Урок на тему: "Уравнения приводимые к квадратным". Уравнения, приводящиеся к квадратным уравнениям


Открытый урок по алгебре в 9 классе.

Тема: Уравнения, приводимые к квадратным .

Цели урока: 1) обобщение и углубление знаний учащихся по решению квадратных уравнений;

2) способствовать формированию умений применять различные способы решения уравнений;

3) развить творческие способности учащихся путем решения заданий, содержащих модули и параметры.

Ход урока:

    Вводная беседа.

При решении уравнений учащиеся нередко совершают ряд преобразований, которые приводят к ошибочным выводам.

Например:

1. РУ х(х+3)=2х

Делим обе части уравнения на х:

При этом решении потеряли корень Х=0. В чем ошибка?

Разделили на Х, а переменная Х может быть равной 0. А на нуль делить нельзя.

Ответ: -1; 0.

Т.к. знаменатели обеих частей одинаковы, то

При таком решении появился посторонний корень Х=1. Где ошибка?

Общий знаменатель не может равняться 0.

Ответ: Х=2.

Чтобы не допустить подобные ошибки, нужно знать правила равносильных переходов при решении уравнений.

    Устный опрос.

    Какие уравнения называются уравнениями 1 степени?

    Как решить линейные уравнения?

    Сколько решений может иметь линейное уравнение?

    Какое уравнение называется уравнением второй степени?

    Приведенное квадратное уравнение?

    Как решается квадратные уравнения?

    Сколько корней может иметь квадратное уравнение?

если Д 0, то квадратное уравнение имеет 2 корня.

если Д = 0, то один корень.

10.Как разложить на множители квадратный трехчлен?

3. Объяснение новой темы.

Сегодня мы будем решать уравнения, приводимые к квадратным, и уравнения 3 и 4 степеней. В их решении большой вклад внесли итальянские математики 16 века.

Сципион Даль Ферро (1465-1526) и его ученик Фиори

Николо Тарталья (1499-1557)

Историческая справка об этих ученых.

Рассмотрим одно из уравнений итальянских математиков:

Это уравнение можно решить по формуле Кардано для решения уравнений вида , что чревато сложными вычислениями.

Можно решить методом разложения на множители левой части уравнения.

Ответ: 1; -4; 3.

Решим это уравнение различными способами:

    метод разложения на множители.

оба значения удовлетворяют условию

Не удовлетворяет условию

Ответ: 0; -2; 2.

    графический способ

Строим график функции

и ищем абсциссы точек пересечения графика с осью oх.

3) Метод введения новой переменной.

Пусть , тогда

Это уравнение тоже можно решить несколькими способами.

Введем новую переменную

Тема урока: Решение уравнений, которые сводятся к квадратным.

Цели урока:

    образовательная: Познакомить учащихся с биквадратным уравнением, опираясь на предыдущий опыт учащихся по решению квадратных уравнений, закрепить умение решать уравнения, приводимые к квадратным способом подстановки и определять, какую подстановку рациональнее делать.

    развивающая: способствовать развитию внимания, логического мышления, умений анализировать, сравнивать и делать выводы.

    воспитывающая: развитие умения планировать работу, искать рациональные пути ее выполнения, способности аргументировано отстаивать свое мнение

Ход урока.

1. Организационный момент.

Здравствуйте, ребята.

Среди наук из всех главнейших
Важнейшая всего одна.
Учите алгебру, она глава наукам,
Для жизни очень всем нужна,

Когда достигнешь ты наук высоты,
Познаешь цену знаниям своим,
Поймешь, что алгебры красоты,
Для жизни будут кладом не плохим.

2. Мотивация урока.

Эпиграфом нашего урока являются словаГалилео Галилей «Без упорного умственного труда никто не может далеко продвинуться в математике. Но каждый, кому знакома радость познания, кто увидел красоту математики, не будет жалеть затраченных усилий». Д ля того чтобы успешно решать уравнения, сводящиеся к квадратным, необходимо хорошо знать теорию решения этих самых квадратных уравнений. Поэтому повторим необходимые в дальнейшем понятия и формулы. И. П. Павлов «Изучите азы науки, прежде чем взойти на ее вершины. Никогда не беритесь за последующее, не усвоив предыдущее»

3. Актуализация знаний. Фронтальный опрос, устная работа с классом.

Тест «Продолжить фразу» (последующая самопроверка и оценка знаний).

    Квадратным уравнением называется уравнение вида …

    Корни квадратного уравнения находятся по формуле …

    Количество корней квадратного уравнения зависит от …

    Приведённым квадратным уравнением называется уравнение вида …

    Способы решения квадратных уравнений: …

    Какие уравнения называются дробными рациональными?

    Алгоритм решения дробных рациональных уравнений.

    Основное свойство пропорции.

    Когда дробь равна 0?

Решение уравнения x-8x -9 = 0 известными способами.

4.Изучение нового материала.

Биквадратные уравнения

Биквадратное уравнение: ax 4 + bx 2 + c = 0

Алгоритм решения

Сделать замену переменной:

x 2 = t

Получится:

at 2 + bt + c = 0

Найти корни квадратного уравнения:

t 1,2 =

Обратная подстановка:

Если tk
Если tk 0
Если tk = 0

Корней нет
x =
x = 0

Таким образом, биквадратное уравнение может иметь от 0 до 4 решений.

Вопросы:

    Покажите общий вид биквадратного уравнения.

    Приведите алгоритм решения биквадратного уравнения.

    Сколько корней может иметь биквадратное уравнение?

Рассмотреть решение примера учебника.

Решение № 733(1, 2, 4)

Метод введения новой переменной

Предложите способы решения следующего уравнения:

Составление алгоритма решения уравнений, сводящихся к квадратным.

Алгоритм решения:

    Ввести замену переменной

    Составить квадратное уравнение с новой переменной

    Решить новое квадратное уравнение

Есть несколько классов уравнений, которые решаются приведением их к квадратным уравнениям. Одним из таких уравнений являются биквадратные уравнения.

Биквадратные уравнения

Биквадратные уравнения - это уравнения вида a*x^4 + b*x^2 + c = 0, где a не равно 0.

Биквадратные уравнения решаются с помощью подстановки x^2 =t. После такой подстановки, получим квадратное уравнении относительно t. a*t^2+b*t+c=0. Решаем полученное уравнение, имеем в общем случае t1 и t2. Если на этом этапе получился отрицательный корень, его можно исключить из решения, так как мы брали t=x^2, а квадрат любого числа есть число положительное.

Возвращаясь к исходным переменным, имеем x^2 =t1, x^2=t2.

х1,2 = ±√(t1), x3,4=±√(t2).

Разберем небольшой пример:

9*x^4+5*x^2 - 4 = 0.

Введем замену t=x^2. Тогда исходное уравнение примет следующий вид:

Решаем это квадратное уравнение любым из известных способов, находим:

Корень -1 не подходит, так как уравнение x^2 = -1 не имеет смысла.

Остается второй корень 4/9. Переходя к исходным переменным имеем следующее уравнение:

x1=-2/3, x2=2/3.

Это и будет решением уравнения.

Ответ: x1=-2/3, x2=2/3.

Еще один из видов уравнений, приводимых к квадратным, являются дробные рациональные уравнения. Рациональные уравнения - это уравнения у которых левая и правые части являются рациональными выражениями. Если в рациональном уравнении левая или правая части будут являться дробными выражениями, то такое рациональное уравнение называется дробным.

Схема решения дробного рационального уравнения

1. Найти общий знаменатель всех дробей, которые входят в уравнение.

2. Умножить обе части уравнения на общий знаменатель.

3. Решить полученное целое уравнение.

4. Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель.

Рассмотрим пример:

Решить дробное рациональное уравнение: (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5)).

Будем придерживаться общей схемы. Найдем сначала общий знаменатель всех дробей.

Получим x*(x-5).

Умножим каждую дробь на общий знаменатель и запишем полученное целое уравнение.

x*(x+3) + (x-5) = (x+5);

Упростим полученное уравнение. Получим,

x^2+3*x + x-5 - x - 5 =0;

Получили простое приведенное квадратное уравнение. Решаем его любым из известных способов, получаем корни x=-2 и x=5. Теперь производим проверку полученных решений. Подставляем числа -2 и 5 в общий знаменатель.

При х=-2 общий знаменатель x*(x-5) не обращается в нуль, -2*(-2-5)=14. Значит число -2 буде являться корнем исходного дробного рационального уравнения.

Общая теория решения задач при помощи уравнений

Перед тем, как перейти к конкретным видам задач приведем сначала общую теорию для разрешения различных задач с помощью уравнений. Прежде всего к уравнениям сводят задачи в таких дисциплинах как экономика, геометрия, физика и многих других. Общий порядок для решения задач при помощи уравнений заключается в следующем:

  • Все искомые нами величины из условия задачи, а также какие либо вспомогательные обозначаются удобными для нас переменными. Чаще всего этими переменными выступают последние буквы латинского алфавита.
  • Используя данные в задачи числовые значения, а также словесные соотношения составляется одно или несколько уравнений (в зависимости от условия задачи).
  • Разрешают полученное уравнение или их систему и выкидывают «не логичные» решения. К примеру, если надо найти площадь, то отрицательное число, очевидно, будет посторонним корнем.
  • Получаем окончательный ответ.

Пример задачи в алгебре

Здесь мы приведем пример задачи, сводящейся к квадратному уравнению без опоры на какую-либо конкретную область.

Пример 1

Найдите два таких иррациональных числа при сложении квадратов которых будет получаться пятерка, а при их обычном сложении друг с другом тройка.

Обозначим эти числа буквами $x$ и $y$. По условию задачи довольно легко составить два уравнения $x^2+y^2=5$ и $x+y=3$. Видим, что одно из них является квадратным. Для нахождения решения нужно решить систему:

$\cases{x^2+y^2=5,\\x+y=3.}$

Вначале выражаем из второго $x$

Подставляя в первое и производим элементарные преобразования

$(3-y)^2 +y^2=5$

$9-6y+y^2+y^2=5$

Мы перешли к решению квадратного уравнения. Сделаем это с помощью формул. Найдем дискриминант:

Первый корень

$y=\frac{3+\sqrt{17}}{2}$

Второй корень

$y=\frac{3-\sqrt{17}}{2}$

Найдем вторую переменную.

Для первого корня:

$x=3-\frac{3+\sqrt{17}}{2}=\frac{3-\sqrt{17}}{2}$

Для второго корня:

$x=3-\frac{3-\sqrt{17}}{2}=\frac{3+\sqrt{17}}{2}$

Так как последовательность чисел нам не важна получаем одну пару чисел.

Ответ: $\frac{3-\sqrt{17}}{2}$ и $\frac{3+\sqrt{17}}{2}$.

Пример задачи в физике

Рассмотрим пример задачи, приводящейся к решению квадратного уравнения в физике.

Пример 2

Вертолет, летящий равномерно в безветренную погоду имеет скорость $250$ км/ч. Ему необходимо со своей базы долететь до места пожара, которое находится в $70$ км от нее и вернуться обратно. В это время ветер дул в сторону базы, замедляя движение вертолета к лесу. Из-за чего обратно до базы он добирался на 1 час раньше. Найдите скорость ветра.

Обозначим скорость ветра через $v$. Тогда мы получим, что в сторону леса вертолет будет лететь с реальной скоростью, равной $250-v$, а обратно его реальная скорость будет составлять $250+v$. Посчитаем время на путь туда и на путь обратно.

$t_1=\frac{70}{250-v}$

$t_2=\frac{70}{250+v}$

Так как обратно до базы вертолет добирался на $1$ час раньше, будем иметь

$\frac{70}{250-v}-\frac{70}{250+v}=1$

Приведем левую часть к общему знаменателю, применим правило пропорции и произведем элементарные преобразования:

$\frac{17500+70v-17500+70v}{(250-v)(250+v)}=1$

$140v=62500-v^2$

$v^2+140v-62500=0$

Получили квадратное уравнение, для решения данной задачи. Решим его.

Будем решать его с помощью дискриминанта:

$D=19600+250000=269600≈519^2$

Уравнение имеет два корня:

$v=\frac{-140-519}{2}=-329.5$ и $v=\frac{-140+519}{2}=189.5$

Так как мы искали скорость (которая не может быть отрицательна), очевидно, что первый корень лишний.

Ответ: $189.5$

Пример задачи в геометрии

Рассмотрим пример задачи, приводящейся к решению квадратного уравнения в геометрии.

Пример 3

Найдите площадь прямоугольного треугольника, который удовлетворяет следующим условиям: его гипотенуза равняется $25$, а катеты по длине относятся как $4$ к $3$.

Для того, чтобы найти искомую площадь нам нужно найти катеты. Отметим одну часть катета через $x$. Тогда выражая через эту переменную катеты получим что их длины равняются $4x$ и $3x$. Таким образом, из теоремы Пифагора мы можем составить следующее квадратное уравнение:

$(4x)^2+(3x)^2=625$

(корень $x=-5$ можно не рассматривать, так как катет не может быть отрицателен)

Получили, что катеты равны $20$ и $15$ соответственно, то ест площадь

$S=\frac{1}{2}\cdot 20\cdot 15=150$

В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений , которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

Итак, начнем.

1 . (x-1)(x-7)(x-4)(x+2)=40

Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой - число.

1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

2. Перемножим их.

3. Введем замену переменной.

В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

В этом месте замена переменной становится очевидной:

Получаем уравнение

Ответ:

2 .

Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

2. Перемножаем каждую пару скобок.

3. Из каждого множителя выносим за скобку х.

4. Делим обе части уравнения на .

5. Вводим замену переменной.

В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

Получим уравнение:

Ответ:

3 .

Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

Разделим числитель и знаменатель каждой дроби на х:

Теперь можем ввести замену переменной:

Получим уравнение относительно переменной t:

4 .

Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

Чтобы его решить,

1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

2. Сгруппируем слагаемые таким образом:

3. В каждой группе вынесем за скобку общий множитель:

4. Введем замену:

5. Выразим через t выражение :

Отсюда

Получим уравнение относительно t:

Ответ:

5. Однородные уравнения.

Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

Однородные уравнения имеют такую структуру:

В этом равенстве А, В и С - числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень (в данном случае степень одночленов равна 2), и свободный член отсутствует.

Чтобы решить однородное уравнение, разделим обе части на

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Пойдем первым путем. Получим уравнение:

Теперь мы вводим замену переменной:

Упростим выражение и получим биквадратное уравнение относительно t:

Ответ: или

7 .

Это уравнение имеет такую структуру:

Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

Теперь прикинем, что нам удобнее иметь - квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение: