Расстояние до звезд пространственные скорости звезд. Презентация на тему "пространственная скорость звезд". Связь собственного движения звезд с их координатами


Звезды в древности считались неподвижными друг относительно друга. Однако в XVIII в. было обнаружено очень медленное перемещение Сириуса по небу. Оно заметно лишь при сравнении точных измерений его положения, сделанных с промежутком времени в десятилетия.

Собственным движением звезды называется ее видимое угловое смещение по небу за один год. Оно выражается долями секунды дуги в год.

Только звезда Барнарда проходит за год дугу в что за 200 лет составит 0,5°, или видимый поперечник Луны. За это звезду Барнарда назвали «летящей». Но если расстояние до звезды неизвестно, то ее собственное движение мало что говорит об ее истинной скорости.

Например, пути, пройденные звездами за год (рис. 98), могут быть разные: а соответствующие им собственные движения одинаковые.

2. Компоненты пространственной скорости звезд.

Скорость звезды в пространстве можно представить как векторную сумму двух компонент, один из которых направлен вдоль луча зрения, другой перпендикулярен ему. Первый компонент представляет собой лучевую, второй - тангенциальную скорость. Собственное движение звезды определяется лишь ее тангенциальной скоростью и не зависит от лучевой. Чтобы вычислить тангенциальную скорость в километрах в секунду, надо выраженное в радианах в год, умножить на расстояние до звезды выраженное в километрах,

Рис. 98. Собственное движение лучевая тангенциальная и полная пространственная скорость звезды .

Рис. 99. Изменение видимого расположения ярких звезд созвездия Большой Медведицы вследствие их собственных движений: сверху - 50 тыс. лет назад; в середине - в настоящее время; внизу - через 50 тыс. лет.

и разделить на число секунд в году. Но так как на практике всегда определяется в секундах дуги, в парсеках, то для вычисления в километрах в секунду получается формула:

Если определена по спектру и лучевая скорость звезды то пространственная скорость ее V будет равна:

Скорости звезд относительно Солнца (или Земли) обычно составляют десятки километров в секунду.

Собственные движения звезд определяют, сравнивая фотографии выбранного участка неба, сделанные на одном и том же телескопе через промежуток времени, измеряемый годами или даже десятилетиями. Из-за того, что звезда движется, ее положение на фоне более далеких звезд за это время немного изменяется. Смещение звезды на фотографиях измеряют с помощью специальных микроскопов. Такое смещение удается оценить лишь для сравнительно близких звезд.

В отличие от тангенциальной скорости лучевую скорость можно измерить, даже если звезда очень далека, но яркость ее достаточна для получения спектрограммы.

Звезды, близкие друг к другу на небе, в пространстве могут быть расположены далеко друг от друга и двигаться с различными скоростями. Поэтому по истечении тысячелетий вид созвездий должен сильно меняться вследствие собственных движений звезд (рис. 99).

3. Движение Солнечной системы.

В начале XIX в. В. Гершель

установил по собственным движениям немногих близких звезд, что по отношению к ним Солнечная система движется в направлении созвездий Лиры и Геркулеса. Направление, в котором движется Солнечная система, называется апексом движения. Впоследствии, когда стали определять по спектрам лучевые скорости звезд, вывод Гершеля подтвердился. В направлении апекса звезды в среднем приближаются к нам со скоростью 20 км/с, а в противоположном направлении с такой же скоростью в среднем удаляются от нас.

Итак, Солнечная система движется в направлении созвездий Лиры и Геркулеса со скоростью 20 км/с по отношению к соседним звездам Задавать вопрос о том, когда мы долетим до созвездия Лиры, бессмысленно, так как созвездие не является пространственно ограниченным образованием. Одни звезды, которые сейчас мы относим к созвездию Лиры, мы минуем раньше (на огромном от них расстоянии), другие будут всегда оставаться практически так же далеки от нас, как и сейчас.

(см. скан)

4. Если звезда (см. задачу 1) приближается к нам со скоростью 100 км/с, то как изменится ее яркость за 100 лет?

4. Вращение Галактики.

Все звезды Галактики обращаются вокруг ее центра. Угловая скорость обращения звезд во внутренней области Галактики (почти до Солнца) примерно одинакова, а внешние ее части вращаются медленнее. Этим обращение звезд в Галактике отличается от обращения планет в Солнечной системе, где и угловая, и линейная скорости быстро уменьшаются с увеличением радиуса орбиты. Это различие связано с тем, что ядро Галактики не преобладает в ней по массе, как Солнце в Солнечной системе.

Солнечная система совершает полный оборот вокруг центра Галактики примерно за 200 млн. лат со скоростью 250 км/с.

Пространственная скорость V звезд всегда определяется относительно Солнца (рис. 10) и вычисляется по лучевой скорости V r направленной вдоль луча r, соединяющего звезду с Солнцем, и по тангенциальной скорости V t .

(141)

Рис. 10, Движение звезды относительно Солнца

Направление пространственной скорости V звезды характеризуется углом θ между нею и лучом зрения наблюдателя; очевидно,

cos θ = V r / V

и sin θ =V t /V (142)

причем 0° ≤ θ ≤ 180°.

Из наблюдений определяется лучевая скорость v r звезды относительно Земли. Если в спектре звезды линия с длиной волны λ сдвинута от своего нормального (лабораторного) положения на величину Δх мм, а дисперсия спектрограммы на данном ее участке равна D Å/мм, то смещение линии, выраженное в Å,

Δλ = λ" - λ = Δх · D (143)

и, по (138), лучевая скорость

v r = c (Δλ / λ)

где с = 3·10 5 км/с - скорость света.

Тогда лучевая скорость в километрах в секунду относительно Солнца

V r = v r - 29,8·sin (λ * - λ ) cos β * , (144)

где λ * - эклиптическая долгота и β * - эклиптическая широта звезды, λ - эклиптическая долгота Солнца в день получения спектрограммы звезды (заимствуется из астрономического ежегодника), а число 29,8 выражает круговую скорость Земли в километрах в секунду.

Скорость V r (или v r) положительна при направлении от Солнца (или от Земли) и отрицательна при обратном направлении.

Тангенциальная скорость V t звезды в километрах в секунду определяется по ее годичному параллаксу π и собственному движению μ, т. е. по дуге, на которую смещается звезда на небе за 1 год:

(145)

причем μ и π выражены в секундах дуги ("), а расстояние r до звезды - в парсеках.

В свою очередь, μ определяется по изменению экваториальных координат α и δ звезды за год (с учетюм прецессии):

(146)

причем компонент собственного движения звезды по прямому восхождению μ a выражен в секундах времени (с), а компонент по склонению μ δ -в секундах дуги (").

Направление собственного движения μ определяется позиционным углом ψ, отсчитываемым от направления к северному полюсу мира:

(147)

причём ψ в пределах от 0° до 360°.

У галактик и квазаров собственное движение μ = 0, и поэтому у них определяется только лучевая скорость V r , а так как эта скорость велика, то скоростью Земли пренебрегают и тогда V r = v r . Обозначая Δλ/λ = z, получим для сравнительно близких галактик, у которых z ≤ 0,1,

V r = cz, (148)

и, согласно закону Хабба, их расстояние в мегапарсеках (Мпс) *

r = V r / H = V r / 50 (149)

где современное значение постоянной Хаббла H = 50 км/с·Мпс.

Для далеких галактик и квазаров, у которых z > 0,1, следует пользоваться релятивистской формулой

(150)

а оценка их расстояний зависит от принятой космологической модели Вселенной. Так, в закрытой пульсирующей

(151),

а в открытой модели Эйнштейна - де Ситтера

(152)

Пример 1. В спектре звезды линия гелия с длиной волны 5016 Å сдвинута на 0,017 мм к красному концу, при дисперсии спектрограммы на этом участке в 20 Å/мм. Эклиптическая долгота звезды равна 47°55" и ее эклиптическая широта - 26°45", а во время фотографирования спектра эклиптическая долгота Солнца была близкой к 223° 14". Определить лучевую скорость звезды.

Данные : спектр, λ = 5016 Å, Δx = +0,017 мм, .

D=20 Å/мм; звезда, λ* = 47°55", β* = -26°45"; Солнце, λ = 223° 14".

Решение . По формулам (143) и (138) находим смещение спектральной линии:

Δλ = ΔxD = +0,017·20 = +0,34Å

и лучевую скорость звезды относительно Земли:

Чтобы использовать формулу (144) для вычисления лучевой скорости Vr звезды относительно Солнца, необходимо по таблицам найти

sin (λ*-λ ) = sin (47°55"-223° 14") = -0,0816
иcosβ* = cos (-26°45") = + 0,8930,

V r -v r -29,8·sin(λ * -λ )cosβ * = +20,5+29,8·0,0816·0,8930 = +22,7; V r = +22,7 км/с.

Пример 2. В спектре квазара, фотографический блеск которого 15m,5 и угловой диаметр 0",03, эмиссионная линия водорода Η β с длиной волны 4861 Å занимает положение, соответствующее длине волны 5421 Å. Найти лучевую скорость, расстояние, линейные размеры и светимость этого квазара.

Данные : m pg = 15m,5, Δ = 0",03;

Η β , λ" = 5421 Å, λ = 4861 Å.

Решение . По формуле (143), смещение спектральной линии водорода

Δλ = λ" - λ = 5421 - 4861 = + 560Å

и так как z > 0,1 то, согласно (150), лучевая скорость

или V r = 0,108·3·10 5 км/с = +32400 км/с.

По формуле (151), в закрытой пульсирующей модели Вселенной расстояние до квазара

r = 619 Μпс =619· 10 6 пс.

или r = 619·10 6 ·3,26 cв, лет = 2,02· 10 9 cв, лет

Тогда, по (55), линейный диаметр квазара

или D = 90 · 3,26 = 293 св. года.

Согласно (117), его абсолютная фотографическая звездная величина

M pg = m pg + 5 - 5 lgr = 15 m , 5 + 5 - lg619·10 6 = - 23 m ,5

и, по формуле (120), логарифм светимости

lgL pg = 0,4(M pg - M pg) = 0,4·(5 m ,36 + 23 m ,5) = 11,54,

откуда светимость L pg = 347·10 9 , т. е. равна светимости 347 миллиардов звезд типа Солнца.

Те же величины в модели Эйнштейна - де Ситтера получаются по формуле (152):

r = 636 Мпс;

или r = 636·10 6 ·3,26 св. лет. = 2,07·10 9 св. лет, D = 92,5 пс = 302 св. года и с той же степенью точности M pg = - 23 m ,5 и L pg = 347·10 9

Задача 345. Линии поглощения водорода Η β , и Н δ , длина волны которых 4861 Å и 4102 Å, смещены в спектре звезды к красному концу соответственно на 0,66 и 0,56 Å. Определить лучевую скорость звезды относительно Земли в ночь наблюдений.

Задача 346. Решить предыдущую задачу для звезды Регула (а Льва), если те же линии в ее спектре смещены к фиолетовому концу соответственно на 0,32 Å и 0,27 Å.

Задача 347. В какую сторону спектра и на сколько миллиметров сдвинуты линии поглощения железа с длиной волны 5270 Å и 4308 Å в спектрограмме, звезды с лучевой скоростью - 60 км/с, если дисперсия спектрограммы на первом ее участке равна 25 Å/мм, а на втором 20 Å/мм?

Задача 348. Вычислить положение водородных линий поглощения Η β , Η δ и Н x в спектрах звезд, лучевая скорость одной из которых относительно Земли равна -50 км/с, а другой +30 км/с. Нормальная длина волны этих линий соответственно 4861, 4102 и 3750 Å.

Задача 349. Звезды β Дракона и γ Дракона находятся вблизи северного полюса эклиптики. Линии железа с λ=5168 Å и λ=4384 Å в спектре первой звезды смещены к фиолетовому концу на 0,34Å и 0,29Å, а в спектре второй звезды - на 0,47 Å и 0,40 Å. Определить лучевую скорость этих звезд.

Задача 350. Найти лучевую скорость звезды Канопуса (а Киля), если в ночь наблюдений эклиптическая долгота Солнца была близкой к эклиптической долготе звезды, а линии поглощения железа Ε (5270 Å) и G (4326 Å) в спектрограмме звезды сдвинуты к красному концу соответственно на 0,018 мм и 0,020 мм, при дисперсии 20 Å/мм на первом участке спектрограммы и 15 Å/мм на втором ее участке.

Задача 351. В ночь фотографирования спектра звезды Беги (а Лиры) ее эклиптическая долгота отличалась от эклиптической долготы Солнца на 180°, и линии поглощения водорода Н β (4861 Å) и Н γ (4102 Å) оказались сдвинутыми к фиолетовому концу спектрограммы соответственно на 0,0225 мм и 0,0380 мм при дисперсии на участках расположения этих линий равной 10 Å/мм й 5 Å/мм. Найти лучевую скорость Веги.

Задача 352. При каких условиях поправка приведения лучевой скорости звезд к Солнцу равна нулю и при каких её абсолютное значение становится наибольшим?

Задача 353. По приведенным в таблице сведениям вычислить величину и позиционный угол тангенциальной скорости звезд.

Задача 354. Вычислить тангенциальную скорость звезд, параллакс и собственное движение которых указаны после их названий: Альтаир (а Орла) 0",198 и 0",658; Спика (а Девы) 0",021 и 0",054; ε Индейца 0",285 и 4",69.

Задача 355. Для звезд предыдущей задачи найти компоненты собственного движения по экваториальным координатам. Позиционный угол собственного движения и склонение каждой звезды указаны после ее названия: Альтаир 54°,4 и +8°44"; Спика 229°,5 и -10°54"; ε Индейца 123°,0 и -57°00".

Задача 356. За какой интервал времени и в каком направлении звезды предыдущей задачи сместятся на диаметр лунного диска (30") и какими будут тогда их экваториальные координаты в координатной сетке 1950.0, если в настоящее время в этой же сетке их координаты: у Альтаира 19ч48м20с,6 и +8°44"05", у Спики 13ч22м33с,3 и -10°54"04" и у ε Индейца 21ч59м33с,0 и - 56°59"34"?

Задача 357. Какими будут экваториальные координаты звезд предыдущей задачи в 2000 г. в координатной сетке этого года, если в местах их положения годовая прецессия по прямому восхождению и по склонению (в последовательности перечисления звезд) равна +2с,88 и +9",1; +3с,16 и -18",7; +4с,10 и +17",4?

Задача 358. Лучевая скорость звезды Ахернара (а Эридана) равна +19 км/с, годичный параллакс 0",032 и собственное движение 0",098, а у звезды Денеба (а Лебедя) аналогичные величины равны соответственно - 5 км/с, 0"",004 и 0",003. Найти величину и направление пространственной скорости этих звезд.

Задача 359. В спектре звезды Проциона (а Малого Пса) линии поглощения железа с длиной волны 5168 Å и 4326 Å смещены (с учетом скорости Земли) к фиолетовому концу соответственно на 0,052 Å и 0,043 Å. Компоненты собственного движения звезды равны- 0c,0473 по прямому восхождению и -1",032 по склонению, а ее параллакс 0",288, Найти величину и направление пространственной скорости Проциона, склонение которого +5°29".

Задача 360. На спектрограмме звезды Капеллы (а Возничего) линии поглощения железа с длиной волны 4958 Å и 4308 Å сдвинуты к красному концу на 0,015 мм при дисперсии на этих участках соответственно 50 Å/мм и 44 Å/мм. Склонение звезды +45°58", эклиптическая долгота 8l°10", эклиптическая широта +22°52", параллакс 0",073, а компоненты собственного движения + 0 с,0083 и -0",427. В ночь наблюдений эклиптическая долгота Солнца была 46°18/. Узнать величину и направление пространственной скорости звезды.

Задача 361. В настоящую эпоху визуальный блеск звезды Беги (а Лиры) + 0m,14, ее собственное движение 0",345, параллакс 0",123 и лучевая скорость-14 км/с. Найти эпоху наибольшего сближения Веги с Солнцем и вычислить для нее расстояние, параллакс, собственное движение, лучевую и тангенциальную скорость и блеск этой звезды.

Задача 362. Решить предыдущую задачу для звезды Толима-на (а Центавра), визуальный блеск которой в современную эпоху равен +0m,06, собственное движение 3",674, параллакс 0",751 и лучевая скорость - 25 км/с. Какими были искомые величины 10 тыс. лет назад и какими они будут через 10 тыс. лет после эпохи наибольшего сближения?

Задача 363. В спектрах далеких галактик и квазаров наблюдается смещение линий к красному концу (красное смещение). Если это явление интерпретировать как эффект Допплера, то какой лучевой скоростью обладают названные объекты при красном смещении, составляющем соответственно 0,1, 0,5 и 2 длины волны спектральных линий?

Задача 364. По данным предыдущей задачи вычислить расстояния тех же объектов в двух космологических моделях, приняв постоянную Хаббла равной 50 км/с Мпс.

Задача 365. Найти красное смещение в спектрах внегалактических объектов, соответствующее лучевой скорости, равной 0,25 и 0,75 скорости света.

Задача 366. Какое получится различие в лучевых скоростях объектов предыдущей задачи, если вместо релятивистской формулы эффекта Допплера использовать обычную формулу этого эффекта?

Задача 367. В таблице приведены сведения о трех галактиках:

Зная, что у линий Η и К ионизованного кальция длина волны 3968 Å (Н) и 3934 Å (К), вычислить лучевую скорость, расстояние, линейные размеры, абсолютную звездную величину и светимость этих галактик.

Задача 368. В спектре квазара СТА102, имеющего блеск 17m,3, смещение эмиссионных линий превышает соответствующую длину волны в 1,037 раза, а в спектре квазара PKS 0237-23 (блеск 16m,6) -в 2,223 раза. На каких расстояниях находятся эти квазары и чему равна их светимость? Задачу решить по двум космологическим моделям.

Задача 369. Вычислить расстояние, линейные размеры и светимость квазара ЗС 48, если его угловой диаметр равен 0",56, блеск 16m,0, а линия λ 2798 ионизованного магния смещена в его спектре до положения λ 3832.

Задача 370. Решить предыдущую задачу для квазара ЗС 273 с угловым диаметром 0",24 и блеском 12m,8, если эмиссионные линии водорода в его спектре сдвинуты:

Ηβ (λ 4861) до λ =5640 Å; Н γ (λ 4340) до

λ = 5030 Å и Η δ (λ 4102) до λ = 4760 Å.

Задача 371. У одного из наиболее удаленных квазаров красное смещение составляет 3,53 нормальной длины спектральных линий. Найти лучевую скорость квазара и оценить расстояние до него.

Ответы - Движение звезд и галактик в пространстве

Как показывают наблюдения и расчеты, звезды движутся в пространстве с большими скоростями вплоть до сотен километров в секунду. Скорость, с которой звезда движется в пространстве, называется пространственной скоростью этой звезды.

Пространственная скорость V звезды разлагается на две составляющие: лучевую скорость звезды относительно Солнца V r (она направлена по лучу зрения) и тангенциальную скорость V t (направлена перпендикулярно лучу зрения). По­скольку V r и V t взаимно перпендикулярны, пространственная скорость звезды равна

Лучевая скорость звезды определяется по доплеровскому смещению линий в спектре звезды. Но непосредственно из наблюдений можно найти лучевую скорость относительно Земли v r :

где l и l ¤ - эклиптические долготы соответственно звезды и Солнца, b - эклиптическая широта звезды (см. § 1.9). Соотношение (6.3) указывает на то, что для нахождения V r необходимо из скорости v r исключить проекцию скорости обращения Земли вокруг Солнца v Å = 29,8 км/с на направление к звезде.

Наличие тангенциальной скорости звезды V t приводит к угловому смещению звезды по небу. Смещение звезды на небесной сфере за год называется собственным движением звезды m . Оно выражается в секундах дуги в год.

Собственные движения у разных звезд различны по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1" в год. Самое большое известное собственное движение m = 10”,27 (у “летящей” звезды Барнарда). Громадное же большинство измеренных собственных движений у звезд составляют сотые и тысячные доли секунды дуги в год. Из-за малости собственных движений изменение видимых положений звезд не заметно для невооруженного глаза.

Выделяют две составляющие собственного движения звезды: собственное движение по прямому восхождению m a и собственное движение по склонению m d . Собственное же движение звезды m вычисляется по формуле

Зная обе составляющие V r и V t , можно определить величину и направление пространственной скорости звезды V .

Анализ измеренных пространственных скоростей звезд позволяет сделать следующие выводы.



1) Наше Солнце движется относительно ближайших к нам звезд со скоростью около 20 км/с по направлению к точке, расположенной в созвездии Геркулеса. Эта точка называется апексом Солнца.

2) Кроме этого, Солнце вместе с окружающими звездами движется со скоростью около 220 км/с по направлению к точке в созвездии Лебедя. Это движение есть следствие вращения Галактики вокруг собственной оси . Если подсчитать время полного оборота Солнца вокруг центра Галактики, то получается примерно 250 млн лет. Этот промежуток времени называется галактическим годом .

Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса, находящегося в созвездии Волосы Вероники. Угловая скорость вращения зависит от расстояния до центра и убывает по мере удаления от него.

Вопросы программы:

Собственное движение и лучевые скорости звезд;

Пекулярные скорости звезд и Солнца в Галактике;

Вращение Галактики.

Краткое содержание:

Собственное движение и лучевые скорости звезд, пекулярные скорости звезд и Солнца в Галактике

Сравнение экваториальных координат одних и тех же звезд, определенных через значительные промежутки времени, показало, что именяются с течением времени. Значительная часть этих изменений вызывается прецессией, нутацией, аберрацией и годичным параллаксом. Если исключить влияние этих причин, то изменения уменьшаются, но не исчезают полностью. Оставшееся смещение звезды на небесной сфере за год называется собственным движением звезды. Оно выражается в секундах дуги в год.

Для определения этих движений сравниваются фотопластинки, отснятые через большие промежутки времени, составляющие 20 и более лет. Поделив полученное смещение на число прошедших лет, исследователи получают движение звезды в год. Точность определения зависит от величины промежутка времени, прошедшего между двумя снимками.

Собственные движения различны у разных звезд по величине и направлению. Только несколько десятков звезд имеют собственные движения больше 1″ в год. Самое большое известное собственное движение у “летящей” звезды Барнарда = 10″,27. Основное число звезд имеет собственное движение, равное сотым и тысячным долям секунды дуги в год. Лучшие современные определения достигают 0",001 в год. За большие промежутки времени, равные десяткам тысяч лет, рисунки созвездий сильно меняются.

Собственное движение звезды происходит по дуге большого круга с постоянной скоростью. Прямое движение изменяется на величину   , называемую собственным движением по прямому восхождению, а склонение - на величину  , называемую собственным движением по склонению.

Собственное движение звезды вычисляется по формуле:

Е
сли известно собственное движение звезды за год и расстояние до нее r в парсеках, то нетрудно вычислить проекцию пространственной скорости звезды на картинную плоскость. Эта проекция называется тангенциальной скоростью V t и вычисляется по формуле:

где r - расстояние до звезды, выраженное в парсеках.

Чтобы найти пространственную скорость V звезды, необходимо знать ее лучевую скорость V r , которая определяется по доплеровскому смещению линий в спектре и V t , которая определяется по годичному параллаксу и. Поскольку V t и V r взаимно перпендикулярны, пространственная скорость звезды равна:

V = V t  + V r ).

Для определения V обязательно указывается угол , отыскиваемый по его функциям:

sin  = V t /V,

cos  = V t /V.

Угол лежит в пределах от 0 до 180.

Система

Центавра

Солнечная

система

Истинное движение в пространстве V

Направление собственного движения вводится позиционным углом, отсчитываемым против часовой стрелки от северного направления круга склонения звезды. В зависимости от изменения экваториальных координат звезды, позиционный уголможет иметь значения от 0 до 360и вычисляется по формулам:

sin =  /,

cos =  /

с учетом знаков обеих функций. Пространственная скорость звезды на протяжении многих столетий остается практически неизменной по величине и направлению. Поэтому, зная V и r звезды в настоящую эпоху, можно вычислить эпоху наибольшего сближения звезды с Солнцем и определить для нее расстояние r min , параллакс, собственное движение, компоненты пространственной скорости и видимую звездную величину. Расстояние до звезды в парсеках равно r = 1/, 1 парсек = 3,26 св. года.

З

Движение системы Центавра

нание собственных движений и лучевых скоростей звёзд позволяет судить о движениях звёзд относительно Солнца, которое тоже движется в пространстве. Поэтому наблюдаемые движения звёзд складываются из двух частей, из которых одна является следствием движения Солнца, а другая - индивидуальным движением звезды.

Чтобы судить о движениях звёзд, следует найти скорость движения Солнца и исключить её из наблюдаемых скоростей движения звёзд.

Точка на небесной сфере, к которой направлен вектор скорости Солнца, называется солнечным апексом, а противоположная точка - антиапексом.

Апекс Солнечной системы находится в созвездии Геркулеса, имеет координаты: = 270  ,= +30  . В этом направлении Солнце движется со скоростью около 20 км/с, относительно звезд, находящихся от него не далее 100 пс. В течение года Солнце проходит 630 000 000 км, или 4,2 а.е.

Вращение Галактики

Если какая-то группа звёзд движется с одинаковой скоростью, то находясь на одной из этих вёзд, нельзя обнаружить общее движение. Иначе обстоит дело, если скорость меняется так, как будто группа звёзд движется вокруг общего центра. Тогда скорость более близких к центру звёзд будет меньшей, чем удалённых от центра. Наблюдаемые лучевые скорости далёких звёзд демонстрируют такое движение. Все звёзды вместе с Солнцем движутся перпендикулярно к направлению на центр Галактики. Это движение является следствием общего вращения Галактики, скорость которого меняется с расстоянием от её центра (дифференциальное вращение).

Вращение Галактики имеет следующие особенности:

1. Оно происходит по часовой стрелке, если смотреть на Галактику со стороны северного её полюса, находящегося в созвездии Волос Вероники.

2. Угловая скорость вращения убывает по мере удаления от центра.

3. Линейная скорость вращения сначала возрастает по мере удаления от центра. Затем примерно на расстоянии Солнца достигает наибольшего значения около 250 км/с, после чего медленно убывает.

4. Солнце и звёзды в его окрестности совершают полный оборот вокруг центра Галактики примерно за 230 млн. лет. Этот промежуток времени называется галактическим годом.

Контрольные вопросы:

    Что такое собственное движение звезд?

    Как обнаруживается собственное движение звезд?

    У какой звезды обнаружено самое большое собственное движение?

    По какой формуле вычисляется собственное движение звезды?

    На какие составляющие разлагается пространственная скорость звезды?

    Как называется точка на небесной сфере, в направлении которой движется Солнца?

    В каком созвездии находится апекс?

    С какой скоростью движется Солнце относительно ближайших звезд?

    Какое расстояние проходит Солнце за год?

    Каковы особенности вращения Галактики?

    Каков период вращения Галактики?

Задачи:

1. Лучевая скорость звезды Бетельгейзе = 21 км/с, собственное движение= 0,032в год, а параллакср = 0,012. Определите полную пространственную скорость звезды относительно Солнца и угол, образованный направлением движения звезды в пространстве с лучом зрения.

Ответ := 31.

2. Звезда 83 Геркулеса находится от нас на расстоянии D = 100 пк, ее собственное движение составляет= 0,12. Какова тангенциальная скорость этой звезды?

Ответ :57 км/с.

3. Собственное движение звезды Каптейна, находящейся на расстоянии 4 пк, составляет 8,8в год, а лучевая скорость 242 км/с. Определите пространственную скорость звезды.

Ответ : 294 км/с.

4.На какое минимальное расстояние звезда 61 Лебедя приблизится к нам, если параллакс этой звезды равен 0,3и собственное движение 5,2. Звезда движется к нам с лучевой скоростью 64 км/с.

Ответ :2,6 пк.

Литература:

1. Астрономический календарь. Постоянная часть. М., 1981.

2. Кононович Э.В., Мороз В.И. Курс общей астрономии. М., Эдиториал УРСС, 2004.

3. Ефремов Ю.Н. В глубины Вселенной. М., 1984.

4. Цесевич В.П. Что и как наблюдать на небе. М., 1979.

Звездочки ясные, звезды высокие!
Что вы храните в себе, что скрываете
Звезды, таящие мысли глубокие,
Силой какою вы душу пленяете?
Частые звездочки, звездочки тесные!
Что в вас прекрасного, что в вас могучего?
Чем увлекаете, звезды небесные,
Силу великую знания жгучего?
С. А Есенин

Урок 6/23

Тема: Пространственная скорость звезд

Цель: Познакомить с движением звезд - пространственной скоростью и ее составляющими: тангенциальная и лучевая, эффектом (законом) Доплера.

Задачи :
1. Обучающая : ввести понятия: собственного движения звезд, лучевой и тангенциальной скорости. Вывести формулу определения пространственной и тангенциальной скорости звезд. Дать представление об эффекте Доплера.
2. Воспитывающая : обосновать вывод о том, что звезды движутся и как следствие со временем изменяется вид звездного неба, гордость за российскую науку - исследования российского астронома А.А. Белопольского, содействовать формированию таких мировоззренческих идей, как причинно-следственные связи, познаваемость мира и его закономерностей.
3. Развивающая : умение определять направление (знак) лучевой скорости, формирование умения анализировать материал, содержащийся в справочных таблицах.

Знать:
1-й уровень (стандарт) - понятие скоростей: пространственной, тангенциальной и лучевой. Закон Доплера.
2-й уровень - понятие скоростей: пространственной, тангенциальной и лучевой. Закон Доплера.
Уметь:
1-й уровень (стандарт) - определять скорости движения звезд, направление движения по смещению линий в спектре звезды.
2-й уровень - определять скорости движения звезд, направление движения по смещению линий в спектре.

Оборудование: Таблицы: звезды, карта звездного неба (настенная и подвижная), звездный атлас. Диапозитивы. CD- "Red Shift 5.1", фотографии и иллюстрации астрономических объектов из Интернета, мультимедийного диска «Мультимедиа библиотека по астрономии»

Межпредметные связи: математика (совершенствование вычислительных навыков в нахождении десятичных логарифмов, разложение вектора скорости на составляющие), физика (скорость, спектральный анализ).

Ход урока:

Опрос учащихся.

У доски:
1) Параллактический способ определения расстояния.
2) Определить расстояние через блеск ярких звезд..
3) Решение задач из домашней работы №3, №4, №5 из §22 (стр. 131, №5 аналог дополнительного задания 2, урока 22) - показать решения.
Остальные:
1) На компьютере найти яркие звезды и охарактеризовать их.
2) Задача 1: Во сколько раз Сириус ярче чем Альдебаран? { зв. величину возьмем из табл. XIII, I 1 / I 2 =2,512 m 2 -m 1 , I 1 / I 2 =2,512 0,9+1,6 =1 0}
3) Задача 2: Одна звезда ярче другой в 16 раз. Чему равна разность их звездных величин? {I 1 / I 2 =2,512 m 2 -m 1 , 16=2,512 ?m , ?m ≈ 1,2/0,4=3}
4) Задача 3: Параллакс Альдебарана 0,05". Сколько времени свет от этой звезды идет до нас? {r=1/π, r=20пк=65,2 св.г

Новый материал.
В 720г И. Синь (683-727, Китай) в ходе углового изменения расстояния между 28 звездами, впервые высказывает догадку о перемещении звезд. Дж. Бруно также утверждал, что звезды движутся.
В 1718г Э. Галлей (Англия) открывает Собственное движение звезд , исследуя и сравнивая каталоги Гиппарха (125г до НЭ) и Дж. Флемстида (1720г) установил, что за 1900 лет некоторые звезды переместились: Сириус (α Б.Пса) сместившийся к югу почти на полтора диаметра Луны, Арктур (α Волопаса) на два диаметра Луны к югу и Альдебаран (α Тельца) сместившийся на 1/4 диаметра Луны к востоку. Впервые доказывает, что звезды - далекие Солнца. Первой звездой, у которой он в 1717г обнаружил собственное движение была Арктур (α Волопаса), находящуюся в 36,7 св.г.
Итак, звезды движутся, т. е меняют со временем свои координаты. К концу 18 века измерено собственное движение 13 звезд, а В. Гершель в 1783г открыл, что наше Солнце также движется в пространстве.

Пусть m - угол, на который сместилась звезда за год (собственное движение - "/ год).
Из рисунка по теореме Пифагора υ= √(υ r 2 +υ τ 2) , где υ r - лучевая скорость (по лучу зрения), а υ τ - тангенциальная скорость (^ лучу зрения).
Так как r =a , то с учетом смещения m ® r . m =a . m/π ; но r . m / 1год=u , тогда подставляя числовые данные получим тангенциальную скорость υ τ =4,74 . m/π (форм. 43)
Лучевую скорость υ r определяют по эффекту Х. Доплера (1803-1853, Австрия) (радиальной (лучевой в астрономии) скорости), установившего в 1842г, что длина волны источника изменяется в зависимости от направления движения. Применимость эффекта к световым волнам была доказана в 1900 в лабораторных условиях А. А. Белопольским . υ r =?λ . с/λ о.
Приближение источника - смещается к Фиолетовому (знак "- ").
Удаление источника - смещается к Красному (знак "+ ") .
Первым измерил лучевые скорости нескольких ярких звезд в 1868г Уильям Хеггинс (1824 - 1910, Англия). С 1893г впервые в России Аристарх Аполлонович Белопольский (1854 - 1934) приступил к фотографированию звезд и проведя многочисленные точные измерения лучевых скоростей звезд (один из первых в мире взяв эффект Доплера на вооружение), изучая их спектры, определил лучевые скорости 220 ярких (2,5-4 m) звезд.

Самая быстро перемещающаяся по небу звезда ß Змееносца (летящая Барнарда , Звезда Барнарда , HIP 87937, открыта в 1916г Э. Барнард (1857-1923, США)), m =9,57 m , r =1,828 пк, m =10,31 " , красный карлик. Существует у звезды спутник в М=1,5М Юпитера, или планетная система. У ß Змееносца лучевая скорость=106,88км/с, пространственная (под углом 38 °)=142км/с. После измерения собственных движений > 50000 звезд, выяснилось, что самая быстрая звезда неба в созвездии Голубя (m Col) имеет пространственную скорость=583км/с.
На ряде обсерваторий мира, располагающих крупными телескопами, в том числе еще в СССР (на Крымской астрофизической обсерватории АН СССР), ведутся многолетние определения Лучевая скорость звёзд. Измерения Лучевая скорость звёзд в галактиках позволили обнаружить их вращение и определить кинематические характеристики вращения галактик, а также нашей Галактики. Периодические изменения Лучевой скорости некоторых звёзд позволяют обнаружить их движение по орбите в двойных и кратных системах, а когда определить их орбиты, линейные размеры и расстояние до звезды.
Дополнение .
Двигаясь, звезда со временем меняет свои экваториальные координаты, поэтому собственное движение звезды можно по экваториальным координатам разложить на составляющие и получим m =(m a 2 + m δ 2 ). Изменение же координат звезды за год в астрономии определяют по формулам: Δα=3,07 с +1,34 с sinα . tanδ и Δδ=20,0" . cosα
III. Закрепление материала.
1. Пример №10 (стр. 135) - просмотреть
2.Самостоятельно: Из предыдущего урока для своей звезды найти пространственную скорость (взяв из таблицы XIII расстояние) и из данной таблицы m и υ r . Найти по ПКЗН и определить координаты звезды.

Решение: (последовательность) Так как υ= √(υ r 2 +υ τ 2) , сперва находим π =1/r, затем υ τ =4,74 . m /π , а только теперь находим υ= √(υ r 2 +υ τ 2)
3.
Итог:
1. Что такое собственное движение звезды?
2. Какую скорость мы называем пространственной, тангенциальной, лучевой? Как они находятся?
3. В чем заключается эффект Доплера?
4. Оценки.

Дома: §23, вопросы стр. 135

Урок оформила член кружка "Интернет-технологии" Леоненко Катя (11 кл), 2003 год.

«Планетарий» 410,05 мб Ресурс позволяет установить на компьютер учителя или учащегося полную версию инновационного учебно-методического комплекса "Планетарий". "Планетарий" - подборка тематических статей - предназначены для использования учителями и учащимися на уроках физики, астрономии или естествознания в 10-11 классах. При установке комплекса рекомендуется использовать только английские буквы в именах папок.
Демонстрационные материалы 13,08 мб Ресурс представляет собой демонстрационные материалы инновационного учебно-методического комплекса "Планетарий".
Планетарий 2,67 мб Данный ресурс представляет собой интерактивную модель "Планетарий", которая позволяет изучать звездное небо посредством работы с данной моделью. Для полноценного использования ресурса необходимо установить Java Plug-in
Урок Тема урока Разработки уроков в коллекции ЦОР Статистическая графика из ЦОР
Урок 23 Пространственная скорость звезд Смещение звезд за 100 лет 158,9 кб
Измерение угловых смещений звезд 128,6 кб
Собственное движение звезды 128,3 кб
Компоненты собственного движения звезды 127,8 кб
Лучевая и тангенциальная скорости 127,4 кб