Презентация к уроку по геометрии (10 класс) на тему: Элементы симметрии правильных многогранников. Видеоурок «Элементы симметрии правильных многогранников
















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель изучения

  • Познакомить учащихся с новым типом выпуклых многогранников - правильными многогранниками.
  • Показать влияние правильных многогранников на возникновение философских теорий и фантастических гипотез.
  • Показать связь геометрии и природы.
  • Изучить элементы симметрии правильных многогранников.

Прогнозируемый результат

  • Знать определение правильных выпуклых многогранников.
  • Уметь доказать, что существует всего пять видов таких тел.
  • Уметь охарактеризовать каждый вид правильных многогранников.
  • Знать теорему Эйлера (без доказательства).
  • Иметь понятие о симметрии в пространстве (центральная, осевая, зеркальная).
  • Знать примеры симметрий в окружающем мире.
  • Знать элементы симметрии каждого правильного многогранника.
  • Уметь решать задачи на нахождение элементов правильных многогранников.

План урока

  • Организационный момент.
  • Актуализация знаний.
  • Введение нового понятия, изучение правильных выпуклых многогранников.
  • Правильные многогранники в философской картине мира Платона (сообщение учащегося).
  • Формула Эйлера (исследовательская работа класса).
  • Правильные многогранники (сообщение учащегося).
  • Правильные многогранники на картинах великих художников (сообщения учащегося).
  • Правильные многогранники и природа (сообщения учащегося).
  • Элементы симметрии правильных многогранников (сообщения учащегося).
  • Решение задач.
  • Подведение итога урока.
  • Домашнее задание.

Оборудование

  • Чертёжные инструменты.
  • Модели многогранников.
  • Репродукция картины С. Дали "Тайная вечеря".
  • Компьютер, проектор.
  • Иллюстрации к сообщениям учащихся:
    • модель солнечной системы И. Кеплера;
    • икосаэдро-додекаэдровая структура земли;
    • правильные многогранники в природе.

"Правильных многогранников вызывающе мало, но этот весьма скромный
по численности отряд сумел пробраться в самые глубины различных наук".
Л. Кэрролл

Ход урока

На данный момент уже вы имеете представление о таких многогранниках как призма и пирамида. На сегодняшнем уроке у вас есть возможность значительно расширить свои знания о многогранниках, вы узнаете о так называемых правильных выпуклых многогранниках. С некоторыми понятиями вы уже знакомы - это многогранники и выпуклые многогранники. Вспомним их.

  • Дайте определение многогранника.
  • Какой многогранник называется выпуклым?

Нами уже использовались словосочетания "правильные призмы" и "правильные пирамиды". Оказывается, новая комбинация знакомых понятий образует совершенно новое с геометрической точки зрения понятие. Какие же выпуклые многогранники будем называть правильными? Послушайте внимательно определение.

Выпуклый многогранник называется правильным, если его грани являются правильными многогранниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и тоже число ребер.

Может показаться, что вторая часть определения является лишней и достаточно сказать, что выпуклый многогранник называется правильным, если его грани являются правильными многогранниками с одним и тем же числом сторон. Достаточно ли этого на самом деле?

Посмотрите на многогранник. (Демонстрируется модель многогранника, который получается из двух правильных тетраэдров, приклеенных друг к другу одной гранью) . Оставляет ли он впечатление правильного многогранника? (Нет! ). Посмотрим на его грани - правильные треугольники. Посчитаем число рёбер, сходящихся в каждой вершине. В некоторых вершинах сходятся три ребра, в некоторых - четыре. Вторая часть определения правильного выпуклого многогранника не выполняется и рассматриваемый многогранник, действительно, не является правильным. Таким образом, когда будете давать определение, помните об обеих его частях.

Всего существует пять видов правильных выпуклых многогранников. Их гранями являются правильные треугольники, правильные четырёхугольники (квадраты) и правильные пятиугольники.

Докажем, что не существует правильного многогранника, гранями которого являются правильные шестиугольники, семиугольники и, вообще, n - угольники при n 6.

В самом деле, угол правильного n-угольника при n 6 не меньше 120 о (объясните почему). С другой стороны, при каждой вершине многогранника должно быть не менее трёх плоских углов. Поэтому если бы существовал правильный многогранник, у которого грани - правильные n-угольники при n 6, то сумма плоских углов при каждой вершине такого многогранника была бы не меньше чем 120 о * 3 = 360 о . Но это невозможно, так как сумма всех плоских углов при каждой вершине выпуклого многогранника меньше 360 о.

По этой же причине каждая вершина правильного многогранника может быть вершиной либо трёх, четырёх или пяти равносторонних треугольников, либо квадратов, либо трёх правильных пятиугольников. Других возможностей нет. В соответствии с этим получаем следующие правильные многогранники.

Названия этих многогранников пришли из Древней Греции, и в них указывается число граней:

  • "эдра" - грань
  • "тетра" - 4
  • "гекса" - 6
  • "окта" - 8
  • "икоса" - 20
  • "додека" - 12

Вам необходимо запомнить названия этих многогранников, уметь охарактеризовать каждый из них и доказать, что других видов правильных многогранников, кроме перечисленных пяти, нет.

Обращаю внимание на слова Л. Кэрролла, которые являются эпиграфом сегодняшнего урока: "Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

О том, как использовали правильные многогранники в своих научных фантазиях учёные, нам расскажут:

Сообщение "Правильные многогранники в философской картине мира Платона"

Правильные многогранники иногда называют Платоновыми телами, поскольку они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном (ок. 428 - ок. 348 до н.э.).

Платон считал, что мир строится из четырёх "стихий" - огня, земли, воздуха и воды, а атомы этих "стихий" имеют форму четырёх правильных многогранников. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр - как самый обтекаемый - воду; куб - самая устойчивая из фигур - землю, а октаэдр - воздух. В наше время эту систему можно сравнить с четырьмя состояниями вещества - твёрдым, жидким, газообразным и пламенным. Пятый многогранник - додекаэдр символизировал весь мир и почитался главнейшим.

Это была одна из первых попыток ввести в науку идею систематизации.

Учитель. А теперь от Древней Греции перейдём к Европе XVI - XVII вв., когда жил и творил замечательный немецкий астроном, математик Иоганн Кеплер (1571 - 1630).

Сообщение "Кубок Кеплера"

Рис.6. Модель Солнечной системы И. Кеплера

Представим себя на месте Кеплера. Перед ним различные таблицы - столбики цифр. Это результаты наблюдений движения планет Солнечной системы - как его собственных, так и великих предшественников - астрономов. В этом мире вычислительной работы он хочет найти некоторые закономерности. Иоганн Кеплер, для которого правильные многогранники были любимым предметом изучения, предположил, что существует связь между пятью правильными многогранниками и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который

вписывается сфера орбиты Юпитера. В неё, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия.

Такая модель Солнечной системы (рис. 6) получила название "Космического кубка" Кеплера. Результаты своих вычислений учёный опубликовал в книге "Тайна мироздания". Он считал, что тайна Вселенной раскрыта.

Год за годом учёный уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашёл в себе силы отказаться от заманчивой гипотезы. Однако её следы просматриваются в третьем законе Кеплера, где говориться о кубах средних расстояний от Солнца.

Учитель. Сегодня можно с уверенностью утверждать, что расстояния между планетами и их число никак не связаны с многогранниками. Конечно, структура Солнечной системы не является случайной, но истинные причины, по которым она устроена так, а не иначе, до сих пор не известны. Идеи Кеплера оказались ошибочными, но без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.

Сообщение "Икосаэдро-додекаэдровая структура Земли"

Рис 7. Икосаэдро-додекаэдровая структура Земли

Идеи Платона и Кеплера о связи правильных многогранников с гармоничным устройством мира и в наше время нашли своё продолжение в интересной научной гипотезе, которую в начале 80-х гг. высказали московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обуславливают икосаэдро-додекаэдровую структуру Земли (рис.7). Она проявляется в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра.

Многие залежи полезных ископаемых тянутся вдоль икосаэдро-додекаэдровой сетки; 62 вершины и середины рёбер многогранников, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления. Здесь располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана. В этих узлах находятся озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Учитель. А сейчас от научных гипотез перейдём к научным фактам.

Исследовательская работа "Формула Эйлера"

Изучая любые многогранники, естественнее всего подсчитать, сколько у них граней, сколько рёбер и вершин. Подсчитаем и мы число указанных элементов Платоновых тел и занесём результаты в таблицу № 1.

Анализируя таблицу № 1, возникает вопрос: "Нет ли закономерности в возрастании чисел в каждом столбце?" По-видимому, нет. Например, в столбце "грани" казалось бы, просматривается закономерность (4 + 2 = 6, 6 + 2 = 8), но затем намеченная закономерность нарушается (8 + 2 12, 12 + 2 20). В столбце "вершины" нет даже стабильного возрастания.

Число вершин то возрастает (от 4 до 8, от 6 до 20), а то и убывает (от 8 до 6, от 20 до 12) . В столбце "рёбра" закономерности тоже не видно.

Но можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах "грани" и "вершины" (Г + В). Составим новую таблицу своих подсчётов (см. табл. № 2). Вот теперь закономерности может не заметить только "слепой". Сформулируем её так: "Сумма числа граней и вершин равна числу рёбер, увеличенному на 2 ", т.е.

Г + В = Р + 2

Итак, мы вместе "открыли" формулу, которая была подмечена уже Декартом в 1640 г., а позднее вновь открыта Эйлером (1752), имя которого с тех пор она носит. Формула Эйлера верна для любых выпуклых многогранников.

Запомните эту формулу, она пригодится вам для решения некоторых задач.

"Тайняя вечеря" С. Дали

Большой интерес к формам правильных многогранников проявляли также скульпторы, архитекторы, художники. Их всех поражало совершенство, гармония многогранников. Леонардо да Винчи (1452 - 1519) увлекался теорией многогранников и часто изображал их на своих полотнах. Сальвадор Дали на картине "Тайная вечеря" изобразил И. Христа со своими учениками на фоне огромного прозрачного додекаэдра.

Учёным достаточно хорошо изучены правильные выпуклые многогранники, доказано, что существует всего пять видов таких многогранников, но сам ли человек их придумал. Скорее всего - нет, он "подсмотрел" их у природы.

Послушаем сообщение: "Правильные многогранники и природа".

Сообщение "Правильные многогранники и природа"

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra ) по форме напоминает икосаэдр (рис. 8).

Чем же вызвана такая природная геометризация феодарий? По-видимому, тем, что из всех многогранников с тем же числом граней именно икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление водной толщи.

Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Подтверждением тому служит форма некоторых кристаллов. Взять хотя бы поваренную соль, без которой мы не можем обойтись.

Известно, что она растворима в воде, служит проводником электрического тока. А кристаллы поваренной соли (NaCl) имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS). Кристаллы этого химического вещества имеют форму додекаэдра.

В разных химических реакциях применяется сурьмянистый сернокислый натрий - вещество, синтезированное учёными. Кристалл сурьмянистого сернокислого натрия имеет форму тетраэдра.

Последний правильный многогранник - икосаэдр передаёт форму кристаллов бора (В). В своё время бор использовался для создания полупроводников первого поколения.

Учитель. Итак, благодаря правильным многогранникам открываются не только удивительные свойства геометрических фигур, но и пути познания природной гармонии. Послушаем сообщение симметрии правильных многогранников.

Тем не менее, снова возвращаемся к вычислениям.

Решим несколько задач.

Задача. Определите количество граней, вершин и рёбер многогранника, изображённого на рисунке 9. Проверьте выполнимость формулы Эйлера для данного многогранника.

Задача: № 28.

Подходит к концу урок, подведём итоги.

  • С какими новыми геометрическими телами мы сегодня познакомились?
  • Почему Л. Кэрролл так высоко оценил значение этих многогранников?

Дома: параграф 3, п.32, № 274, 279. Рис. 9

Литература.

  • Азевич А.И. Двадцать уроков гармонии: Гуманитарно-математический курс. М.: Школа-Пресс, 1998. (Библиотека журнала "Математика в школе". Вып.7).
  • Винниджер. Модели многогранников. М., 1975.
  • Геометрия: Учеб. для 10-11 кл. общеобразоват. учреждений / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кардомцев и др.-5-е изд.- М.: Просвещение, 1997.
  • Гросман С., Тернер Дж. Математика для биологов. М., 1983.
  • Кованцов Н.И. Математика и романтика. Киев, 1976.
  • Смирнова И.М. В мире многогранников. М., 1990.
  • Шафрановский И.И. Симметрия в природе. Л., 1988.

ТЕКСТОВАЯ РАСШИФРОВКА УРОКА:

Наше знакомство с многогранниками продолжается.

Вспомним, что многогранник называется правильным, если выполнены следующие условия:

1.многогранник выпуклый;

2. все его грани являются равными правильными многоугольниками;

3. в каждой его вершине сходится одинаковое число граней;

4. все его двугранные углы равны.

На прошлых занятиях вы узнали об единственности существования пяти видов правильных многогранников:

тетраэдра, октаэдра, икосаэдра, гексаэдра(куба) и додекаэдра.

Сегодня мы рассмотрим элементы симметрии изученных правильных многогранников.

Правильный тетраэдр не имеет центра симметрии.

Его осью симметрии является прямая, проходящая через середины противоположных рёбер.

Плоскостью симметрии является плоскость, проходящая через любое ребро перпендикулярно противоположному ребру.

Правильный тетраэдр имеет три оси симметрии и шесть плоскостей симметрии.

Куб обладает одним центром симметрии- это точка пересечения его диагоналей.

Осями симметрии являются прямые проходящие через центры противоположных граней и середины двух противоположных рёбер, не принадлежащих одной грани.

Куб имеет девять осей симметрии, которые проходят через центр симметрии.

Плоскость, проходящая через любые две оси симметрии, является плоскостью симметрии.

Куб имеет девять плоскостей симметрии.

Правильный октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии: три оси симметрии проходят через противоположные вершины, шесть - через середины ребер.

Центр симметрии октаэдра - точка пересечения его осей симметрии.

Три из 9 плоскостей симметрии тетраэдра проходят через каждые 4 вершины октаэдра, лежащие в одной плоскости.

Шесть плоскостей симметрии проходят через две вершины, не принадлежащие одной грани, и середины противоположных ребер.

Правильный икосаэдр имеет 12 вершин. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии: Через первую пару противоположных вершин проходят пять плоскостей симметрии (каждая их них проходит через ребро, содержащее вершину, перпендикулярно противоположному углу).

Для третьей пары получим — 3 новых плоскости, а для четвертой — две плоскости и для пятой пары только одна новая плоскость.

Через шестую пару вершин не пройдет ни одной новой плоскости симметрии.

Правильный додекаэдр состоит из двенадцати правильных пятиугольников. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии: плоскости симметрии проходят через ребро, содержащее вершину, перпендикулярно противоположному ребру. Поэтому через первую пару противоположных пятиугольников проходит 5 плоскостей, через вторую пару — 4, через третью — 3, четвертую — 2, пятую — 1.

Решим несколько заданий, применяя полученные знания.

Доказать, что в правильном тетраэдре отрезки, соединяющие центры его граней, равны.

Так как все грани правильного тетраэдра равны и любая из них может считаться основанием, а три другие- боковыми гранями, то достаточно будет доказать равенство отрезков ОМ и ON.

Доказательство:

1.Дополнительное построение: проведём прямую DN до пересечения со стороной АС, получим точку F;

проведём прямую DM до пересечения со стороной АВ, получим точку Е.

Затем соединим вершину А с точкой F;

вершину С с точкой Е.

2.Рассмотрим треугольники ДЕО и ДОФ они

прямоугольные, т.к. ДО высота тетраэдра, тогда они равны по гипотенузе и катету: ДО-общая, ДЕ=ДФ(высоты равных граней тетраэдра)).

Из равенства данных треугольников следует, что OE=OF, ME=NF(середины равных сторон),

угол DEO равен углу DFO.

3. из выше доказанного следует что треугольники ОЕМ и ОФН равны по двум сторонам и углу между ними (см пн. 2).

А из равенства этих треугольников следует, что ОМ = ON.

Что и требовалось доказать.

Существует ли четырёхугольная пирамида, у которой противоположные грани перпендикулярны к основанию?

Докажем, что такой пирамиды не существует методом от противного.

Доказательство:

1. Пусть ребро РА1 перпендикулярно основанию пирамиды и ребро РА2 так же перпендикулярно основанию.

2.Тогда по теореме(две прямые, перпендикулярные к третьей, параллельны), мы получим что ребро РА1 параллельно ребру РА2.

3.Но пирамида имеет общую точку для всех боковых рёбер(а значит и граней)- вершину пирамиды.

Мы получили противоречие, таким образом не существует четырёхугольной пирамиды, противоположные грани которой перпендикулярны к основанию.

В п. 12.1 мы определили правильный многогранник как многогранник, у которого равны друг другу все элементы одного вида: грани, ребра и т.д. Но правильные многогранники можно определить как самые симметричные изо всех многогранников. Это означает следующее. Если мы возьмем на правильном многограннике некоторую вершину А, подходящее к ней ребро а и грань а, подходящую к этому ребру, и еще любой такой же набор то существует такое самосовмещение многогранника,

которое вершину А переводит в вершину А, ребро а - в ребро а, грань а - в грань а.

Докажем это. Так как любые две грани правильного многогранника равны, то существует движение, которое одну из них переведет в другую. Поскольку все двугранные углы этого многогранника равны, то в результате совмещения граней весь многогранник самосовместится или перейдет в многогранник, симметричный исходному относительно плоскости второй грани. Во втором случае симметрия относительно плоскости этой грани завершит процесс самосовмещения правильного многогранника.

Верно и обратное: многогранники, обладающие этим свойством, будут правильными, так как у них окажутся равны все ребра, все плоские углы и все двугранные углы.

Рассмотрим теперь элементы симметрии правильных многогранников.

Начнем с элементов симметрии куба.

1. Центр симметрии - центр куба.

2. Плоскости симметрии (рис. 12.17): 1) три плоскости симметрии, перпендикулярные ребрам в их серединах; 2) шесть плоскостей симметрии, проходящих через противоположные ребра.

3. Оси симметрии: 1) три оси симметрии 4-го порядка, проходящие через центры противоположных граней (рис. 12.18а); 2) шесть осей поворотной симметрии 2-го порядка, проходящие через середины противоположных ребер (рис. 12.186); 4) четыре диагонали куба являются осями зеркального поворота шестого порядка, самосовмещающего куб (рис. 12.18в).

Это самый интересный и не сразу видный элемент симметрии куба. Сечение куба плоскостью, проходящей через его центр перпендикулярно диагонали, представляет правильный шестиугольник; при повороте куба вокруг диагонали на угол 60° шестиугольник отображается на себя, а куб в целом еще нужно отразить в плоскости шестиугольника.

Октаэдр двойственен кубу, и потому у него те же элементы симметрии с той разницей, что плоскости симметрии и оси, проходящие у куба через вершины и центры граней, у октаэдра проходят наоборот: через центры граней и вершины (рис. 12.19). Так, зеркальная ось 6-го

порядка проходит у октаэдра через центры противоположных граней.

Обратимся к элементам симметрии правильного тетраэдра.

1. Шесть плоскостей симметрии, каждая из которых проходит через ребро и середину противоположного ребра (рис. 12.20а).

2. Четыре оси 3-го порядка, проходящие через вершины и центры противоположных им граней, т.е. через высоты тетраэдра (рис. 12.20б).

3. Три оси зеркального поворота 4-го порядка, проходящие через середины противоположных ребер (рис. 12.20в).

Центра симметрии у тетраэдра нет.

В куб можно вписать два правильных тетраэдра (рис. 12.16). При самосовмещениях куба эти тетраэдры либо самосовмещаются, либо отображаются друг на друга. Выясните, при каких самосовмещениях куба происходит самосовмещение тетраэдров, а при каких они отображаются друг на друга.

Убедитесь, что в первом случае получатся все самосовмещения тетраэдра, так что группа симметрии куба включает в себя группу симметрии куба как подгруппу. (См. п. 28.4).

Группы симметрии у додекаэдра и икосаэдра одинаковы, поскольку эти правильные многогранники двойственны

друг другу. У них есть центр симметрии, плоскости симметрии, оси поворотной симметрии и оси зеркальной поворотной симметрии. Труднее всего найти последние из этих элементов симметрии. Укажем, как их построить.

Оси зеркальной поворотной симметрии в икосаэдре (так же, как и в кубе) соединяют противоположные вершины этого многогранника (рис. 12.21), а в додекаэдре (как и в октаэдре) эти оси идут через центры их параллельных граней (рис. 12.22). Плоскости, проходящие через центры симметрии правильных многогранников и перпендикулярные указанным осям, пересекают правильные многогранники по правильным многоугольникам (рис. 12.23).

В частности, додекаэдр и икосаэдр они пересекают по правильным десятиугольникам (рис. 12.23 г,д). Из сказанного следует, что икосаэдр и додекаэдр самосовмещаются зеркальными поворотами относительно осей шестого и десятого порядков.

Найдите самостоятельно более простые элементы симметрии икосаэдра и додекаэдра - плоскости симметрии и оси поворотной симметрии.

Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани. Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р-угольной призмы.

Примеры размерности симметрии плоских фигур дают правильные многоугольники. Примеры симметрии пространственных фигур дают правильные призмы и пирамиды: они совмещаются сами с собой, например, поворотами вокруг оси, перпендикулярной плоскости основания и проходящей через его центр.

Мы будем понимать симметрию в общем смысле, как она определена в начале и как ее понимают, в частности, когда говорят о симметрии кристаллов. При этом наложения фигуры на себя называются преобразованиями симметрии.

Теорема. Рассмотрим данный правильный многогранник Р. Пусть А -- его вершина, а -- ребро с концом А, а -- грань со стороной а. Для любых других аналогичных его элементов А", а", а" существует наложение многогранника Р на себя, переводящее А" в А, а" в а, а" в а.

Доказательство

Переносом многогранника переведем вершину А" в А. Поворотом многогранника вокруг А переведем перенесенное ребро а" в а. Поворотом многогранника вокруг ребра а приведем (перенесенную и повернутую) грань а" в совпадение с гранью а. Так как грани равны, то грань а" полностью совместится с а.

Так как двугранные углы равны, то для граней р и р", смежных с а и а", есть только две возможности: 1) р" совпадает с р; 2) р" не совпадает с р, но будет симметрична р относительно плоскости грани а. В таком случае отражением в этой плоскости переведем Р" в р.

Итак, наложением всего многогранника Р мы совместили вершину А" с А, ребро а" -- с а, грани а", р", смежные по ребру а", -- с гранями а, р, смежными по ребру а.

Убедимся, что при этом многогранник оказывается совмещенным сам с собой. Две грани многогранного угла при вершине А совпали (а" с а, р" с р). Перейдем к граням у и у", соседним с р. Двугранные углы, которые они образуют с р, равны и расположены с одной стороны -- с той же, с какой лежит грань а. Поэтому грань у" совпадает с у. Так убедимся, что многогранные углы при вершине А совпали. Переходя к другой вершине, соединенной с А ребром, аналогично убедимся, что и при этой вершине многогранные углы совпадают. И так пройдя по всему многограннику, убедимся, что он совпал сам с собой, что и требовалось доказать. ?

Свойство правильных многогранников, установленное доказанной теоремой, означает, что они обладают, так сказать, максимальной мыслимой симметрией. Наложение, совмещение многогранника самого с собою, неизбежно совмещает какую-то вершину А" с А, ребро а" -- с а, грань а"-- с а, и примыкающую грань р" -- с р. Наложение этим вполне определено, оно только одно. Поэтому максимальное число возможных наложений будет тогда, когда каждую совокупность А, а, а, р можно перевести в каждую. А это так у правильных многогранников Очевидно, верно и обратное. Если многогранник обладает такой максимальной симметрией, то он правильный (так как ребро а совмещается с а", угол на грани а" при вершине А совмещается с таким же углом, и двугранный угол между а" и р 4 " совмещается с углом между а и р.-- так что все ребра и углы равны). Число наложений, совмещающих правильный многогранник сам с собою, равно 2 те, где т -- число ребер, сходящихся в одной вершине, и е -- число вершин; те наложений первого рода и те -- наложений второго рода. Они и образуют группу симметрии правильного многогранника. Группы симметрии у куба и октаэдра совпадают ввиду их двойственности. Так же совпадают группы симметрии у додекаэдра и икосаэдра. Группа тетраэдра является подгруппой группы куба, как видно из возможности вложить тетраэдр в куб (рис. 1.5, а). Наиболее интересные элементы симметрии -- это зеркальные оси: 4-го порядка у тетраэдра, 6-го порядка -- у куба, 10-го порядка -- у додекаэдра (рис. 1.5,б). Убедитесь, что это так, определив, как расположены эти оси. Оси симметрии и плоскости симметрии куба изображены на рис. 1.5 в, г.

1 .5 Подобие многогранников

Два многогранника называются подобными, если существует преобразование подобия, переводящее один многогранник в другой.

Подобные многогранники имеют соответственно равные многогранные углы и соответственно подобные грани. Соответственные элементы подобных многогранников называются сходственными. У подобных многогранников двугранные углы равны и одинаково расположены, а сходственные ребра пропорциональны.

Кроме того, справедливы следующие теоремы:

Теорема 1. Если в пирамиде провести секущую плоскость параллельно основанию, то она отсечет от нее пирамиду, подобную данной.

Теорема 2. Площади поверхностей подобных многогранников относятся как квадраты, а их объемы - как кубы сходственных линейных элементов многогранников.

Радиусы, площади и объёмы

С каждым правильным многогранником связаны три концентрические сферы:
Описанная сфера, проходящая через вершины многогранника;
Срединная сфера, касающаяся каждого его ребра в середине;
Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной () и вписанной () сфер задаются формулами:

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

Лощадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

Объем правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой - радиус вписанной сферы r:



История.

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников. В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.
Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух - октаэдру, вода - икосаэдру, а огонь - тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент - эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу. Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13-17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида. Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета. В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики - законов Кеплера, - изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо).