Физиология периферической нервной системы. Строение периферического отдела Отличительные особенности нервных клеток


1. Что относится к периферической нервной системе? Как и где образуются спинномозговые нервы и на какие ветви они делятся?

Периферическая нервная система – это та часть НС, которая связывает ГМ и СМ с чувствительными аппаратами - аффекторами, а также с теми органами и аппаратами, которые отвечают на внешнее и внутреннее раздражение приспособительными реакциями (движение, секреция желез) – эффекторами.

ПНС состоит из:

· Нервов (стволы, сплетения, корешки)

· Нервных узлов

· Периферических окончаний

Спинномозговые нервы образуются при слиянии задних и передних ветвей, которые анатомически и функционально связаны со своими сегментами спинного мозга через эти ветви. Поэтому с/м нервов 31 пара.

Ствол с/м нерва делится на ветви:

· Передняя ветвь

· Задняя ветвь

· Менингеальная ветвь

· Белая соединительная вевть

2. Задние ветви с/м нервов: их зона иннервации и особенность распределения?

Задняя ветвь имеет сегментарное строение. Поэтому иннервирует участки тела, сохранившие сегментарность: глубокие мышцы спины, шеи, кожу над этими участками.

Задние ветви смешанные, делятся на латеральные и медиальные веточки, их диаметр меньше передних ветвей. Исключение составляют: 1). задняя ветвь I шейного с/м нерва (подзатылочный нерв) – двигательный; 2). Задняя ветвь II шейного с/м нерва – чувствительный, больше переднего.

3. Передние ветви с/м нервов: их зона иннервации и отличие от задних?

Передние ветви не сегментированы, иннервируют участки тела, утратившие сегментарность, образуют сплетения, ветвь смешанная.

4. Почему передние ветви с/м нервов образуют сплетения? Передние ветви каких нервов их не образуют? Почему?

ОТВЕТ: сплетения образуются потому, что передние ветви с/м нервов иннервируют несегментированные участки. Метамерность сохраняют лишь передние ветви с/м нервов Th2 – Th11 сегментов, имеют сегментарное строение, они называются межреберными нервами.

5. Какие сплетения вы знаете? Их зона иннервации?

Сплетения:

· Шейное. Из передних ветвей 4-х верхних шейных с/м нервов. Иннервирует кожу в области шеи, диафрагму, мышцы шеи.

· Плечевое. Передними ветвями 4-х нижних шейных с/м нервов. Иннервирует мышцы, кожу верхних конечностей, поверхностные мышцы груди и спины.

· Поясничное сплетение. Передними ветвями поясничных нервов. Иннервирует кожу, мышцы нижней части живота, бедра.

· Крестцовое сплетение. Образовано крестцовыми нервами

6. Черепные нервы: чем они отличаются от спинномозговых и на какие группы по составу волокон они делятся?

ЧН – нервы, отходящие от головного мозга. Отличия от с/м нервов:

· Не имеют сегментарного строения, они разные по ф-ии, форме, местам выхода.

· Разные по составу волокон.

По составу волокон выделяют 4 группы:

ü Чувствительные (1,2,8 пары ЧН)

ü Двигательные (3,4,6,11,12 пары ЧН)

ü Смешанные (5,7,9,10 пары ЧН)

ü Имеющие плюс вегетативные волокна (3,7,9,10 пары ЧН)

7. Из чего состоят периферические нервы? Какие соединительнотканные оболочки они имеют? Что такое периневральное пространство, его значение?

Нерв – это часть нервной системы, представляющая собой вытянутый тяж, образованный пучками нервных волокон и соединительнотканными оболочками.

Имеют соединительнотканные оболочки трех видов:

· Эндоневральный – м/у отдельными нервными волокнами, формирует отдельные пучки нервных волокон;

· Периневрий – окружает несколько пучков нервных волокон, образуется двумя пластинками:

ü Висцеральная

ü Париетальная

· Эпиневрий – имеется у самых крупных нервов, богат кровеносными сосудами – питает нерв, обеспечивает коллатеральное кровообращение.

Между пластинками имеется периневральное пространство, есть у всех ЧН, у СМН спорно, она сообщается с субарахноидальным пространством, содержит спинномозговую жидкость. Клиническое значение представляет продвижение возбудителя бешенства по этому пространству к ГМ и СМ.

8. Что такое нервное волокно? Их классификация по калибру и скорости проведения импульсов.

Нервное волокно – отросток нервной клетки, окруженный оболочкой из леммоцитов.

По калибру и скорости проведения их делят на:

· Гр.А: толстые миелиновые волокна до 100мкм, v=10-120м/с, образуют соматические нервы.

· Гр.В: тонкие миелиновые волокна 1-3мкм, v=3-14м/с, формируют преганглиолярные вегетативные нервы.

· Гр.С: безмиелиновые волокна 0,4-1,2мкм, v=0,6-2,4м/с, формируют постганглиолярные вегетативные нервы (к органам).

9. Внутриствольное строение нервов.

Помимо того, что в состав нерва могут входить разные по ф-ии нервные волокна, окруженные соединительнотканными оболочками, и имеющими периневральное пространство, пучки нервных волокон могут располагаться по разному. По Синельникову выделяют:

· Кабельный тип (вегетативный) – все нервные волокна идут параллельно;

· Сетевидный тип (соматический) – приспособительная ф-ия, особая форма связей м/у пучками нервных волокон.

10. Закономерности расположения экстраорганных нервов.

· Нервы являются парными и расходятся симметрично относительно ЦНС;

· Нервы достигают органы по кратчайшему пути, исключение составляют нервы тех органов, которые в процессе своего развития перемещаются, при этом нервы удлиняются и меняют свой путь;

· Нервы иннервируют мышцы из тех сегментов, которые соответствуют миотомам закладки мышц, если мышцы перемещаются, нервы удлиняются.

· Нервы сопровождают крупные артерии, вены, образуя сосудисто-нервные пучки, они расположены в защищенных местах.

11. От чего зависят типы разветвления интраорганных нервов? Какие их типы знаете в мышцах с различной структурой и функцией?

Варианты иннервации мышц:

· Магистральный тип – от одного крупного нерва мелкие ответвления;

Любой нерв состоит из нервных волокон - проводящего аппарата и оболочек - опорного соединительно-тканного каркаса.

Оболочки

Адвентиций. Адвентиций является самой плотной, фиброзной наружной оболочкой.

Эпинсврий. Эпиневрий это упругая, эластичная соединительно-тканная оболочка, находящаяся под адвентицием.

Периневрий. Периневрий это покрытие, состоящее из 3-10 слоев клеток эпителиоидного типа очень устойчивое к растяжению, но легко рвущееся при сшивании. Периневрий разделяет нерв на пучки, содержащие до 5000-10000 волокон.

Эндоневрий. Представляет нежную оболочку разделяющую единичные волокна и небольшие пучки. При этом является как бы гематоневральным барьером.

Периферические нервы могут рассматриваться как своеобразные аксоналъные кабели, отграниченные более или менее сложными оболочками. Эти кабели являются отростками живых клеток, а сами аксоны непрерывно обновляются при помощи потока молекул. Нервные волокна, составляющие нерв, являются отростками различных нейронов. Двигательные волокна, это отростки мотонейронов передних рогов спинного мозга и ядер ствола мозга, чувствительные - дендриты ложноунштолярных нейронов спинномозговых ганглиев, вегетативные - аксоны нейронов пограничного симпатического ствола.

Отдельное нервное волокно состоит из собственно отростка нейрона - г осевого цилиндра и миелиновой оболочки. Миелиновая оболочка образована выростами мембраны шванновских клеток и имеет фосфолипидный состав, В этом периферические нервные волокна отличаются от волокон ЦНС. где миелиновая оболочка образована выростами олигодендроцитов.

Кровоснабжение нерва осуществляется посешентарно из соседних тканей или сосудов. На поверхности нерва сформирована продольная сеть сосудов, от которой отходят множество перфорирующих ветвей к внутренним структурам нерва. С кровью к нервным волокнам поступают глюкоза, кислород, низкомолскулярные энергетические субстраты, а удаляются продукты распада.

Для выполнения функции проведения нервном)" волокну необходимо постоянно поддерживать свою структуру. Однако, собственных структур осуществляющих биосинтез для удовлетворения пластических потребностей в отростках нейрона не достаточно. Поэтому основной синтез происходит в теле нейрона с последующим транспортом образованных веществ по аксону. В значительно меньшей степени этот процесс осуществляется шванновскими клетками с дальнейшим переходом метаболитов в осевой цилиндр нервного волокна.

Аксональныи транспорт.

Выделяют быстрый и медленный тил перемещения веществ по волокну.

Быстрый ортоградный аксональный транспорт происходит со скоростью 200-400 мм в сутки и в основном ответственен за перенос составных частей мембран: фосфолигащов, липопротеинов и мембранных ферментов. Ретроградный аксональный транспорт обеспечивает перемещение частей мембран в обратном направлении со скоростью до 150-300 мм в сутки и накопление их вокруг ядра в тесной связи с лизосомами. Медленный ортоградный аксональный транспорт происходит со скоростью 1-4 мм в сутки и переносит растворимые белки и элементы внутреннего клеточного каркаса. Объем веществ, переносимый медленным транспортом значительно больше, чем быстрым.

Любой вид аксонального транспорта это энергетически зависимый процесс, выполняемый сократительными белками аналогами актина и миелина в присутствии макроэргов и ионов кальция. Энергетические субстраты и ионы поступают в нервное волокно вместе с локальным кровотоком.

Локальное кровоснабжение нерва - абсолютно необходимое условие для осуществления аксонального транспорта.

Нейрофизиология передачи импульса:

Проведение нервного импульса по волокну происходит за счет распространения по оболочке отростка волны деполяризации. Большинство периферических нервов по своим двигательным и чувствительным волокнам обеспечивают проведение импульса со скоростью до 50-60 м/сек. Собственно деполяризация процесс достаточно пассивный, тогда как восстановление мембранного потенциала покоя и способности к проведению осуществляется путем функционирования NA/K и Са насосов. Для их работы необходима АТФ, обязательным условием образования которой является наличие сегментарного кровотока. Прекращение кровоснабжения нерва сразу блокирует проведение нервного импульса.

Семиотика невропатий

Клинические симптомы развивающиеся при поражении периферических нервов определяются функциями нервных волокон, образующих нерв. Соответственно трем группам волокон имеются и три группы симптомов страдания: двигательные, чувствительные и вегетативные.

Клинические проявления этих нарушений могут проявляться симптомами выпадения функции, что встречается более часто и симптомами раздражения, последнее является более редким вариантом.

Двигательные нарушения по типу выпадения проявляются плегиями и парезами периферического характера с низким тонусом, низкими рефлексами и гипотрофиями. К симптомам раздражения следует отнести судорожное сведение мышц - крампи. Это приступообразные, болезненные стягивания одной или нескольких мышц (то что мы привыкли называть судорогой). Наиболее часто крампи локализуются в челюстно-подъязычной мышце, под затылочной мышце, аддукторах бедра, четырехглавой мышце бедра, трехглавой мышце голени. Механизм возникновения крампи недостаточно ясен, предполагается частичная морфологическая или функциональная денервация в сочетании с вегетативной ирритацией. При этом вегетативные волокна берут на себя часть функций соматических и тогда, поперечно-полосатая мышца начинает реагировать на ацетилхолин аналогично гладкой мускулатуре.

Чувствительные нарушения по типу выпадения проявляются гипестезией, анестезией. Симптомы ирритации более разнообразны: гиперестезия, гиперпатия (качественное извращение ощущения с приобретением неприятного оттенка), парестезии («мурашки», жжение в зоне иннервации), боль по ходу нервов и корешков.

Вегетативные нарушения проявляются нарушением потоотделения, страданием двигательной функции полых внутренних органов, ортостатической гипотонией, трофическими изменениями кожи и ногтей. Ирритативный вариант сопровождается болями с крайне неприятным режущим, выкручивающим компонентом, который возникает преимущественно при поражении срединного и большеберцового нервов, как наиболее богатых вегетативными волокнами.

Необходимо обратить внимание на вариабельность проявлений невропатии. Медленные изменения клинической картины происходящие в течение недель, месяцев действительно отражают динамику невропатии, тогда как изменения в течение часов или одного - двух дней чаще связаны с изменениями кровотока, температуры, электролитного баланса.

Патофизиология невропатии

Что же происходит с нервными волокнами при болезнях нерва?
Возможны четыре основных варианта изменений.

1.Валлеровскаядегенерация.

2. Атрофия и дегенерация аксона (аксонопатия).

3.Сегаентарная демиелинизация (миелинопатия).

4.Первичное поражение тел нервных клеток (невронопатия).

Валлеровская дегенерация происходит в результате грубого локального повреждения нервного волокна, чаще вследствие механических и ишемических факторов, Функция проведения по этому участку волокна нарушается полностью и сразу. Через 12-24 часа в дистальном участке волокна изменяется структура аксоплазмы, но проведение импульса сохраняется еще в течение 5-6 дней. На 3-5 день происходит деструкция окончаний нерва, а к 9 суткам - исчезновение их. С 3 по 8 день прогрессивно разрушаются мислиновыс оболочки. На второй неделе начинается деление шванновских клеток, и к 10-12 дню они образуют продольно ориентированные нервные отростки. С 4 по 14 день на проксимальных участках волокон появляются множественные колбы роста. Скорость прорастания волокна сквозь с/т в месте травмы может быть крайне малой, но дистальнее в неповрежденных отделах нерва темп регенерации способен достигать 3-4 мм в сутки. При таком типе поражения возможно хорошее восстановление.

Аксональная дегенерация происходит в результате метаболических нарушений в телах нейронов, что затем вызывает заболевание отростков. Причиной такого состояния являются системные метаболические заболевания и действие экзогенных токсинов. Аксональный некроз сопровождается поглощением миелина и остатков осевого цилиндра шванновскими клетками и макрофагами. Возможность восстановления функции нерва при этом страдании крайне низкая.

Сегментарная демиелинизация проявляется первичным поражением миелиновых оболочек при сохранности осевого цилиндра волокна. Острота развития нарушений может напоминать таковое при механической травме нерва, но нарушение функции легко обратимо, иногда в течение нескольких недель. Патоморфологически определяются непропорционально тонкие миелиновые оболочки, скопление в эндоневральном пространстве мононуклеарных фагоцитов, пролиферация отростков шванновских клеток вокруг отростков нейронов. Восстановление функции происходит быстро и в полном объеме при прекращении действия повреждающего фактора.

16-09-2012, 21:50

Описание

В периферической нервной системе различают следующие компоненты:
  1. Ганглии.
  2. Нервы.
  3. Нервные окончания и специализированные органы чувств.

Ганглии

Ганглии представляют собой скопление нейронов, формирующих в анатомическом смысле небольшие узелки различного размера, разбросанные в различных участках тела. Различают два типа ганглиев - цереброспинальные и вегетативные. Тела нейронов спинномозговых ганглиев, как правило, округлой формы и различного размера (от 15 до 150 мкм). Ядро располагается в центре клетки и содержит четкое круглое ядрышко (рис. 1.5.1).

Рис. 1.5.1. Микроскопическое строение интрамурального ганглия (а) и цитологические особенности ганглиозных клеток (б): а - группы ганглиозных клеток, окруженные волокнистой соединительной тканью. Снаружи ганглий покрыт капсулой, к которой прилежит жировая клетчатка; б-нейроны ганглия (1- влючение в цитоплазме ганглиозной клетки; 2 - гипертрофированое ядрышко; 3 - клетки-сателлиты)

Каждое тело нейрона отделено от окружающей соединительной ткани прослойкой уплощенных капсулярных клеток (амфицитов). Их можно отнести к клеткам глиальной системы. Проксимальный отросток каждой ганглиозной клетки в заднем корешке разделяется на две ветви. Одна из них вливается в спинномозговой нерв, в котором проходит к рецепторному окончанию. Вторая входит в задний корешок и достигает заднего столба серого вещества на той же стороне спинного мозга.

Ганглии вегетативной нервной системы по строению сходны с цереброспинальными ганглиями. Наиболее существенное отличие сводится к тому, что нейроны вегетативных ганглиев мультиполярны. В области глазницы обнаруживаются различные вегетативные ганглии, обеспечивающие иннервацию глазного яблока.

Периферические нервы

Периферические нервы являются четко определяемыми анатомическими образованиями и довольно прочны. Нервный ствол окутывается снаружи соединительнотканным футляром на всем протяжении. Этот наружный футляр называют эпинервием. Группы из нескольких пучков нервных волокон окружаются периневрием. От периневрия отделяются тяжи рыхлой волокнистой соединительной ткани, окружающие отдельные пучки нервных волокон. Это эндоневрий (рис. 1.5.2).

Рис. 1.5.2. Особенности микроскопического строения периферического нерва (продольный срез): 1- аксоны нейронов: 2- ядра шванновских клеток (леммоциты); 3-перехват Ранвье

Периферические нервы обильно снабжены кровеносными сосудами.

Периферический нерв состоит из различного количества плотно упакованных нервных волокон, являющихся цитоплазматическими отростками нейронов. Каждое периферическое нервное волокно покрыто тонким слоем цитоплазмы - неврилеммой, или шванновской оболочкой . Шванновские клетки (леммоциты), участвующие в формировании этой оболочки, происходят из клеток нервного гребня.

В некоторых нервах между нервным волокном и шванновской клеткой располагается слой миелина . Первые называются миелинизированными, а вторые - немиелинизированными нервными волокнами.

Миелин (рис. 1.5.3)

Рис. 1.5.3. Периферический нерв. Перехваты Ранвье: а - светооптическая микроскопия. Стрелкой указан перехват Ранвье; б-ультраструктурные особенности (1-аксоплазма аксона; 2- аксолемма; 3 - базальная мембрана; 4 - цитоплазма леммоцита (шванновская клетка); 5 - цитоплазматическая мембрана леммоцита; 6 - митохондрия; 7 - миелиновая оболочка; 8 - нейрофилламенты; 9 - нейротрубочки; 10 - узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 - пространство между соседними леммоцитами)

покрывает нервное волокно не сплошь, а через определенное расстояние прерывается. Участки прерывания миелина обозначаются перехватами Ранвье. Расстояние между последовательными перехватами Ранвье варьирует от 0,3 до 1,5 мм. Перехваты Ранвье имеются и в волокнах центральной нервной системы, где миелин образует олигодендроциты (см. выше). Нервные волокна разветвляются именно в перехватах Ранвье.

Каким образом формируется миелиновая оболочка периферических нервов ? Первоначально шванновская клетка обхватывает аксон, так что он располагается в желобке. Затем эта клетка как бы наматывается на аксон. При этом участки цитоплазматической мембраны по краям желобка вступают в контакт друг с другом. Обе части цитоплазматической мембраны остаются соединенными, и тогда видно, что клетка продолжает обматывать аксон по спирали. Каждый виток на поперечном разрезе имеет вид кольца, состоящего из двух линий цитоплазматической мембраны. По мере наматывания цитоплазма шванновской клетки выдавливается в тело клетки.

Некоторые афферентные и вегетативные нервные волокна не имеют миелиновой оболочки. Тем не менее они защищены шванновскими клетками. Это происходит благодаря вдавливанию аксонов в тело шванновских клеток.

Механизм передачи нервного импульса в немиелинизированном волокне освещен в руководствах по физиологии. Здесь мы лишь кратко охарактеризуем основные закономерности процесса.

Известно, что цитоплазматическая мембрана нейрона поляризованна , т. е. между внутренней и наружной поверхностью мембраны существует электростатический потенциал, равный - 70 мВ. Причем внутренняя поверхность обладает отрицательным, а наружная положительным зарядом. Подобное состояние обеспечивается действием натрий-калиевого насоса и особенностями белкового состава внутрицитоплазматического содержимого (преобладание отрицательно заряженных белков). Поляризованное состояние называют потенциалом покоя.

При стимуляции клетки, т. е. нанесении раздражения цитоплазматической мембраны самыми разнообразными физическими, химическими и др. факторами, первоначально наступает деполяризация, а затем реполяризация мембраны . В физико-химическом смысле при этом наступает обратимое изменение в цитоплазме концентрации ионов К и Na. Процесс реполяризации активный с использованием энергетических запасов АТФ.

Волна деполяризации - реполяризации распространяется вдоль цитоплазматической мембраны (потенциал действия). Таким образом, передача нервного импульса есть не что иное, как распространяющаяся волна потенциала действи я.

Каково же значение в передаче нервного импульса миелиновой оболочки? Выше указано, что миелин прерывается в перехватах Ранвье. Поскольку только в перехватах Ранвье цитоплазматическая мембрана нервного волокна контактирует с тканевой жидкостью, только в этих местах возможна деполяризация мембраны таким же образом, как в немиелинизированных волокнах. На остальном протяжении этот процесс невозможен в связи с изолирующими свойствами миелина. В результате этого между перехватами Ранвье (от одного участка возможной деполяризации до другого) передача нервного импульса осуществляется внутрицитоплазматическими местными токами . Поскольку электрический ток проходит гораздо быстрее, чем непрерывная волна деполяризации, передача нервного импульса в миелинизированном нервном волокне происходит значительно быстрее (в 50 раз), причем скорость увеличивается с увеличением диаметра нервного волокна, что обусловлено снижением внутреннего сопротивления. Подобный тип передачи нервного импульса называется сальтаторным. т. е. прыгающим. Исходя из изложенного, видно важное биологическое значение миелиновых оболочек.

Нервные окончания

Афферентные (чувствительные) нервные окончания (рис. 1.5.5, 1.5.6).

Рис. 1.5.5. Особенности строения различных рецепторных окончаний: а - свободные нервные окончания; б- тельце Мейснера; в - колба Краузе; г - тельце Фатер-Пачини; д - тельце Руффини

Рис. 1.5.6. Строение нервно-мышечного веретена: а-моторная иннервация интрафузальных и экстрафузальных мышечных волокон; б спиральные афферентные нервные окончания вокруг интрафузальных мышечных волокон в области ядерных сумок (1 - нервно-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 - моторные бляшки интрафузальных мышечных волокон; 3 - соединительнотканная капсула; 4 - ядерная сумка; 5 - чувствительные кольцеспиральные нервные окончания вокруг ядерных сумок; 6 - скелетные мышечные волокна; 7 - нерв)

Афферентные нервные окончания представляют собой концевые аппараты дендритов чувствительных нейронов, повсеместно располагающихся во всех органах человека и дающие информацию центральной нервной системе об их состоянии. Воспринимают они раздражения, исходящие и из внешней среды, преобразуя их в нервный импульс. Механизм возникновения нервного импульса характеризуется уже описанными явлениями поляризации и деполяризации цитоплазматической мембраны отростка нервной клетки.

Существует ряд классификаций афферентных окончаний - в зависимости от специфичности раздражения (хеморецепторы, барорецепторы, механорецепторы, терморецепторы и др.), от особенностей строения (свободные нервные окончания и несвободные).

Обонятельные, вкусовые, зрительные и слуховые рецепторы, а также рецепторы, воспринимающие движение частей тела относительно направления силы тяжести, называют специальными органами чувств . В последующих главах этой книги мы подробно остановимся только на зрительных рецепторах.

Рецепторы разнообразны по форме, строению и функциям . В данном разделе нашей задачей не является подробное описание различных рецепторов. Упомянем лишь о некоторых из них в разрезе описания основных принципов строения. При этом необходимо указать на различия свободных и несвободных нервных окончаний. Первые характеризуются тем, что они состоят только из ветвления осевых цилиндров нервного волокна и клетки глии. При этом они контактируют разветвлениями осевого цилиндра с клетками, возбуждающими их (рецепторы эпителиальных тканей). Несвободные нервные окончания отличаются тем, что в своем составе они содержат все компоненты нервного волокна. Если они покрыты соединительнотканной капсулой, они называются инкапсулированными (тельце Фатер-Пачини, осязательное тельце Мейснера, терморецепторы колбы Краузе, тельца Руффини и др.).

Разнообразно строение рецепторов мышечной ткани, часть которых обнаруживается в наружных мышцах глаза. В этой связи на них мы остановимся более подробно. Наиболее распространенным рецептором мышечной ткани является нервно-мышечное веретено (рис. 1.5.6). Это образование регистрирует растяжение волокон поперечно-полосатых мышц. Представляют они собой сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией. Число веретен в мышце зависит от ее функции и тем выше, чем более точными движениями она обладает. Нервно-мышечное веретено располагается вдоль мышечных волокон. Веретено покрыто тонкой соединительнотканной капсулой (продолжение периневрия), внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов:

  • волокна с ядерной сумкой - в расширенной центральной части которых содержатся скопления ядер (1-4- волокна/веретено);
  • волокна с ядерной цепочкой - более тон кие с расположением ядер в виде цепочки в центральной части (до 10 волокон/веретено).

Чувствительные нервные волокна образуют кольцеспиральные окончания на центральной части интрафузальных волокон обоих типов и гроздьевидные окончания у краев волокон с ядерной цепочкой.

Двигательные нервные волокна - тонкие, образуют мелкие нервно-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Рецепторами растяжения мышцы являются также нервно-сухожильные веретена (сухожильные органы Гольджи). Это веретеновидные инкапсулированные структуры длиной около 0,5-1,0 мм. Располагаются они в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждое веретено образовано капсулой из плоских фиброцитов (продолжение периневрия), которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых леммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные нервные окончания несут информацию от центральной нервной системы к исполнительному органу. Это окончания нервных волокон на мышечных клетках, железах и др. Более подробное их описание будет приведено в соответствующих разделах. Здесь мы подробно остановимся лишь на нервно-мышечном синапсе (моторная бляшка). Моторная бляшка располагается на волокнах поперечнополосатых мышц. Состоит она из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели. В крупных мышцах один аксон иннервирует большое количество мышечных волокон, а в небольших мышцах (наружные мышцы глаза) каждое мышечное волокно или их небольшая группа иннервируется одним аксоном. Один мотонейрон в совокупности с иннервируемыми им мышечными волокнами образует двигательную единицу.

Пресинаптическая часть формируется следующим образом . Вблизи мышечного волокна аксон утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными леммоцитами и базальной мембраной, переходящей с мышечного волокна. В терминалах аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель имеет ширину 50 нм. Располагается она между плазмолеммой ветвлений аксона и мышечного волокна. Содержит она материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели). Эти складки увеличивают общую площадь щели и заполнены материалом, являющимся продолжением базальной мембраны. В области нервно-мышечного окончания мышечное волокно не имеет исчерченности. содержит многочисленные митохондрии, цистерны шероховатого эндоплазматического ретикулума и скопление ядер.

Механизм передачи нервного импульса на мышечное волокно сходен с таковым в химическом межнейронном синапсе. При деполяризации пресинаптической мембраны происходит выделение ацетилхолина в синаптическую щель. Связывание ацетилхолина с холинорецепторами в постсинаптической мембране вызывает ее деполяризацию и последующее сокращение мышечного волокна. Медиатор отщепляется от рецептора и быстро разрушается ацетил-холинэстеразой.

Регенерация периферических нервов

При разрушении участка периферического нерва в течение недели наступает восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона с последующим некрозом как аксона, так и шванновской оболочки. На конце аксона формируется расширение (ретракционная колба). В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией (рис. 1.5.8).

Рис. 1.5.8. Регенерация миелинового нервного волокна: а - после перерезки нервного волокна проксимальная часть аксона (1) подвергается восходящей дегенерации, миелиновая оболочка (2) в области повреждения распадается, перикарион (3) нейрона набухает, ядро смещается к периферии, хромафильная субстанция (4) распадается; б-дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами (5) и глией; в - леммоциты (6) сохраняются и митотически делятся, формируя тяжи - ленты Бюгнера (7), соединяющиеся с аналогичными образованиями в проксимальной части волокна (тонкие стрелки). Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки (жирная стрелка), растущие вдоль ленты Бюгнера; г - в результате регенерации нервного волокна восстанавливается связь с органом-мишенью и регрессирует ее атрофия: д - при возникновении преграды (8) на пути регенерирующего аксона компоненты нервного волокна формируют травматическую неврому (9), которая состоит из разрастающихся веточек аксона и леммоцитов

Начало регенерации характеризуется сначала пролиферацией шванновских клеток , их передвижением вдоль распавшегося волокна с образованием клеточного тяжа, лежащего в эндоневральных трубках. Таким образом, шванновские клетки восстанавливают структурную целостность в месте разреза . Фибробласты также пролиферируют, но медленнее шванновских клеток. Указанный процесс пролиферации шванновских клеток сопровождается одновременной активацией макрофагов, которые первоначально захватывают, а затем лизируют оставшийся в результате разрушения нерва материал.

Следующий этап характеризуется прорастанием аксонов в щели , образованные шванновскими клетками, проталкиваясь от проксимального конца нерва к дистальному. При этом от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Регенерирующий аксон растет в дистальном направлении со скоростью 3-4 мм сут вдоль лент из шванновских клеток (ленты Бюгнера), которые играют направляющую роль. В последующем наступает дифференциация шванновских клеток с образованием миелина и окружающей соединительной ткани. Коллатерали и терминали аксонов восстанавливаются в течение нескольких месяцев. Регенерация нервов происходит только при условии отсутствия повреждения тела нейрона , небольшом расстоянии между поврежденными концами нерва, отсутствии между ними соединительной ткани. При возникновении преграды на пути регенерирующего аксона развивается ампутационная нейрома. Регенерация нервных волокон в центральной нервной системе отсутствует.

Статья из книги: .

  • I. Средства, уменьшающие стимулирующее влияние адренергической иннервации на сердечно-сосудистую систему (нейротропные средства)
  • III, IV, VI пары черепных нервов, области иннервации. Пути зрачкового рефлекса.
  • IX пара черепных нервов, ее ядер, топография и области иннервации.
  • V пара черепных нервов, ее ветви, топография и области иннервации.
  • Каждый периферический нерв, состоит из большого числа нервных
    волокон, объединенных соединительнотканными оболочками (рис. 265-А).
    В нервном волокне, независимо от его природы и функционального назна-
    чения, различают «зевой цилиндр - cylindroaxis, покрытый собственной
    оболочкой - axolemma -^ и нервной оболочкой - neurolemma. При на-
    личии в последней жироподобного вещества - миелина нервное волокно
    называется мякотным или миелиновым-*■ neurofibra myelinate, а при его"
    отсутствии -- безмякотным или амиелиновым - neurofibra amyelinata (го-
    лые нервные волокна-neurofibria nuda).

    Значение мякотной оболочки заключается в том, что она способствует
    лучшему проведению нервного возбуждения. В безмякотных нервных волок-
    нах возбуждение проводится со скоростью 0,5-2 м/с, в то время как в мя-
    котных волокнах - 60-120 м/с". По диаметру отдельные нервные волокна
    подразделяются на толстые мякотные (от 16-26 мкм у лошади, жвачных
    до 10-22 мкм у собаки)>-эфферентные соматические; средние мякотные
    (от 8-15 мкм у лошади, жвачных до 6-^-8 мкм у собаки) - афферентные
    соматические; тонкие (4--8 мкм) -у эфферентные вегетативные (рис. 265-Б).

    Безмякотные нервные волокна входят в состав как соматических, так
    и висцеральных нервов, но в количественном отношений их больше в веге-
    тативных нервах. Они различаются как по диаметру, так и по форме ядер
    невролеммы: 1) маломякотные, или безмякотные, волокна с округлой
    формой ядер (диаметр волокна 4-2,5 мкм, размер ядра 8X4,6 мкм, рас-
    стояние между ядрами 226т-345 мкм); 2) маломякотные или безмякотные
    волокна с овальновытянутой формой ядер невролеммы (диаметр волокна
    1-2,5 мкм, размер ядра 12,8 X 4 мкм, расстояние между ядрами 85-
    180 мкм); 3) безмякотные волокна с веретенообразной формой ядер невроз
    леммы (диаметр волокна 0,5-1,5 мкм, размер.ядра 12,8 х 1,2 мкм, рас-


    Рис- 265. Строение периферического нерва!

    А - нерв на поперечном срезе: 1 - epineurium; 2 - perineurium; 3 - endoneurium!
    4 - neurofibra myelinata; 5 - cylindraxis; Б - состав нервны» волокон в-сомати-
    ческом нерве овцы; 1, 2, 3 - neurofibra myelinata; 4 - neurofibra amyelinata; 5,
    6,7 - neurofibra nuda; a - lemmocytus; n- incisio myelini; о - isthmus nodi.

    стояние между волокнами 60-120 мкм). У животных разных видов эти по-,
    казатели могут быть неодинаковыми.

    Оболочки нерва. Нервные волокна, отходящие от мозга, посредством
    соединительной ткани объединяются в пучки, составляющие основу пери-
    ферических нервов. В каждом нерве соединительнотканные элементы участ-
    вуют в образовании: а) внутри пучковой основы - endoneurium, распола-
    гающейся в виде рыхлой соединительной ткани между отдельными нервными
    волокнами; б) соединительнотканной оболочки, покрывающей отдельные
    группы нервных волокон, или периневрий - perineurium. В этой оболочке
    снаружи различают двойной слой плоских эпителиальных клеток эпенди-
    моглиальной природы, которые образуют вокруг нервного пучка перине-
    вральное влагалище, или периневральное пространство - spatium peri-
    neurii. 0т базйлярного внутреннего слоя выстилки периневрального вла-
    галища в глубь нервного пучка отходят соединительнотканные волокна,
    образующие внутрипучковые периневральные перегородки - septum peri-
    neurii; последние служат местом прохождения кровеносных сосудов, а так-
    же участвуют в образовании эндоневриума. > .

    Периневральные влагалища сопровождают пучки нервных волокон на
    всем их протяжении и делятся по мере деления нерва на более мелкие ветви.
    Полость периневрального влагалища сообщается с субарахноидальным
    и субдуральным пространствами спинного или головного мозга и^ содер-
    жит небольшое количество ликвора (нейрогенный путь проникновения ви-
    руса бешенства в центральные отделы нервной системы).

    Группы первичных нервных пучков посредством плотной неоформлен-
    ной соединительной ткани объединяются в более крупные вторичные и
    третичные пучки нервных стволов и составляют в них наружную соедини-
    тельнотканную оболочку, ижэпиневрий - epineurium. В эпиневрий по срав-
    нению с эндоневрием проходят более крупные кровеносные и лимфатиче-
    ские сосуды - vasa nervorum. Вокруг нервных стволйв имеется то или иное
    количество (в зависимости от места прохождения) рыхлой соединительной
    ткани, образующей по периферии нервного ствола дополнительную около-
    Нервную (защитную) оболочку - paraneural т. В непосредственной бли-
    зости к нервным пучкам она преобразуется в эпиневральную оболочку.

    Дата добавления: 2015-08-06 | Просмотры: 379 | Нарушение авторских прав


    | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

    ПОНЯТИЕ О ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЕ

    УЧЕБНЫЙ МОДУЛЬ 7. ФУНКЦИОНАЛЬНАЯ АНАТОМИЯ периферической нервной системы

    УЧЕБНЫЕ ЦЕЛИ

    ПОСЛЕ ИЗУЧЕНИЯ МОДУЛЯ СТУДЕНТ ДОЛЖЕН:

    ИМЕТЬ ПРЕДСТАВЛЕНИЕ О: структурах периферической нервной системы; значении периферической нервной системы в передаче информации; принципе образования чувствительных, двигательных и парасимпатических волокон черепных нервов; основных ядрах черепных нервов.

    ЗНАТЬ: строение спинномозговых нервов, их количество; ветви спинномозговых нервов; строение и особенности иннервации задних ветвей спинномозговых нервов; сплетения передних ветвей спинномозговых нервов, зоны их иннервации; названия и функциональные разновидности XII пар черепных нервов; образование, места выхода из полости черепа, области иннервации черепных нервов.

    УМЕТЬ: показать основные нервы соматических сплетений передних ветвей спинномозговых нервов и 12 пар черепных нервов на муляжах и таблицах; показать зоны иннервации спинномозговых и черепных нервов в атласе, на таблицах и модели.

    ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

    Периферической нервной системой называют ту часть нервной системы, которая расположена вне головного и спинного мозга. Через периферический отдел ЦНС регулирует функции всех органов и систем. К периферической нервной системе относятся спинномозговые и черепные нервы, их чувствительные узлы, нервы, узлы и сплетения вегетативной нервной системы, рецепторы и эффекторы.

    В зависимости от отдела ЦНС, от которого отходят периферические нервы, выделяют спинномозговые нервы (СМН), выходящие из спинного мозга и черепные (черепно-мозговые) нервы (ЧМН), отходящие от ствола головного мозга. Благодаря спинномозговым нервам осуществляется двигательная и чувствительная соматическая иннервация туловища, конечностей и частично шеи, а также вегетативная иннервация внутренних органов. Черепные нервы иннервируют область головы и частично - шеи.

    Пучок нервных волокон образует нерв (нервный ствол), окруженный соединительно-тканной оболочкой. В нерв обычно входит большое количество двигательных, чувствительных, иногда и вегетативных волокон, иннервирующих различные ткани и органы. Такие нервы называются смешанными. Встречаются и чисто двигательные, чувствительные и вегетативные (парасимпатические) нервы.

    Различают нервы (ветви) кожные, чувствительные, поверхностные – мышечные и двигательные – глубокие. Кожные нервы расположены в подкожно-жировом слое. Они содержат чувствительные соматические волокна, иннервирующие кожу и вегетативные волокна, иннервирующие сальные, потовые железы, сосуды и мышцы, поднимающие волосы. Мышечные нервы обычно входят в состав сосудисто-нервных пучков, расположены глубоко между мышцами и содержат двигательные, чувствительные и вегетативные нервные волокна, иннервирующие скелетные мышцы, суставы, кости, сосуды и внутренние органы.



    Двигательные нервы образованы аксонами двигательных нейронов передних рогов спинного мозга и двигательных ядер ЧМН. Чувствительные нервы сформированы отростками афферентных нейронов спинальных и черепных узлов (ганглиев). Вегетативные нервы состоят из отростков нейронов боковых рогов спинного мозга и вегетативных ядер ЧМН. Они являются предузловыми нервными волокнами и следуют до вегетативных нервных узлов и сплетений. Послеузловые волокна отходят от этих узлов и сплетений далее, к внутренним органам и тканям. Вегетативные волокна входят в состав большинства ЧМН и всех СМН.

    Крупные нервы часто входят в сосудисто-нервные пучки (магистрали), окруженные общим соединительно-тканным влагалищем. В состав такого пучка, как правило, входят артерия, вены, лимфатические сосуды, нерв.