Устойчивое и неустойчивое равновесие. Равновесие тел

































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: Изучить состояние равновесия тел, познакомиться с различными видами равновесия; выяснить условия, при которых тело находится в равновесии.

Задачи урока:

  • Учебные: Изучить два условия равновесия, виды равновесия (устойчивое, неустойчивое, безразличное). Выяснить, при каких условиях тела более устойчивы.
  • Развивающие: Способствовать развитию познавательного интереса к физике. Развитие навыков сравнивать, обобщать, выделять главное, делать выводы.
  • Воспитательные: Воспитывать внимание, умения высказывать свою точку зрения и отстаивать её, развивать коммуникативные способности учащихся.

Тип урока: урок изучения нового материала с компьютерной поддержкой.

Оборудование:

  1. Диск «Работа и мощность» из «Электронных уроков и тестов.
  2. Таблица «Условия равновесия».
  3. Призма наклоняющаяся с отвесом.
  4. Геометрические тела: цилиндр, куб, конус и т.д.
  5. Компьютер, мултимедиапроектор, интерактивная доска или экран.
  6. Презентация.

Ход урока

Сегодня на уроке мы узнаем, почему подъёмный кран не падает, почему игрушка «Ванька-встанька» всегда возвращается в исходное состояние, почему Пизанская башня не падает?

I. Повторение и актуализация знаний.

  1. Сформулировать первый закон Ньютона. О каком состоянии говорится в законе?
  2. На какой вопрос отвечает второй закон Ньютона? Формула и формулировка.
  3. На какой вопрос отвечает третий закон Ньютона? Формула и формулировка.
  4. Что называется равнодействующей силой? Как она находится?
  5. Из диска «Движение и взаимодействие тел» выполнить задание № 9 «Равнодействующая сил с разными направлениями» (правило сложения векторов (2, 3 упражнения)).

II. Изучение нового материала.

1. Что называется равновесием?

Равновесие – это состояние покоя.

2. Условия равновесия. (слайд 2)

а) Когда тело находится в покое? Из какого закона это следует?

Первое условие равновесия: Тело находится в равновесии, если геометрическая сумма внешних сил, приложенных к телу, равна нулю. ∑F = 0

б) Пусть на доску действуют две равные силы, как показано на рисунке.

Будет ли она находиться в равновесии? (Нет, она будет поворачиваться)

В покое находится только центральная точка, а остальные движутся. Значит, чтобы тело находилось в равновесии, необходимо, чтобы сумма всех сил, действующих на каждый элемент равнялась 0.

Второе условие равновесия: Сумма моментов сил, действующих по часовой стрелке, должна равняться сумме моментов сил, действующих против часовой стрелки.

∑ M по часовой = ∑ M против часовой

Момент силы: M = F L

L – плечо силы – кратчайшее расстояние от точки опоры до линии действия силы.

3. Центр тяжести тела и его нахождение. (слайд 4)

Центр тяжести тела – это точка, через которую проходит равнодействующая всех параллельных сил тяжести, действующих на отдельные элементы тела (при любом положении тела в пространстве).

Найти центр тяжести следующих фигур:

4. Виды равновесия.

а) (слайды 5–8)



Вывод: Равновесие устойчиво, если при малом отклонении от положения равновесия есть сила, стремящаяся вернуть его в это положение.

Устойчиво то положение, в котором его потенциальная энергия минимальна. (слайд 9)

б) Устойчивость тел, находящихся на точке опоры или на линии опоры. (слайды 10–17)

Вывод: Для устойчивости тела, находящегося на одной точке или линии опоры необходимо, чтобы центр тяжести находился ниже точки (линии) опоры.

в) Устойчивость тел, находящихся на плоской поверхности.

(слайд 18)

1) Поверхность опоры – это не всегда поверхность, которая соприкасается с телом (а та, которая ограниченна линиями, соединяющими ножки стола, треноги)

2) Разбор слайда из «Электронных уроков и тестов», диск «Работа и мощность», урок «Виды равновесия».

Рисунок 1.

  1. Чем различаются табуретки? (Площадью опоры)
  2. Какая из них более устойчивая? (С большей площадью)
  3. Чем различаются табуретки? (Расположением центра тяжести)
  4. Какая из них наиболее устойчива? (Укоторой центр тяжести ниже)
  5. Почему? (Т.к. её можно отклонить на больший угол без опрокидывания)

3) Опыт с призмой отклоняющейся

  1. Поставим на доску призму с отвесом и начнём её постепенно поднимать за один край. Что мы видим?
  2. Пока линия отвеса пересекает поверхность, ограниченную опорой, равновесие сохраняется. Но как только вертикаль, проходящая через центр тяжести, начнёт выходить за границы поверхности опоры, этажерка опрокидывается.

Разбор слайдов 19–22 .

Выводы:

  1. Устойчиво то тело, у которого площадь опоры больше.
  2. Из двух тел одинаковой площади устойчиво то тело, у которого центр тяжести расположен ниже, т.к. его можно отклонить без опрокидывания на большой угол.

Разбор слайдов 23–25.

Какие корабли наиболее устойчивы? Почему? (У которых груз расположен в трюмах, а не на палубе)

Какие автомобили наиболее устойчивы? Почему? (Чтобы увеличить устойчивость машин на поворотах, полотно дороги наклоняют в сторону поворота.)

Выводы: Равновесие может быть устойчивым, неустойчивым, безразличным. Устойчивость тел тем больше, чем больше площадь опоры и ниже центр тяжести.

III. Применение знаний об устойчивости тел.

  1. Каким специальностям наиболее необходимы знания о равновесии тел?
  2. Проектировщикам и конструкторам различных сооружений (высотных зданий, мостов, телевизионных башен и т.д.)
  3. Цирковым артистам.
  4. Водителям и другим специалистам.

(слайды 28–30)

  1. Почему «Ванька-встанька» возвращается в положение равновесия при любом наклоне игрушки?
  2. Почему Пизанская башня стоит под наклоном и не падает?
  3. Каким образом сохраняют равновесие велосипедисты и мотоциклисты?

Выводы из урока:

  1. Существует три вида равновесия: устойчивое, неустойчивое, безразличное.
  2. Устойчиво положение тела, в котором его потенциальная энергия минимальна.
  3. Устойчивость тел на плоской поверхности тем больше, чем больше площадь опоры и ниже центр тяжести.

Домашнее задание : § 5456 (Г.Я. Мякишев, Б.Б. Буховцев, Н.Н. Сотский)

Использованные источники и литература:

  1. Г.Я. Мякишев, Б.Б. Буховцев, Н.Н.Сотский. Физика. 10 класс.
  2. Диафильм «Устойчивость» 1976 г. (отсканирован мною на плёночном сканере).
  3. Диск «Движение и взаимодействие тел» из «Электронных уроков и тестов».
  4. Диск «Работа и мощность» из «Электронных уроков и тестов».

Для того чтобы судить о поведении тела в реальных условиях, мало знать, что оно находится в равновесии. Надо еще оценить это равновесие. Различают устойчивое, неустойчивое и безразличное равновесие.

Равновесие тела называют устойчивым , если при отклонении от него возникают силы, возвращающие тело в положение равновесия (рис. 1, а, положение 2 ). В устойчивом равновесии центр тяжести тела занимает наинизшее из всех близких положений. Положение устойчивого равновесия связано с минимумом потенциальной энергии по отношению ко всем близким соседним положениям тела.

Равновесие тела называют неустойчивым , если при самом незначительном отклонении от него равнодействующая действующих на тело сил вызывает дальнейшее отклонение тела от положения равновесия (рис. 1, а, положение 1 ). В положении неустойчивого равновесия высота центра тяжести максимальна и потенциальная энергия максимальна по отношению к другим близким положениям тела.

Равновесие, при котором смещение тела в любом направлении не вызывает изменения действующих на него сил и равновесие тела сохраняется, называют безразличным (рис. 1, а, положение 3 ).

Безразличное равновесие связано с неизменной потенциальной энергией всех близких состояний, и высота центра тяжести одинакова во всех достаточно близких положениях.

Тело, имеющее ось вращения (например, однородная линейка, которая может вращаться вокруг оси, проходящей через точку О , изображенная на рисунке 1, б), находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела, проходит через ось вращения. Причем если центр тяжести С выше оси вращения (рис. 1, б; 1 ), то при любом отклонении от положения равновесия потенциальная энергия уменьшается и момент силы тяжести относительно оси О отклоняет тело дальше от положения равновесия. Это неустойчивое положение равновесия. Если центр тяжести находится ниже оси вращения (рис. 1, б; 2 ), то равновесие устойчивое. Если центр тяжести и ось вращения совпадают (рис. 1, б; 3 ), то положение равновесия безразличное.

Тело, имеющее площадь опоры, находится в равновесии, если вертикальная прямая, проходящая через центр тяжести тела не выходит за пределы площади опоры этого тела, т.е. за пределы контура образованного точками соприкосновения тела с опорой Равновесие в этом случае зависит не только от расстояния между центром тяжести и опорой (т.е. от его потенциальной энергии в гравитационном поле Земли), но и от расположения и размеров площади опоры этого тела.

На рисунке 1, в изображено тело, имеющее форму цилиндра. Если его наклонить на малый угол, то оно возвратится в исходное положение 1 или 2 Если же его отклонить на угол β (положение 3 ), то тело опрокинется. При заданной массе и площади опоры устойчивость тела тем выше, чем ниже расположен его центр тяжести, т.е. чем меньше угол между прямой, соединяющей центр тяжести тела и крайнюю точку соприкосновения площади опоры с горизонтальной плоскостью.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 85-87.

Статикой называется раздел механики, изучающий условия равновесия тел.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс .

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю .

На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C ), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил .

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы .

Произведение модуля силы на плечо d называется моментом силы M . Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов : тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

В Международной системе единиц (СИ) моменты сил измеряются в Н ьютон - метрах (Н∙м ) .

В общем случае, когда тело может двигаться поступательно и вращаться, для равновесия необходимо выполнение обоих условий: равенство нулю равнодействующей силы и равенство нулю суммы всех моментов сил.

здесь скриншот игры про равновесие

Катящееся по горизонтальной поверхности колесо - пример безразличного равновесия (рис. 1.14.3). Если колесо остановить в любой точке, оно окажется в равновесном состоянии. Наряду с безразличным равновесием в механике различают состояния устойчивого и неустойчивого равновесия.

Состояние равновесия называется устойчивым, если при малых отклонениях тела от этого состояния возникают силы или моменты сил, стремящиеся возвратить тело в равновесное состояние.

При малом отклонении тела из состояния неустойчивого равновесия возникают силы или моменты сил, стремящиеся удалить тело от положения равновесия.

Шар, лежащий на плоской горизонтальной поверхности, находится в состоянии безразличного равновесия. Шар, находящийся в верхней точке сферического выступа, - пример неустойчивого равновесия. Наконец, шар на дне сферического углубления находится в состоянии устойчивого равновесия (рис. 1.14.4).

Для тела, имеющего неподвижную ось вращения, возможны все три вида равновесия. Безразличное равновесие возникает, когда ось вращения проходит через центр масс. При устойчивом и неустойчивом равновесии центр масс находится на вертикальной прямой, проходящей через ось вращения. При этом, если центр масс находится ниже оси вращения, состояние равновесия оказывается устойчивым. Если же центр масс расположен выше оси - состояние равновесия неустойчиво (рис. 1.14.5).

Особым случаем является равновесие тела на опоре. В этом случае упругая сила опоры приложена не к одной точке, а распределена по основанию тела. Тело находится в равновесии, если вертикальная линия, проведенная через центр масс тела, проходит через площадь опоры , т. е. внутри контура, образованного линиями, соединяющими точки опоры. Если же эта линия не пересекает площадь опоры, то тело опрокидывается. Интересным примером равновесия тела на опоре является падающая башня в итальянском городе Пиза (рис. 1.14.6), которую по преданию использовал Галилей при изучении законов свободного падения тел. Башня имеет форму цилиндра высотой 55 м и радиусом 7 м. Вершина башни отклонена от вертикали на 4,5 м.

Вертикальная линия, проведенная через центр масс башни, пересекает основание приблизительно в 2,3 м от его центра. Таким образом, башня находится в состоянии равновесия. Равновесие нарушится и башня упадет, когда отклонение ее вершины от вертикали достигнет 14 м. По-видимому, это произойдет очень нескоро.

«Физика - 10 класс»

Вспомните, что такое момент силы.
При каких условиях тело находится в покое?

Если тело находится в покое относительно выбранной системы отсчёта, то говорят, что это тело находится в равновесии. Здания, мосты, балки вместе с опорами, части машин, книга на столе и многие другие тела покоятся, несмотря на то что к ним со стороны других тел приложены силы. Задача изучения условий равновесия тел имеет большое практическое значение для машиностроения, строительного дела, приборостроения и других областей техники. Все реальные тела под влиянием приложенных к ним сил изменяют свою форму и размеры, или, как говорят, деформируются.

Во многих случаях, которые встречаются на практике, деформации тел при их равновесии незначительны. В этих случаях деформациями можно пренебречь и вести расчёт, считая тело абсолютно твёрдым .

Для краткости абсолютно твёрдое тело будем называть твёрдым телом или просто телом . Изучив условия равновесия твёрдого тела, мы найдём условия равновесия реальных тел в тех случаях, когда их деформации можно не учитывать.

Вспомните определение абсолютно твёрдого тела.

Раздел механики, в котором изучаются условия равновесия абсолютно твёрдых тел, называется статикой .

В статике учитываются размеры и форма тел, в этом случае существенным является не только значение сил, но и положение точек их приложения.

Выясним вначале с помощью законов Ньютона, при каком условии любое тело будет находиться в равновесии. С этой целью разобьём мысленно всё тело на большое число малых элементов, каждый из которых можно рассматривать как материальную точку. Как обычно, назовём силы, действующие на тело со стороны других тел, внешними, а силы, с которыми взаимодействуют элементы самого тела, внутренними (рис. 7.1). Так, сила 1,2 - это сила, действующая на элемент 1 со стороны элемента 2. Сила же 2,1 действует на элемент 2 со стороны элемента 1. Это внутренние силы; к ним относятся также силы 1,3 и 3,1 , 2,3 и 3,2 . Очевидно, что геометрическая сумма внутренних сил равна нулю, так как согласно третьему закону Ньютона

12 = - 21 , 23 = - 32 , 31 = - 13 и т.д.

Статика - частный случай динамики, так как покой тел, когда на них действуют силы, есть частный случай движения ( = 0).

На каждый элемент в общем случае может действовать несколько внешних сил. Под 1 , 2 , 3 и т. д. будем понимать все внешние силы, приложенные соответственно к элементам 1, 2, 3, ... . Точно так же через " 1 , " 2 , " 3 и т. д. обозначим геометрическую сумму внутренних сил, приложенных к элементам 2, 2, 3, ... соответственно (эти силы не показаны на рисунке), т. е.

" 1 = 12 + 13 + ... , " 2 = 21 + 22 + ... , " 3 = 31 + 32 + ... и т.д.

Если тело находится в покое, то ускорение каждого элемента равно нулю. Поэтому согласно второму закону Ньютона будет равна нулю и геометрическая сумма всех сил, действующих на любой элемент. Следовательно, можно записать:

1 + "1 = 0, 2 + "2 = 0, 3 + "3 = 0. (7.1)

Каждое из этих трёх уравнений выражает условие равновесия элемента твёрдого тела.


Первое условие равновесия твёрдого тела.


Выясним, каким условиям должны удовлетворять внешние силы, приложенные к твёрдому телу, чтобы оно находилось в равновесии. Для этого сложим уравнения (7.1):

(1 + 2 + 3) + ("1 + "2 + "3) = 0.

В первых скобках этого равенства записана векторная сумма всех внешних сил, приложенных к телу, а во вторых - векторная сумма всех внутренних сил, действующих на элементы этого тела. Но, как известно, векторная сумма всех внутренних сил системы равна нулю, так как согласно третьему закону Ньютона любой внутренней силе соответствует сила, равная ей по модулю и противоположная по направлению. Поэтому в левой части последнего равенства останется только геометрическая сумма внешних сил, приложенных к телу:

1 + 2 + 3 + ... = 0 . (7.2)

В случае абсолютно твёрдого тела условие (7.2) называют первым условием его равновесия .

Оно является необходимым, но не является достаточным.

Итак, если твёрдое тело находится в равновесии, то геометрическая сумма внешних сил, приложенных к нему, равна нулю.

Если сумма внешних сил равна нулю, то равна нулю и сумма проекций этих сил на оси координат. В частности, для проекций внешних сил на ось ОХ можно записать:

F 1x + F 2x + F 3x + ... = 0. (7.3)

Такие же уравнения можно записать и для проекций сил на оси OY и OZ.



Второе условие равновесия твёрдого тела.


Убедимся, что условие (7.2) является необходимым, но недостаточным для равновесия твёрдого тела. Приложим к доске, лежащей на столе, в различных точках две равные по модулю и противоположно направленные силы так, как показано на рисунке 7.2. Сумма этих сил равна нулю:

+ (-) = 0. Но доска тем не менее будет поворачиваться. Точно так же две одинаковые по модулю и противоположно направленные силы поворачивают руль велосипеда или автомобиля (рис. 7.3).

Какое же ещё условие для внешних сил, кроме равенства нулю их суммы, должно выполняться, чтобы твёрдое тело находилось в равновесии? Воспользуемся теоремой об изменении кинетической энергии.

Найдём, например, условие равновесия стержня, шарнирно закреплённого на горизонтальной оси в точке О (рис. 7.4). Это простое устройство, как вам известно из курса физики основной школы, представляет собой рычаг первого рода.

Пусть к рычагу приложены перпендикулярно стержню силы 1 и 2 .

Кроме сил 1 и 2 , на рычаг действует направленная вертикально вверх сила нормальной реакции 3 со стороны оси рычага. При равновесии рычага сумма всех трёх сил равна нулю: 1 + 2 + 3 = 0.

Вычислим работу, которую совершают внешние силы при повороте рычага на очень малый угол α. Точки приложения сил 1 и 2 пройдут пути s 1 = ВВ 1 и s 2 = CC 1 (дуги ВВ 1 и СС 1 при малых углах α можно считать прямолинейными отрезками). Работа А 1 = F 1 s 1 силы 1 положительна, потому что точка В перемещается по направлению действия силы, а работа А 2 = -F 2 s 2 силы 2 отрицательна, поскольку точка С движется в сторону, противоположную направлению силы 2 . Сила 3 работы не совершает, так как точка её приложения не перемещается.

Пройденные пути s 1 и s 2 можно выразить через угол поворота рычага а, измеренный в радианах: s 1 = α|ВО| и s 2 = α|СО|. Учитывая это, перепишем выражения для работы так:

А 1 = F 1 α|BO|, (7.4)
А 2 = -F 2 α|CO|.

Радиусы ВО и СО дуг окружностей, описываемых точками приложения сил 1 и 2 , являются перпендикулярами, опущенными из оси вращения на линии действия этих сил

Как вы уже знаете, плечо силы - это кратчайшее расстояние от оси вращения до линии действия силы. Будем обозначать плечо силы буквой d. Тогда |ВО| = d 1 - плечо силы 1 , а |СО| = d 2 - плечо силы 2 . При этом выражения (7.4) примут вид

А 1 = F 1 αd 1 , А 2 = -F 2 αd 2 . (7.5)

Из формул (7.5) видно, что работа каждой из сил равна произведению момента силы на угол поворота рычага. Следовательно, выражения (7.5) для работы можно переписать в виде

А 1 = М 1 α, А 2 = М 2 α, (7.6)

а полную работу внешних сил можно выразить формулой

А = А 1 + А 2 = (М 1 + М 2)α. α, (7.7)

Так как момент силы 1 положителен и равен М 1 = F 1 d 1 (см. рис. 7.4), а момент силы 2 отрицателен и равен М 2 = -F 2 d 2 , то для работы А можно записать выражение

А = (М 1 - |М 2 |)α.

Когда тело приходит в движение, его кинетическая энергия увеличивается. Для увеличения кинетической энергии внешние силы должны совершать работу, т. е. в этом случае А ≠ 0 и соответственно М 1 + М 2 ≠ 0.

Если работа внешних сил равна нулю, то кинетическая энергия тела не изменяется (остаётся равной нулю) и тело остаётся неподвижным. Тогда

М 1 + М 2 = 0 . (7.8)

Уравнение (7 8) и есть второе условие равновесия твёрдого тела .

При равновесии твёрдого тела сумма моментов всех внешних сил, действующих на него относительно любой оси, равна нулю.

Итак, в случае произвольного числа внешних сил условия равновесия абсолютно твёрдого тела следующие:

1 + 2 + 3 + ... = 0, (7.9)
М 1 + М 2 + М 3 + ... = 0
.

Второе условие равновесия можно вывести из основного уравнения динамики вращательного движения твёрдого тела. Согласно этому уравнению где М - суммарный момент сил, действующих на тело, М = М 1 + М 2 + М 3 + ... , ε - угловое ускорение. Если твёрдое тело неподвижно, то ε = 0, и, следовательно, М = 0. Таким образом, второе условие равновесия имеет вид М = М 1 + М 2 + М 3 + ... = 0.

Если тело не абсолютно твёрдое, то под действием приложенных к нему внешних сил оно может и не оставаться в равновесии, хотя сумма внешних сил и сумма их моментов относительно любой оси равны нулю.

Приложим, например к концам резинового шнура две силы, равные по модулю и направленные вдоль шнура в противоположные стороны. Под действием этих сил шнур не будет находиться в равновесии (шнур растягивается), хотя сумма внешних сил равна нулю и нулю равна сумма их моментов относительно оси, проходящей через любую точку шнура.

Cтраница 1


Неустойчивое равновесие характеризуется тем, что система, будучи выведена из равновесия, не возвращается к исходному состоянию, а переходит в другое устойчивое состояние. Системы могут находиться в состоянии неустойчивого равновесия в течение короткого промежутка времени. На практике встречаются полуустойчивые (метастабильные) состояния, устойчивые по отношению к более удаленному состоянию. Метастабильные состояния возможны в тех случаях, когда характеристические функции имеют несколько точек экстремума. По истечении некоторого промежутка времени система, находящаяся в метастабильном состоянии, переходит в устойчивое (стабильное) состояние.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведена из состояния равновесия, к исходному состоянию не возвращается, а переходит в новое устойчивое состояние равновесия.  

Неустойчивое равновесие имеет место тогда, когда какое-то отклонение от равновесных цен создает силы, стремящиеся сдвинуть цены все дальше и дальше от состояния равновесия. В анализе спроса и предложения такое явление может иметь место тогда, когда обе кривые - спроса и предложения - имеют отрицательный наклон и кривая предложения пересекает кривую спроса сверху. Если же она пересекает ее снизу, то устойчивое равновесие все-таки наступает. Состояние равновесия может и вообще не наступать. Используя пример с кривыми спроса и предложения, можно показать, что возможны случаи, при которых кривые не пересекаются, и, следовательно, не существует равновесной цены, так как нет цены, которая устроила бы и покупателей, и продавцов. И последнее - кривые спроса и предложения могут пересечься более одного раза, и тогда могут существовать несколько равновесных цен, причем при каждой из них будет иметь место устойчивое равновесие.  


Неустойчивое равновесие характеризуется тем, что тело, отклоненное от исходного положения, не возвращается к нему и не остается в новом положении. И, наконец, если тело остается в новом положении и не стремится возвратиться в первоначальное, то равновесие называют безразличным.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведена из состояния равновесия, к исходному состоянию не возвращается, а переходит в новое, устойчивое состояние равновесия.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведена из состояния (равновесия, к исходному состоянию не возвращается, а переходит в новое - устойчивое состояние равновесия.  

Неустойчивое равновесие, если тело, будучи выведено из положения равновесия в соседнее ближайшее положение и затем предоставлено самому себе, будет еще больше отклоняться от этого положения.  

Неустойчивое равновесие имеет место, если тело, будучи выведено из положения равновесия в ближайшее положение и затем предоставлено самому себе, будет еще больше отклоняться от этого положения равновесия.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведенной из состояния равновесия, к исходному состоянию не возвращается, а переходит в новое и притом устойчивое состояние равновесия. Неустойчивое равновесие существовать не может и поэтому в термодинамике не рассматривается.  

Неустойчивое равновесие отличается от устойчивого тем, что система, будучи выведенной из состояния равновесия, к исходному состоянию не возвращается, а переходит в новое и притом устойчивое состояние равновесия.  

Неустойчивое равновесие практически неосуществимо, поскольку нельзя изолировать систему от бесконечно малых внешних воздействий.  

Неустойчивое равновесие между спросом и снабжением нефтью и перспективы обеспечения плавного перехода путем достижения оптимальной структуры энергетического баланса побуждают мир проявить серьезную заинтересованность в поиске альтернативы нефти с целью стимулировать ее сбережение, а также в принятии законов в области экономии энергии. Наконец, высказываются некоторые соображения относительно того, как сотрудничество может помочь миру избежать возникновения катастрофического дефицита в течение этого переходного периода.