Применение математических методов в исследовании. Использование математических методов в исследованиях. Задания для самостоятельной работы


Несколько лет назад, когда автор этой книги работал консультантом по вопросам математической статистики в небольшой медицинской научно-исследовательской группе, разговоры о возможности проложить математическую тропинку через густые дебри экологических факторов часто заканчивались довольно скептическим покачиванием головой и утверждением, что «медицина - это все-таки искусство». Отчасти это, конечно, верно в том смысле, что интуиция и воображение для врача действительно необходимы. В то же время большинство больных и потенциальных больных, несомненно, надеются на непрерывное развитие и расширение научных аспектов медицины. А наука означает применение математики.

Существенно важен вопрос о том, в каких областях применимы математические методы. В разд. 1.1 мы уже отмечали, что потребность в математическом описании появляется при любой попытке вести обсуждение в точных понятиях и что это касается даже таких сложных областей, как искусство и этика. В настоящем разделе мы несколько конкретнее рассмотрим области применения математики в биологии и медицине.

Хорошо известно, что один из подходов к описанию картины природы - это построение иерархии уровней организации, изучаемых различными науками; по уровню абстракции, свойственному каждой из них, эти науки можно расположить в такой последовательности: физика, химия, биохимия, физиология, психология, социология. Мы начинаем с основных материальных элементов реального мира, т. е. с субатомного уровня, и заканчиваем необычайно разносторонними проявлениями духовной жизни человеческого общества. В этой последовательности уровней организация и сложность непрерывно повышаются. На каждом уровне действуют свои собственные законы, и поэтому их можно изучать до некоторой степени независимо друг от друга. Однако любой из них нерасторжимо связан с закономерностями, действующими на более низких уровнях. Так, законы физики и химии отчасти распространяются и на психологию, хотя понятия и законы последней выходят за пределы физических и химическпх законов.

Проблемы, касающиеся организации и деятельности больниц, следует отнести к более высокому уровню абстракции, чем, скажем, физиологию и патологию человека. Но хотя в определенной степени логическое содержание этого более высокого уровня независимо от более низкого, вопросы физиологии и патологии неизбежно должны учитываться при решении любой проблемы, касающейся организации больничных служб. Мы не собираемся углубляться здесь в эти философские рассуждения или обсуждать отдельные их детали, а хотим лишь подчеркнуть, что описанная последовательность уровней приближенно соответствует порядку возрастания трудностей при использовании научных методов и проведении математических исследований.

Как мы уже отмечали, прикладная математика добилась крупных и бесспорных успехов в области физики и химии, однако в данной книге мы не будем касаться этих вопросов. В разд. 1.2 было показано, что математические описания, связанные с биологическими формами, охватывают широкий круг вопросов и могут быть проведены достаточно точно. В разд. 1.3 мы познакомились с динамическими моделями развития и коснулись проблем, связанных со случайными колебаниями численности популяций. Изложение этих вопросов требовало достаточной степени абстракции, однако именно использование упрощающих допущений позволило нам получить некоторое представление о законах, регулирующих рост популяций. Было отмечено, что при рассмотрении такого рода проблем неизбежно приходится сталкиваться с фактором статистической изменчивости, подробное обсуждение которого переносится в гл. 2.

При переходе на более высокие уровни абстракции мы сталкиваемся не только с более сложными вопросами, но и с возрастающей степенью изменчивости, по большей части непредсказуемой. Например, полная картина конкуренции между несколькими видами, обитающими в определенной среде, включает огромное множество факторов. В области научных экологических описаний, выполненных главным образом в словесной форме, достигнуты значительные успехи, однако разработка математических моделей находится здесь еще на самом элементарном уровне. Другим примером может служить область медицинской диагностики. Для постановки диагноза врач совместно с другими специалистами часто бывает вынужден учитывать самые разнообразные факты, опираясь отчасти на свой личный опыт, а отчасти на материалы, приводимые в многочисленных медицинских руководствах и журналах. Общее количество информации увеличивается со все возрастающей интенсивностью, и есть такие болезни, о которых уже столько написано, что один человек не в состоянии в точности изучить, оценить, объяснить и использовать всю имеющуюся информацию при постановке диагноза в каждом конкретном случае.

Разумеется, хороший диагност, используя свой большой опыт и интуицию, может отобрать необходимую часть важных данных и дать достаточно точное заключение. Однако, как это ни парадоксально звучит, по мере накопления знаний положение ухудшается.

Именно в такого рода ситуациях, когда разум одного человека не способен справиться со сложностями стоящих перед ним задач и описать их решение даже в общей словесной форме, специалисты в области так называемых неточных наук (включая, разумеется, биологию и медицину) часто утверждают, что математический анализ несовершенен, неуместен, приводит к ошибочным заключениям или невозможен, и поэтому его лучше избегать. Это возражение содержит рациональное зерно в том смысле, что современная математика, возможно, еще недостаточно совершенна; однако пройдет время, и мы увидим, что справедливо как раз обратное. В тех случаях, когда задача содержит большое число существенных взаимозависимых факторов, каждый из которых в значительной мере подвержен естественной изменчивости, только с помощью правильно выбранного статистического метода можно точно описать, объяснить и углубленно исследовать всю совокупность взаимосвязанных результатов измерений. Если число факторов или важных результатов настолько велико, что человеческий разум не в состоянии их обработать даже при введении некоторых статистических упрощений, то обработка данных может быть произведена на электронной вычислительной машине. Использование статистических методов и вычислительной техники рассматривается в гл. 2 и 5 соответственно.

Основная причина недоверия к математическим и вычислительным методам, по-видимому, состоит в следующем. Математическая модель некоторого биологического явления будет приемлемой для биолога только в том случае, если выраженная в словесной форме информация об этом явлении, которой он располагает, достаточно полна для того, чтобы можно было судить об адекватности модели. Ясно, что получение такой информации представляет собой первый и наиболее важный этап биологического исследования и что на этом этапе математика играет второстепенную роль. Естественно, возникает мысль, что по мере того, как вопросы становятся более трудными и сложными, математика приобретает все меньшее и меньшее значение. Однако не всегда учитывается то обстоятельство, что, достигнув достаточной степени сложности, математика развивается далее по своим собственным законам и дает биологу понятия и образ мышления, которых у него раньше не было. Будем надеяться, что эта книга хотя бы в некоторой степени проиллюстрирует справедливость этого утверждения.

До сих пор мы имели в виду главным образом те биологические и медицинские исследования, которые требуют более высокого уровня абстракции, чем физика и химия, но тесно связаны с этими последними. Далее мы перейдем к проблемам, связанным с поведением животных и психологией человека, т. е. к использованию прикладных наук для достижения некоторых более общих целей. Эту область довольно расплывчато называют исследованием операцийи более детально она рассматривается в гл. 4. Пока мы лишь отметим, что речь будет идти о применении научных методов при решении административных и организационных задач, особенно тех, которые непосредственно или косвенно связаны с биологией и медициной. Лесоводство, животноводство, общие вопросы сельскохозяйственного производства, проектирование больниц и организация медицинского обслуживания - таковы лишь немногие вопросы, относящиеся к этой категории.

Разумеется, не все задачи административного управления можно решить на научной основе, используя методы исследования операций. Однако применение этих методов там, где оно возможно (а они применимы ко многим задачам такого рода), имеет большие преимущества, так как позволяет расширить область точных исследований и сократить область неопределенных словесных рассуждений. Благодаря этому интуиция и здравый смысл человека могут быть направлены на решение тех вопросов, где невозможно применение шаблонных методов. Еще более сложны вопросы, к которым примешиваются какие-либо этические соображения. Но иногда математический анализ может помочь даже и в этих случаях. Например, в медицине часто возникают сложные проблемы, связанные с применением лекарственных препаратов, которые еще находятся на стадии испытания. Морально врач обязан предложить своему больному наилучший из существующих препаратов, но фактически он не может сделать выбор, пока испытание не будет закончено. В этих случаях применение правильно спланированных последовательностных статистических испытаний позволяет сократить время, требуемое для получения окончательных результатов. Этические проблемы при этом не снимаются, однако такой математический подход несколько облегчает их решение. О последовательностных методах более подробно говорится в разд. 2.3.

Основное положение настоящего раздела состоит в том, что математические методы применимы к самому широкому кругу вопросов - от физики элементарных частиц до моральных проблем. Удобно (хотя вовсе не обязательно) рассматривать некую иерархию уровней. По мере перехода на более абстрактные уровни математические методы оказываются менее разработанными и применять их становится все труднее.

Тем не менее при правильном применении математический подход не отличается существенно от подхода, основанного просто на здравом смысле. Математические методы просто более точны и в них используются более четкие формулировки и более широкий набор понятий, но в конечном счете они должны быть совместимы с обычными словесными рассуждениями, хотя, вероятно, и идут дальше их.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. »

Исторический факультет

Кафедра документационного и информационного обеспечения управления

Математические методы в научных исследованиях

Программа курса

Стандарт 350800 «Документоведение и документационное обеспечение управления»

Стандарт 020800 «Историко-архивоведение»

Екатеринбург

Утверждаю

Проректор

(подпись)

Программа дисциплины «Математические методы в научных исследованиях» составлена в соответствии с требованиями вузовского компонента к обязательному минимуму содержания и уровню подготовки:

дипломированного специалиста по специальности

Документоведение и документационное обеспечение управления (350800),

Историко-архивоведение(020800),

по циклу «Общие гуманитарные и социально-экономические дисциплины» государственного образовательного стандарта высшего профессионального образования.

Семестр III

По учебному плану специальности № 000– Документоведение и документационное обеспечение управления:

Общая трудоемкость дисциплины: 100 часов,

в том числе лекций 36 часа

По учебному плану специальности № 000– Историко – архивоведение

Общая трудоемкость дисциплины: 50 часов,

в том числе лекций 36 часа

Контрольные мероприятия :

Контрольные работы 2 чел/час

Составитель: , канд. ист. наук, доцент кафедры документационного и информационного обеспечения управления Уральского государственного университета


кафедры Документационного и информационного обеспечения управления

от 01.01.01 г. № 1.

Согласовано:

Зам. председателя

Гуманитарного совета

_________________

(подпись)

(С) Уральский государственный университет

(С) , 2006

ВВЕДЕНИЕ

Курс “Математические методы в социально-экономических исследованиях“ предназначен для ознакомления студентов с основными приемами и способами обработки количественной информации, разработанными статистикой. Его основная задача - расширить методический научный аппарат исследователей, научить применять в практической и научно-исследовательской деятельности помимо традиционных методов, основных на логическом анализе, математические методы , которые помогают количественно охарактеризовать исторические явления и факты.

В настоящее время математический аппарат и математические методы используются практически во всех областях науки. Это закономерный процесс, его часто называют - математизация науки. В философии математизация обычно понимается как применение математики в различных науках. Математические методы давно и прочно вошли в арсенал методов исследования ученых, используются для обобщения данных, выявления тенденций и закономерностей развития общественных явлений и процессов, типологии и моделирования.

Знание статистики необходимо, чтобы правильно охарактеризовать и проанализировать процессы, происходящие в экономике и обществе. Для этого необходимо владеть выборочным методом, сводкой и группировкой данных, уметь рассчитать средние и относительные величины , показатели вариации , коэффициенты корреляции. Элементом информационной культуры выступают навыки правильного оформления таблиц и построения графиков, которые представляют собой важный инструмент систематизации первичных социально-экономических данных и наглядного представления количественной информации. Для оценки временных изменений необходимо иметь представление о системе динамических показателей.

Использование методики проведения выборочного исследования позволяет изучить большие массивы информации, представленные массовыми источниками, экономить время и труд, получая при этом научно значимые результаты.

Математико-статистические методы занимают вспомогательные позиции, дополняя и обогащая традиционные методы социально-экономического анализа, их освоение является необходимой составной частью квалификации современного специалиста – документоведа, историка-архивиста.

В настоящее время математико-статистические методы активно применяются в маркетинговых, социологических исследованиях , при сборе оперативной управленческой информации, составлении отчетов и проведении анализа документопотоков.

Навыки количественного анализа необходимы для подготовки квалификационных работ, рефератов и других исследовательских проектов.

Опыт использования математических методов свидетельствует, что их использование должно осуществляться с соблюдением следующих принципов для получения достоверных и репрезентативных результатов:

1) определяющую роль играет общая методология и теория научного познания;

2) необходима четкая и правильная постановка исследовательской задачи;

3) отбор репрезентативных в количественном и качественном отношении социально-экономических данных;

4) корректность применения математических методов, т. е. они должны соответствовать исследовательской задаче и характеру обрабатываемых данных;

5) необходима содержательная интерпретация и анализ полученных результатов, а также обязательная дополнительная проверка полученных в результате математической обработки сведений.


Математические методы помогают усовершенствовать технологию научного исследования: повысить ее эффективность; они дают большую экономию времени, особенно при обработке больших массивов информации, позволяют выявить скрытую информацию, хранящуюся в источнике.

Помимо этого математические методы тесно связаны с таким направлением научно-информационной деятельности как создание исторических банков данных и архивов машиночитаемых данных. Нельзя игнорировать достижения эпохи, а информационные технологии становятся одним из важнейших факторов развития всех сфер общества.

ПРОГРАММА КУРСА

Тема 1. ВВЕДЕНИЕ. МАТЕМАТИЗАЦИЯ ИСТОРИЧЕСКОЙ НАУКИ

Цель и задачи курса. Объективная необходимость совершенствования исторических методов за счет привлечения приемов математики.

Математизация науки, основное содержание. Предпосылки математизации: естественнонаучные предпосылки; социально-технические предпосылки. Границы математизации науки. Уровни математизации для естественных, технических, экономических и гуманитарных наук . Основные закономерности математизации науки: невозможность полностью охватить средствами математики области исследования других наук; соответствие применяемых математических методов содержанию математизируемой науки. Возникновение и развитие новых прикладных математических дисциплин.

Математизация исторической науки. Основные этапы и их особенности. Предпосылки математизации исторической науки. Значение разработки статистических методов для развития исторического знания.

Социально-экономические исследования с использованием математических методов в дореволюционной и советской историографии 20-х годов (, и др.)

Математико-статистические методы в работах историков 60-90-х годов. Компьютеризация науки и распространение математических методов. Создание баз данных и перспективы развития информационного обеспечения исторических исследований. Важнейшие итоги применения методов математики в социально-экономических и историко-культурных исследованиях (, и др.).

Соотношение математических методов с другими методами исторического исследования: историко-сравнительным, историко-типологическим, структурным, системным, историко-генетическим методами. Основные методологические принципы применения математико-статистических методов в исторических исследованиях.

Тема 2 . СТАТИСТИЧЕСКИЕ ПОКАЗАТЕЛИ

Основные приемы и методы статистического изучения общественных явлений: статистическое наблюдение, достоверность статистических данных. Основные формы статистического наблюдения, цель наблюдения, объект и единица наблюдения. Статистический документ как исторический источник.

Статистические показатели (показатели объема, уровня и соотношения), его основные функции. Количественная и качественная сторона статистического показателя. Разновидности статистических показателей (объемные и качественные; индивидуальные и обобщающие; интервальные и моментные).

Основные требования, предъявляемые к расчету статистических показателей, обеспечивающие их достоверность.


Взаимосвязь статистических показателей. Система показателей. Обобщающие показатели.

Абсолютные величины, определение. Виды абсолютных статистических величин, их значение и способы получения. Абсолютные величины как непосредственный результат сводки данных статистического наблюдения.

Единицы измерения, их выбор в зависимости от сущности изучаемого явления. Натуральные, стоимостные и трудовые единицы измерения .

Относительные величины. Основное содержание относительного показателя , формы их выражения (коэффициент, процент, промилле, децимилле). Зависимость формы и содержания относительного показателя.

База сравнения, выбор базы при вычислении относительных величин. Основные принципы вычисления относительных показателей, обеспечение сопоставимости и достоверности абсолютных показателей (по территории, кругу объектов и т. д.).

Относительные величины структуры, динамики, сравнения, координации и интенсивности. Способы их вычисления.

Взаимосвязь абсолютных и относительных величин. Необходимость их комплексного применения.

Тема 3. ГРУППИРОВКА ДАННЫХ. ТАБЛИЦЫ.

Сводные показатели и группировка в исторических исследованиях. Задачи, решаемые данными методами в научном исследовании: систематизация, обобщение, анализ, удобство восприятия. Статистическая совокупность, единицы наблюдения.

Задачи и основное содержание сводки. Сводка - второй этап статистического исследования. Разновидности сводных показателей (простая, вспомогательная). Основные этапы расчета сводных показателей.

Группировка - основной метод обработки количественных данных. Задачи группировки и их значение в научном исследовании. Виды группировок. Роль группировок в анализе общественных явлений и процессов.

Основные этапы построения группировки: определение изучаемой совокупности; выбор группировочного признака(количественные и качественные признаки; альтернативные и неальтернативные; факторные и результативные); распределение совокупности по группам в зависимости от вида группировки (определение количества групп и величины интервалов), шкалы измерения признаков (номинальная, порядковая, интервальная); выбор формы представления сгруппированных данных (текст, таблица, график).

Типологическая группировка, определение, основные задачи, принципы построения. Роль типологической группировки в исследовании социально-экономических типов.

Структурная группировка, определение, основные задачи, принципы построения. Роль структурной группировки в изучении структуры общественных явлений

Аналитическая (факторная) группировка, определение, основные задачи, принципы построения, Роль аналитической группировки в анализе взаимосвязей общественных явлений. Необходимость комплексного использования и изучения группировок для анализа общественных явлений.

Общие требования к построению и оформлению таблиц. Разработка макета таблицы. Реквизиты таблицы (нумерация, заголовок, наименования граф и строк, условные обозначения, обозначение чисел). Методика заполнения сведений таблицы.

Тема 4 . ГРАФИЧЕСКИЕ МЕТОДЫ АНАЛИЗА СОЦИАЛЬНО-ЭКОНОМИЧЕСКОЙ

ИНФОРМАЦИИ

Роль графиков и графического изображения в научном исследовании. Задачи графических методов: обеспечение наглядности восприятия количественных данных; аналитические задачи; характеристика свойств признаков.

Статистический график, определение. Основные элементы графика: поле графика, графический образ, пространственные ориентиры, масштабные ориентиры, экспликация графика.

Виды статистических графиков: линейная диаграмма, особенности ее построения, графические образы; столбиковая диаграмма (гистограмма), определение правила построения гистограмм в случае с равными и неравными интервалами; круговая диаграмма, определение, способы построения.

Полигон распределения признака. Нормальное распределение признака и его графическое изображение. Особенности распределения признаков, характеризующих социальные явления: скошенное, ассиметричное, умеренно ассиметричное распределение.

Линейная зависимость между признаками, особенности графического изображения линейной зависимости. Особенности линейной зависимости при характеристике социальных явлений и процессов.

Понятие тренда динамического ряда. Выявление тренда с помощью графических методов.

Тема 5. СРЕДНИЕ ВЕЛИЧИНЫ

Средние величины в научном исследовании и статистике, их сущность и определение. Основные свойства средних величин как обобщающей характеристики. Взаимосвязь метода средних величин и группировок. Общие и групповые средние. Условия типичности средних. Основные исследовательские задачи, которые решают средние величины.

Способы вычисления средних. Средняя арифметическая - простая, взвешенная. Основные свойства средней арифметической. Особенности расчета средней по дискретному и интервальному рядам распределения. Зависимость способа вычисления средней арифметической в зависимости от характера исходных данных. Особенности интерпретации среднего арифметического показателя.

Медиана - средний показатель структуры совокупности, определение, основные свойства. Определение медианного показателя для ранжированного количественного ряда. Вычисление медианы для показателя, представленного интервальной группировкой.

Мода - средний показатель структуры совокупности, основные свойства и содержание. Определение моды для дискретного и интервального рядов. Особенности исторической интерпретации моды.

Взаимосвязь среднеарифметического показателя, медианы и моды, необходимость их комплексного использование, проверка типичности средней арифметической.

Тема 6. ПОКАЗАТЕЛИ ВАРИАЦИИ

Изучение колеблемости (вариативности) значений признака. Основное содержание мер рассеяния признака, и их использование научно-исследовательской деятельности.

Абсолютные и средние показатели вариации. Вариационный размах, основное содержание, способы вычисления. Среднее линейное отклонение. Среднее квадратичное отклонение, основное содержание, способы расчета для дискретного и интервального количественного ряда. Понятие дисперсии признака.

Относительные показатели вариации. Коэффициент осцилляции, основное содержание, способы расчета. Коэффициент вариации, основное содержание способы расчета. Значение и специфика применения каждого показателя вариации при изучении социально-экономических признаков и явлений.

Тема 7.

Изучение изменений общественных явлений во времени - одна из важнейших задач социально-экономического анализа.

Понятие динамического ряда. Моментные и интервальные динамические ряды. Требования, предъявляемые к построению динамических рядов. Сопоставимость в рядах динамики.

Показатели изменения рядов динамики. Основное содержание показателей рядов динамики. Уровень ряда. Базисные и цепные показатели. Абсолютный прирост уровня динамики, базисный и цепной абсолютные приросты, способы вычисления.

Показатели темпа роста. Базисный и цепной темпы роста. Особенности их интерпретации. Показатели темпа прироста, основное содержание, способы вычисления базисных и цепных темпов прироста.

Средний уровень ряда динамики, основное содержание. Приемы вычисления средней арифметической для моментных рядов с равными и неравными интервалами и для интервального ряда с равными интервалами. Средний абсолютный прирост. Средний темп роста. Средний темп прироста.

Комплексный анализ взаимосвязанных рядов динамики. Выявление общей тенденции развития - тренда: способ скользящей средней, укрупнение интервалов, аналитические приемы обработки рядов динамики. Понятие об интерполяции и экстраполяции рядов динамики.

Тема 8.

Необходимость выявления и объяснения взаимосвязей для изучения социально-экономических явлений. Виды и формы взаимосвязей, изучаемых статистическими методами. Понятие функциональной и корреляционной связи. Основное содержание корреляционного метода и задачи решаемые с его помощью в научном исследовании. Основные этапы корреляционного анализа. Особенности интерпретации коэффициентов корреляции.

Коэффициент линейной корреляции, свойства признаков, для которых может рассчитываться коэффициент линейной корреляции. Способы вычисления коэффициента линейной корреляции для сгруппированных и несгруппированных данных. Коэффициент регрессии , основное содержание, способы расчета, особенности интерпретации. Коэффициент детерминации и его содержательная интерпретация.

Границы применения основных разновидностей корреляционных коэффициентов в зависимости от содержания и формы представления исходных данных. Коэффициент корреляционного отношения. Коэффициент ранговой корреляции. Коэффициенты ассоциации и сопряженности для альтернативных качественных признаков. Приближенные методы определения взаимосвязи между признаками: коэффициент Фехнера. Коэффициент автокорреляции. Информационные коэффициенты.

Способы упорядочения коэффициентов корреляции: корреляционная матрица, метод плеяд.

Методы многомерного статистического анализа: факторный анализ , компонентный, регрессионный анализ, кластерный анализ. Перспективы моделирования исторических процессов для изучения социальных явлений.

Тема 9. ВЫБОРОЧНОЕ ИССЛЕДОВАНИЕ

Причины и условия проведения выборочного исследования. Необходимость использования историками методов частичного изучения социальный объектов.

Основные типы частичного обследования: монографический, метод основного массива, выборочное исследование.

Определение выборочного метода, основные свойства выборки. Репрезентативность выборки и ошибка выборки.

Этапы проведения выборочного исследования. Определение объема выборки, основные приемы и способы нахождения выборочного объема (математические методы, таблица больших чисел). Практика определения объема выборки в статистике и социологии.

Способы формирования выборочной совокупности: собственно-случайная выборка, механическая выборка, типическая и гнездовая выборка. Методика организации выборочных переписей населения, бюджетных обследований семей рабочих и крестьян.

Методика доказательства репрезентативности выборки. Случайные, систематические ошибки выборки и ошибки наблюдения. Роль традиционных методов в определении достоверности результатов выборки. Математические методы вычисления ошибки выборки. Зависимость ошибки от объема и вида выборки.

Особенности интерпретации результатов выборки и распространения показателей выборочной совокупности на генеральную совокупность.

Естественная выборка, основное содержание, особенности формирования. Проблема репрезентативности естественной выборки. Основные этапы доказательства репрезентативности естественной выборки: применение традиционных и формальных методов. Метод критерия знаков, метод серий - как способы доказательства свойства случайности выборки.

Понятие малой выборки. Основные принципы использования ее в научном исследовании

Тема 11. МЕТОДЫ ФОРМАЛИЗАЦИИ СВЕДЕНИЙ МАССОВЫХ ИСТОЧНИКОВ

Необходимость формализации сведений массовых источников для получения скрытой информации. Проблема измерения информации. Количественные и качественные признаки. Шкалы измерения количественных и качественных признаков: номинальная, порядковая, интервальная. Основные этапы измерения информации источника.

Виды массовых источников, особенности их измерения. Методика построение унифицированной анкеты по материалам структурированного, слабоструктурированного исторического источника.

Особенности измерения информации неструктурированного нарративного источника. Контент-анализ, его содержание и перспективы использования. Виды контент-анализа. Контент-анализ в социологических и исторических исследованиях.

Взаимосвязь математико-статистических методов обработки информации и методов формализации сведений источника. Компьютеризация исследований. Базы и банки данных. Технология баз данных в социально-экономических исследованиях.

Задания для самостоятельной работы

Для закрепления лекционного материала студентам предлагаются задания для самостоятельной работы по следующим темам курса:

Относительные показатели Средние показатели Группировочный метод Графические методы Показатели динамики

Выполнение заданий контролируется преподавателем и является обязательным условием допуска к зачету.

Примерный перечень вопросов к зачету

1. Математизация науки, сущность, предпосылки, уровни математизации

2. Основные этапы и особенности математизация исторической науки

3. Предпосылки использования математических методов в исторических исследованиях

4. Статистический показатель, сущность, функции, разновидности

3. Методологические принципы применения статистических показателей в исторических исследованиях

6. Абсолютные величины

7. Относительные величины, содержание, формы выражения, основные принципы вычисления.

8. Виды относительных величин

9. Задачи и основное содержание сводки данных

10. Группировка, основное содержание и задачи в исследовании

11. Основные этапы построения группировки

12. Понятие группировочного признака и его градаций

13. Виды группировки

14. Правила построения и оформления таблиц

15. Динамический ряд, требования, предъявляемые к построению динамического ряда

16. Статистический график, определение, структура, решаемые задачи

17. Виды статистических графиков

18. Полигон распределение признака. Нормальное распределение признака.

19. Линейная зависимость между признаками, методы определения линейности.

20. Понятие тренда динамического ряда, способы его определения

21. Средние величины в научном исследовании, их сущность и основные свойства. Условия типичности средних.

22. Виды средних показателей совокупности. Взаимосвязь средних показателей.

23. Статистические показатели динамики, общая характеристика, виды

24. Абсолютные показатели изменения рядов динамики

25. Относительные показатели изменения рядов динамики (темпы роста, темпы прироста)

26. Средние показатели динамического ряда

27. Показатели вариации, основное содержание и решаемые задачи, виды

28. Виды несплошного наблюдения

29. Выборочное исследование, основное содержание и решаемые задачи

30. Выборочная и генеральная совокупность, основные свойства выборки

31. Этапы проведения выборочного исследования, общая характеристика

32. Определение объема выборки

33. Способы формирования выборочной совокупности

34. Ошибка выборки и методы ее определения

35. Репрезентативность выборки, факторы влияющие на репрезентативность

36. Естественная выборка, проблема репрезентативности естественной выборки

37. Основные этапы доказательства репрезентативности естественной выборки

38. Корреляционный метод, сущность, основные задачи. Особенности интерпретации коэффициентов корреляции

39. Статистическое наблюдение как метод сбора информации, основные виды статистического наблюдения.

40. Виды корреляционных коэффициентов, общая характеристика

41. Коэффициент линейной корреляции

42. Коэффициент автокорреляции

43. Методы формализации исторических источников: метод унифицированной анкеты

44. Методы формализации исторических источников: метод контент-анализа

III. Распределение часов курса по темам и видам работ:

по учебному плану специальности (№ 000– документоведение и документационное обеспечение управления)

Наименование

разделов и тем

Аудиторные занятия

Самостоятельная работа

в том числе

Введение. Математизация науки

Статистические показатели

Группировка данных. Таблицы

Средние величины

Показатели вариации

Статистические показатели динамики

Методы многомерного анализа. Коэффициенты корреляции

Выборочное исследование

Методы формализации информации

Распределение часов курса по темам и видам работ

по учебному плану специальности № 000– историко – архивоведение

Наименование

разделов и тем

Аудиторные занятия

Самостоятельная работа

в том числе

Практические (семинары, лабораторные работы)

Введение. Математизация науки

Статистические показатели

Группировка данных. Таблицы

Графические методы анализа социально-экономической информации

Средние величины

Показатели вариации

Статистические показатели динамики

Методы многомерного анализа. Коэффициенты корреляции

Выборочное исследование

Методы формализации информации

IV. Форма итогового контроля - зачет

V. Учебно-методическое обеспечение курса

Славко методы в исторических исследованиях. Учебник. Екатеринбург, 1995

Мазур методы в исторических исследованиях. Методические рекомендации. Екатеринбург, 1998

Дополнительная литература

Бородкин статистический анализ в исторических исследованиях. М.,1986

Бородкин информатика: этапы развития // Новая и новейшая история. 1996. № 1.

Тихонов для гуманитариев. М., 1997

Гарскова и банки данных в исторических исследованиях. Геттинген, 1994

Герчук методы в статистике. М., 1968

Дружинин метод и его применение в социально-экономических исследованиях. М.,1970

Методы статистических обследований. М., 1985

Средние величины. М., 1970

Юзбашев теория статистики. М., 1995.

Румянцев теория статистики. М., 1998

Шмойлова изучение основной тенденции и взаимосвязи в рядах динамики. Томск, 1985

Выборочный метод в переписях и обследованиях /пер. с англ. . М., 1976

Историческая информатика. М.,1996.

Ковальченко исторического исследования. М.,1987

Компьютер в экономической истории. Барнаул, 1997

Круг идей: модели и технологии исторической информатики. М., 1996

Круг идей: традиции и тенденции исторической информатики. М., 1997

Круг идей: макро - и микро подходы в исторической информатике. М., 1998

Круг идей: историческая информатика на пороге XXI века. Чебоксары, 1999

Круг идей: историческая информатика в информационном обществе. М., 2001

Общая теория статистики: Учебник /ред. и. М., 1994.

Практикум по теории статистики: Учеб. пособ. М., 2000

Елисеева статистики. М., 1990

Славко -статистические методы в исторических и исследованиях М.,1981

Славко методы в изучении истории советского рабочего класса. М.,1991

Статистический словарь / под ред. . М., 1989

Теория статистики: Учебник / ред. , М., 2000

Урсул общества. Введение в социальную информатику. М., 1990

Выборочный метод / пер. с нем. . М., 1978

В социологии - в социологии - совокупность принципов. отражающих соотношение математич. формализма и моделируемого с его помощью фрагмента реальности и позволяющих использовать математич. аппарат как средство познания соц. явлений. Под методикой применения критерия хи-квадрат для оценки связи между признаками (см. Коэффициенты парной связи номинальных признаков) понимается описание последовательности действий, направленных на расчет этого критерия (указания типа: рассчитайте маргинальные частоты, перемножьте их таким-то образом и т. д.), оценку его значимости по статистич. таблицам, первичную интерпретацию (см. Интерпретация результатов применения математич. метода; указания типа: коэффициент показывает вероятность того, что верна гипотеза о статистич. независимости рассматриваемых признаков, и т. д.). Методология же использования хи-квадрат критерия - совокупность утверждений о том, как, в каких задачах и в каком смысле этот критерий можно использовать в качестве показателя связи, как он соотносится с интересующими исследователя причинно-следственными отношениями и каким образом эти отношения можно изучать более глубоко путем использования этого критерия в сочетании с другими способами измерения связи. Разработка и соблюдение обсуждаемых принципов обусловливаются стремлением преодолеть главную причину неэффективного применения математич. методов в социологии - неадекватность формализма сути решаемой задачи (см. Адекватность математического метода, п. 1). Разработка принципов М.п.м.м. находится в начальной стадии. Многие принципы такого рода сформулированы лишь в общем виде, без указания возможных конкретных форм их реализации, что препятствует активному внедрению этих принципов в социологич. практику. Главный методологич. принцип применения любого математич. аппарата - самый тесный контакт социолога и математика. Принцип этот "проходит" через все остальные методологич. принципы. Для успешного решения вопроса о том, как на практике указанный контакт можно осуществлять, необходимо подробно рассмотреть весь процесс применения математич. метода и выделить те "болевые точки", в к-рых выбор того или иного элемента формализма должен определяться теоретическими концепциями социолога, использующего этот формализм для решения содержательной задачи. Такие точки, если говорить о достаточно подробных и конкретных рекомендациях, должны выделяться отдельно для каждого метода (группы методов) и для каждой социологич. задачи (группы задач). Но существуют и общие моменты, свойственные любым методам и задачам (еж. Гипотеза в процессе применения математического метода). Важные методологич. принципы связаны с процессом интерпретации рез-тов применения математич. метода. Методологич. принципом можно назвать и требование того, что при использовании математич. формализма социолог должен идти не "от метода", а "от задачи", т. е. исследователь должен не "применять факторный анализ" , не "использовать методы классификации" , а в первую очередь решать стоящую перед ним задачу: изучать структуру связей, строить типологию и т. д. (см. Поиск взаимодействий, Анализ типологический). Формализм должен "подгоняться" под задачу. Только тогда применение математич. методов принесет практич. пользу. При такой постановке вопроса, естественно, вытекает необходимость комплексного использования нескольких математич. методов для решения одной и той же задачи, класса задач (см. Комплексное использование математических методов). Ряд методологич. принципов М.п.м.м. связан с пониманием и реализацией процесса измерения в социологии (см.). Серия принципов разработана в рамках анализа данных (см.). Разработка всех рассматриваемых положений должна осуществляться на основе анализа практич. опыта сопряжения априорной социоло-гич. модели изучаемого явления с различн. математич. подходами к решению стоящей перед социологом задачи. Лит.: Толстова Ю.Н. Математика в социологии: элементарное введение в круг основных понятий (измерение, статистические закономерности, принципы анализа данных). М., 1990; Толстова Ю.Н. Логика математического анализа социологических данных. М., 1991. Ю.Н. Толстова

Другие новости по теме:

  • ГИПОТЕЗА В ПРОЦЕССЕ ПРИМЕНЕНИЯ МАТЕМАТИЧЕСКОГО МЕТОДА
  • ИНТЕРПРЕТАЦИЯ ДАННЫХ ПРИ ИСПОЛЬЗОВАНИИ МАТЕМАТИЧЕСКОГО ФОРМАЛИЗМА
  • ИНТЕРПРЕТАЦИЯ РЕЗУЛЬТАТОВ ПРИМЕНЕНИЯ МАТЕМАТИЧЕСКОГО МЕТОДА
  • МАТРИЧНО-АППРОКСИМАЦИОННЫЙ ПОДХОД К АНАЛИЗУ ДАННЫХ (МАТРИЧНО-АППРОКСИМАЦИОННЫЕ МЕТОДЫ АНАЛИЗА ДАННЫХ)
  • Методология применения математических методов в социологии
  • Общеобразовательный стандарт в области применения ИКТ в процессе изучения конкретного общеобразовательного/учебного предмета или предметной области
  • Проблема философского метода и критерия знания в античности
  • ПСИХОЛОГИЧЕСКИЙ АНАЛИЗ ПРИНЦИПОВ КОНСТРУИРОВАНИЯ И ПРИМЕНЕНИЯ ПЕДАГОГИЧЕСКИХ ТЕХНОЛОГИЙ УЧЕБНОГО ПРОЦЕССА
  • Работы, посвященные исследованию методологических проблем применения математики в социологии, охватывают множество вопросов, которые, в свою очередь, требуют определенной классификации. Не претендуя на бесспорность, можно выделить следующие разделы методологических проблем задействования математических методов в социологии, следуя в основном хронологическому порядку их постановки в российской литературе.

    Во-первых, роль статистических закономерностей в конкретных социологических исследованиях.

    Во-вторых, возможности и перспективы использования математики в социологии.

    В-третьих, методологические проблемы выборки, измерения, анализа данных и моделирования в социологии.

    Последний круг вопросов связан с общей, данной выше классификацией области применения математических методов в социологии. В силу этого методологическое рассмотрение данного круга проблем уместно объединить с обсуждением специальных вопросов.

    Первоначально дискуссия ученых исходила из двух точек зрения. Согласно первой точке зрения статистика - это исключительно социально-экономическая наука, использующая некоторые математические методы. В силу второй точки зрения статистика - универсальная наука, изучающая массовые случайные процессы безотносительно к их специфике.

    В ходе дискуссии были поставлены новые важные проблемы. Во- первых, проблема объективности статистических закономерностей в сфере социальной жизни общества и необходимости использования общей и математической статистики при проведении конкретных социологических исследований; во-вторых, проблема специфичности действия статистических законов в обществе.

    Те стороны массовых социальных явлений и процессов, которые получают и могут получить количественное выражение, становятся предметом статистики. Новый подход к этим массовым явлениям и процессам требует поиска содержательной специфики случайного и статистического в социальной действительности. Неправомерно подходить к экономическим и социальным явлениям с мерками, заимствованными из области изучения явлений природы. Статистическая совокупность, с которой работает социолог, существенно отличается от совокупности, с которой имеет дело натуралист.

    В связи с применением математики в сфере социального научного знания, с вхождением в социологию многообразных математических методов перед социологами, экономистами и математиками встал вопрос об оценке возможностей и перспектив применения математики в социологических исследованиях.

    Рассматривая связи и преемственность использования математических методов в социологии и других социальных науках - психологии, лингвистике, демографии, российские ученые обращают внимание на тот факт, что количественные методы выступают как необходимый этап социологического исследования, который связан с поисками новых методов, реализацией новейших достижений математики.

    Трудности применения математики в социологии обусловлены сложностью социальных явлений, а также тем, что социолог постоянно имеет дело с фактами не только объективными, но и субъективными, перевод которых в количественную форму требует разработки специального математического аппарата.

    Кроме того, трудности связаны с тем, что в общественных науках связь между наблюдаемым явлением и наблюдателем очень трудно свести к минимуму. С одной стороны, наблюдатель может оказывать значительное влияние на явления, привлекшие его внимание. С другой стороны, ученый-социолог не может взирать на свои объекты с холодных высот вечности и вездесущности. Иными словами, в общественных науках мы имеем дело с короткими статистическими рядами и не можем быть уверены, что значительная часть наблюдаемого нами не создана нами самими.

    Наконец, эти трудности связаны с тем, что социология изучает явления, которые характеризуются и количественными, и качественными переменными. Это ставит перед социологией проблему измерения качественных величин.

    Иногда ссылаясь на еще несовершенные и весьма приближенные результаты применения математических теорий, например теории игр, в социологии, некоторые ученые указывают на несоответствие математического аппарата социальной структуре. При этом они обычно интуитивно сравнивают стройность и строгость математики, применяющейся в физике и астрономии в XVIII и XIX вв., и сложность, неопределенность и неэффективность математического аппарата социологии XX в.

    Если иметь в виду такое сопоставление, то действительно можно отметить, что в социологии нет законов, аналогичных законам И. Ньютона и А. Эйнштейна, для области социальных явлений нет математической теории, подобной теории классической или квантовой механики. Причина тут кроется, видимо, в несравненно большей сложности и изменчивости социальных объектов. На наш взгляд, было бы большим заблуждением думать, что когда-нибудь в отношении общества будут найдены уравнения, подобные уравнениям классической механики.

    В последние годы все больший вес приобретает обсуждение методологических проблем использования новейших математических методов, выросших в рамках математической статистики, технической кибернетики, математической экономики. Представляет интерес обсуждение методологических проблем применения методов распознавания образов в конкретных социальных исследованиях.

    Эти задачи перспективны, по нашему мнению, в двух основных направлениях. Во-первых, их решение позволяет получать сложные статистические критерии классификации полипараметрических объектов, которые в дальнейшем можно использовать в автоматизированных системах управления социальными системами. Во-вторых, их решение дает информативный набор признаков, описывающих ситуации, подлежащие классификации, что позволит в дальнейшем увеличить надежность классификации.

    В последнее время начинают все более интенсивно обсуждаться проблемы применения математических методов в социальном исследовании как этапе и инструменте социального управления и планирования. Математическое обеспечение конкретного социологического исследования становится необходимостью на пути отыскания и реализации народно-хозяйственного оптимума.

    Любое творческое начало в деятельности человека в любой сфере его деятельности должно начинаться с определения целей исследования и способов их достижения. Чем яснее и чётче исследователь ведёт себя на этом этапе, тем качественнее получаемые результаты и меньше вероятность получения неточных, а зачастую ошибочных результатов. Цель исследования и способ её достижения формулируется в постановке задачи исследования. Очевидно, что одномоментно сформулировать постановку задачи невозможно. Вначале постановка задачи формулируется в простейшем варианте, далее происходит уточнение различных факторов, определяющих решение задачи, анализ имеющихся статистических данных, принятие допущений и т.п. Однако даже формулировка задачи в простейшей вербальной форме требует от исследователя мобилизации всех

    знаний, используемых в дальнейшем для решения поставленной задачи. Словесная (вербальная) постановка задачи может звучать так: «… необходимо разработать техническую систему для реализации технологического регламента (системы технологических процессов) так, чтобы обеспечивались заданная производительность, качество производимой продукции, удобство эксплуатации, безопасность для окружающей среды и обслуживающего персонала, минимальные капитальные, эксплуатационные расходы и себестоимость получаемой продукции. При этом процесс исследования, проектирования, монтажа и выхода на проектную мощность не должен превышать заданных сроков».

    Так может формулироваться постановка задачи на её начальной стадии. Далее требуется уточнять, что представляет собой технологический процесс, который будет реализован в технической системе, насколько он отвечает тем знаниям в конкретной предметной области, на основании которых можно будет получить желаемые результаты, какие будут приняты допущения, в каком виде будут представлены конструктивные и режимные характеристики технической системы, обеспечивающие наилучшее протекание технологического процесса, в каких интервалах будет осуществляться поиск конструктивных и режимных характеристик технической системы, как будут оцениваться капитальные и эксплуатационные затраты, какие методы будут применяться при решении поставленной задачи и т.п. Так, например, варьируемые (искомые) величины хi обосновываются при постановке задачи. Из условий физической реализуемости они ограничиваются минимальными и максимальными значениями: x min ≤ xi xi max . Границы интервала задаются исследователем. Чем уже интервал [x min , x max ] , тем проще найти оптимальное значение опт xi . Однако при уменьшении интервала может возникнуть следующая ситуация, когда max опт xi > xi или min опт xi < xi т.е. опт xi будет находиться вне заданного исследователем интервала. В этом случае истинное значение опт xi не будет найдено, а вместо него будет получена одна из границ интервала. Из приведённого выше примера ясно, насколько важна роль исследователя при задании границ применения искомых параметров. Если рассматривать решение задачи проектирования «с конца», то завершающей стадией получения проектных решений будут средства вычислительной техники – компьютер. Представить информацию для компьютера можно только в строгой математической формулировке, т.е. задача должна быть формализована. Это формализованное математическое представление решаемой задачи и будет завершающим этапом постановки задачи, когда процесс сбора, анализа и представления информации завершён и можно начинать собственно вычислительные операции. Этапу окончательной постановки задачи предшествует этап разработки математической модели объекта исследования, когда в соответствии с постановкой задачи осуществляется формализация процессов, протекающих в объекте с требуемой для практического использования точностью. Последнее предопределяет адекватность математической модели исследуемому объекту в области её использования (определения) в соответствии с постановкой задачи. Отсюда следует важный вывод – применение компьютера до окончательной постановки задачи в формализованном виде не требуется. Исключением является этап реализации метода решения уравнений математической модели и проверки её адекватности. До окончательной постановки задачи действия исследователя должны быть сосредоточены на анализе постановки задачи исследования, обосновании искомых параметров объекта, допущениях, которые принимает исследователь, изучении процессов, протекающих в объекте, выбора метода их описания и на основании этого разработке адекватной модели объекта. На этих этапах исследователь должен максимально мобилизовать свои мыслительные способности и отдавать себе отчёт в том, что компьютер позволяет только ускорить процесс принятия решения по той программе, которую заложит в него исследователь. Ещё один вывод, который можно сделать, заключается в том, что постановка задачи однозначно определяет структуру математической модели и область её определения. Другими словами, постановка задачи является техническим заданием на разработку математической модели объекта. Иногда на этом этапе исследователю требуются дополнительные экспериментальные данные, дополнительные исследования, статистическая информация, которые на начальном этапе постановки задачи были неочевидны. Следует отметить, что большинство статистических данных есть не что иное, как результаты эксперимента на реальном, физически существующем объекте при определённых условиях проведения эксперимента. Процесс постановки задачи исследования завершается тогда, когда можно в окончательном варианте осуществить запись решаемой задачи в формализованном виде, т.е. в форме математических выражений. Таким образом, постановка задачи исследования сводится к процедуре последовательного уточнения формулировки задачи до тех пор, пока задачу можно будет решать. Можно сделать вывод о целесообразности осуществлять постановку задачи в терминах теории оптимального управления, т.е. в терминах экстремальных задач. В этом случае научно- исследовательская задача в любой предметной области может быть сведена к следующей постановке:



    Необходимо найти такие варьируемые параметры, чтобы критерий оптимальности (зависящий от этих параметров) достигал своего экстремума (максимума или минимума) при ограничениях в форме равенств и неравенств. Под выражением «равенства и неравенства» будем понимать совокупность уравнений (алгебраических, дифференциальных с обыкновенными или частными производными, интегральных, логических условий и т.п.), описывающих объект исследования при принятых исследователем допущениях, а также неравенств, ограничивающих интервально, как варьируемые переменные, так и ряд переменных, входящих в уравнения. Совокупность (система) уравнений и неравенств позволяет получить математическую модель объекта исследования и область её определения, т.е. границы использования модели, в которых математическая модель описывает исследуемый объект с достаточной для практики точностью. Наличие математической модели объекта позволяет осуществлять имитацию различных условий функционирования объекта, используя математические методы решения уравнений модели и средства современной вычислительной техники.

    При исследовании и проектировании технических систем уравнения математических моделей, как правило, носят нелинейный характер, имеют высокую размерность, т.е. получение аналитического решения возможно только в простейших случаях. Чаще всего для решения уравнений математической модели используют различные модификации численных методов (методы Эйлера, Кунге-Кутта, разностные схемы). Часто математическая модель в окончательной постановке задачи используется только для имитационного моделирования, задача оптимизации при этом не решается. Суть имитационного моделирования заключается в исследовании различных характеристик процессов, протекающих в объекте, с целью выявления новых или уточнения ряда известных характеристик, не нашедших до настоящего времени отражения в конкретной предметной области. Применение методов математического моделирования исследуемых объектов позволяет существенно сократить время,

    за которое могут быть получены результаты математического моделирования по сравнению с физическим, так как процессы анализа ведутся в другом временном масштабе. И масштаб этот определяется быстродействием средств вычислительной техники. Кроме того математическое моделирование не требует экономических затрат на проведение эксперементальных исследований на реально существующем объекте. Естественно, что такие рассуждения будут правомерны при условии, что математическая модель адекватна исследуемому объекту в рамках условий физической реализуемости (области применения математической модели), для конкретно поставленной задачи.

    Следует также отметить, что применение математических методов и, в частности, метода математического моделирования требуют от исследователя большого объёма знаний как о процессах, протекающих в объекте исследования, так и о собственно математических и инструментальных методах. Таким образом, в границах области определения, используя математическую модель исследуемого объекта, можно осуществлять имитацию реальных процессов, протекающих в объекте, задавая при этом различные сочетания искомых величин. Упорядочивание имитационных процессов осуществляется с помощью теории оптимального управления, когда ставится цель получения самого лучшего, оптимального решения поставленной задачи. Суть применения оптимального управления заключается в следующем: с помощью математической модели исследователь вычисляет значение критерия оптимальности в некоторой заранее заданной им точке пространства искомых величин, определяется направление движения к экстремуму критерия и в этом направлении делается рабочий шаг, вычисляется новое значение критерия оптимальности, и процедура повторяется до достижения экстремального значения критерия. Таким образом, выполняется принцип оптимальности Беллмана: независимо от того, как Вы попали в данную точку пространства (искомых, исследуемых величин), дальнейшее движение должно осуществляться по оптимальной траектории. Учитывая сказанное выше, структура исследований с применением математических методов, может быть представлена блок-схемой, рис. 2. Постановка задачи исследования является определяющим этапом в исследовании и, в частности, применении математических и инструментальных методов в исследованиях технического характера.

    Рисунок 2 - Структура исследований с применением математических методов