}{2}\) .

\(\log_{3}{\sqrt{3}}=\)\(\frac{1}{2}\)

Пример : Вычислить логарифм \(\log_{4\sqrt{2}}{8}\)

Решение :

\(\log_{4\sqrt{2}}{8}=x\)

Нам надо найти значение логарифма, обозначим его за икс. Теперь воспользуемся определением логарифма:
\(\log_{a}{c}=b\) \(\Leftrightarrow\) \(a^{b}=c\)

\((4\sqrt{2})^{x}=8\)

Что связывает \(4\sqrt{2}\) и \(8\)? Двойка, потому что и то, и другое число можно представить двойки:
\(4=2^{2}\) \(\sqrt{2}=2^{\frac{1}{2}}\) \(8=2^{3}\)

\({(2^{2}\cdot2^{\frac{1}{2}})}^{x}=2^{3}\)

Слева воспользуемся свойствами степени: \(a^{m}\cdot a^{n}=a^{m+n}\) и \((a^{m})^{n}=a^{m\cdot n}\)

\(2^{\frac{5}{2}x}=2^{3}\)

Основания равны, переходим к равенству показателей

\(\frac{5x}{2}\) \(=3\)


Умножим обе части уравнения на \(\frac{2}{5}\)


Получившийся корень и есть значение логарифма

Ответ : \(\log_{4\sqrt{2}}{8}=1,2\)

Зачем придумали логарифм?

Чтобы это понять, давайте решим уравнение: \(3^{x}=9\). Просто подберите \(x\), чтобы равенство сработало. Конечно, \(x=2\).

А теперь решите уравнение: \(3^{x}=8\).Чему равен икс? Вот в том-то и дело.

Самые догадливые скажут: «икс чуть меньше двух». А как точно записать это число? Для ответа на этот вопрос и придумали логарифм. Благодаря ему, ответ здесь можно записать как \(x=\log_{3}{8}\).

Хочу подчеркнуть, что \(\log_{3}{8}\), как и любой логарифм - это просто число . Да, выглядит непривычно, но зато коротко. Потому что, если бы мы захотели записать его в виде десятичной дроби, то оно выглядело бы вот так: \(1,892789260714.....\)

Пример : Решите уравнение \(4^{5x-4}=10\)

Решение :

\(4^{5x-4}=10\)

\(4^{5x-4}\) и \(10\) никак к одному основанию не привести. Значит тут не обойтись без логарифма.

Воспользуемся определением логарифма:
\(a^{b}=c\) \(\Leftrightarrow\) \(\log_{a}{c}=b\)

\(\log_{4}{10}=5x-4\)

Зеркально перевернем уравнение, чтобы икс был слева

\(5x-4=\log_{4}{10}\)

Перед нами . Перенесем \(4\) вправо.

И не пугайтесь логарифма, относитесь к нему как к обычному числу.

\(5x=\log_{4}{10}+4\)

Поделим уравнение на 5

\(x=\)\(\frac{\log_{4}{10}+4}{5}\)


Вот наш корень. Да, выглядит непривычно, но ответ не выбирают.

Ответ : \(\frac{\log_{4}{10}+4}{5}\)

Десятичный и натуральный логарифмы

Как указано в определении логарифма, его основанием может быть любое положительное число, кроме единицы \((a>0, a\neq1)\). И среди всех возможных оснований есть два встречающихся настолько часто, что для логарифмов с ними придумали особую короткую запись:

Натуральный логарифм: логарифм, у которого основание - число Эйлера \(e\) (равное примерно \(2,7182818…\)), и записывается такой логарифм как \(\ln{a}\).

То есть, \(\ln{a}\) это то же самое, что и \(\log_{e}{a}\)

Десятичный логарифм: логарифм, у которого основание равно 10, записывается \(\lg{a}\).

То есть, \(\lg{a}\) это то же самое, что и \(\log_{10}{a}\) , где \(a\) - некоторое число.

Основное логарифмическое тождество

У логарифмов есть множество свойств. Одно из них носит название «Основное логарифмическое тождество» и выглядит вот так:

\(a^{\log_{a}{c}}=c\)

Это свойство вытекает напрямую из определения. Посмотрим как именно эта формула появилась.

Вспомним краткую запись определения логарифма:

если \(a^{b}=c\), то \(\log_{a}{c}=b\)

То есть, \(b\) – это тоже самое, что \(\log_{a}{c}\). Тогда мы можем в формуле \(a^{b}=c\) написать \(\log_{a}{c}\) вместо \(b\). Получилось \(a^{\log_{a}{c}}=c\) – основное логарифмическое тождество.

Остальные свойства логарифмов вы можете найти . С их помощью можно упрощать и вычислять значения выражений с логарифмами, которые «в лоб» посчитать сложно.

Пример : Найдите значение выражения \(36^{\log_{6}{5}}\)

Решение :

Ответ : \(25\)

Как число записать в виде логарифма?

Как уже было сказано выше – любой логарифм это просто число. Верно и обратное: любое число может быть записано как логарифм. Например, мы знаем, что \(\log_{2}{4}\) равен двум. Тогда можно вместо двойки писать \(\log_{2}{4}\).

Но \(\log_{3}{9}\) тоже равен \(2\), значит, также можно записать \(2=\log_{3}{9}\) . Аналогично и с \(\log_{5}{25}\), и с \(\log_{9}{81}\), и т.д. То есть, получается

\(2=\log_{2}{4}=\log_{3}{9}=\log_{4}{16}=\log_{5}{25}=\log_{6}{36}=\log_{7}{49}...\)

Таким образом, если нам нужно, мы можем где угодно (хоть в уравнении, хоть в выражении, хоть в неравенстве) записывать двойку как логарифм с любым основанием – просто в качестве аргумента пишем основание в квадрате.

Точно также и с тройкой – ее можно записать как \(\log_{2}{8}\), или как \(\log_{3}{27}\), или как \(\log_{4}{64}\)… Здесь мы как аргумент пишем основание в кубе:

\(3=\log_{2}{8}=\log_{3}{27}=\log_{4}{64}=\log_{5}{125}=\log_{6}{216}=\log_{7}{343}...\)

И с четверкой:

\(4=\log_{2}{16}=\log_{3}{81}=\log_{4}{256}=\log_{5}{625}=\log_{6}{1296}=\log_{7}{2401}...\)

И с минус единицей:

\(-1=\) \(\log_{2}\)\(\frac{1}{2}\) \(=\) \(\log_{3}\)\(\frac{1}{3}\) \(=\) \(\log_{4}\)\(\frac{1}{4}\) \(=\) \(\log_{5}\)\(\frac{1}{5}\) \(=\) \(\log_{6}\)\(\frac{1}{6}\) \(=\) \(\log_{7}\)\(\frac{1}{7}\) \(...\)

И с одной третьей:

\(\frac{1}{3}\) \(=\log_{2}{\sqrt{2}}=\log_{3}{\sqrt{3}}=\log_{4}{\sqrt{4}}=\log_{5}{\sqrt{5}}=\log_{6}{\sqrt{6}}=\log_{7}{\sqrt{7}}...\)

Любое число \(a\) может быть представлено как логарифм с основанием \(b\): \(a=\log_{b}{b^{a}}\)

Пример : Найдите значение выражения \(\frac{\log_{2}{14}}{1+\log_{2}{7}}\)

Решение :

Ответ : \(1\)

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы — это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами .

Эти правила обязательно надо знать — без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного — все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y . Тогда их можно складывать и вычитать, причем:

  1. log a x + log a y = log a (x · y );
  2. log a x − log a y = log a (x : y ).

Итак, сумма логарифмов равна логарифму произведения, а разность — логарифму частного. Обратите внимание: ключевой момент здесь — одинаковые основания . Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок «Что такое логарифм »). Взгляните на примеры — и убедитесь:

Log 6 4 + log 6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Задача. Найдите значение выражения: log 2 48 − log 2 3.

Основания одинаковые, используем формулу разности:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Задача. Найдите значение выражения: log 3 135 − log 3 5.

Снова основания одинаковые, поэтому имеем:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные — подобные выражения на полном серьезе (иногда — практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить — в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Задача. Найдите значение выражения: log 7 49 6 .

Избавимся от степени в аргументе по первой формуле:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Задача. Найдите значение выражения:

[Подпись к рисунку]

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

[Подпись к рисунку]

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели — получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log 2 7. Поскольку log 2 7 ≠ 0, можем сократить дробь — в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Пусть дан логарифм log a x . Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

[Подпись к рисунку]

В частности, если положить c = x , получим:

[Подпись к рисунку]

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе.

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Задача. Найдите значение выражения: log 5 16 · log 2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А теперь «перевернем» второй логарифм:

[Подпись к рисунку]

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Задача. Найдите значение выражения: log 9 100 · lg 3.

Основание и аргумент первого логарифма — точные степени. Запишем это и избавимся от показателей:

[Подпись к рисунку]

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

[Подпись к рисунку]

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула — это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество.

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a ? Правильно: получится это самое число a . Внимательно прочитайте этот абзац еще раз — многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача. Найдите значение выражения:

[Подпись к рисунку]

Заметим, что log 25 64 = log 5 8 — просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

[Подпись к рисунку]

Если кто-то не в курсе, это была настоящая задача из ЕГЭ:)

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами — скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

  1. log a a = 1 — это логарифмическая единица. Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.
  2. log a 1 = 0 — это логарифмический ноль. Основание a может быть каким угодно, но если в аргументе стоит единица — логарифм равен нулю! Потому что a 0 = 1 — это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике! Скачайте шпаргалку в начале урока, распечатайте ее — и решайте задачи.