Записи с меткой "преобразовать выражение с переменной". Выражения с переменными



Запись условий задач с помощью принятых в математике обозначений приводит к появлению так называемых математических выражений, которые называют просто выражениями. В этой статье мы подробно поговорим про числовые, буквенные выражения и выражения с переменными : дадим определения и приведем примеры выражений каждого вида.

Навигация по странице.

Числовые выражения – что это?

Знакомство с числовыми выражениями начинается чуть ли не с самых первых уроков математики. Но свое имя – числовые выражения – они официально приобретают немного позже. Например, если следовать курсу М. И. Моро, то это происходит на страницах учебника математики для 2 классов. Там представление о числовых выражениях дается так: 3+5 , 12+1−6 , 18−(4+6) , 1+1+1+1+1 и т.п. – это все числовые выражения , а если в выражении выполнить указанные действия, то найдем значение выражения .

Можно сделать вывод, что на этом этапе изучения математики числовыми выражениями называют имеющие математический смысл записи, составленные из чисел, скобок и знаков сложения и вычитания.

Чуть позже, после знакомства с умножением и делением, записи числовых выражений начинают содержать знаки «·» и «:». Приведем несколько примеров: 6·4 , (2+5)·2 , 6:2 , (9·3):3 и т.п.

А в старших классах разнообразие записей числовых выражений разрастается как снежный ком, катящийся с горы. В них появляются обыкновенные и десятичные дроби, смешанные числа и отрицательные числа, степени, корни, логарифмы, синусы, косинусы и так далее.

Обобщим всю информацию в определение числового выражения:

Определение.

Числовое выражение - это комбинация чисел, знаков арифметических действий, дробных черт, знаков корня (радикалов), логарифмов, обозначений тригонометрических, обратных тригонометрических и других функций, а также скобок и других специальных математических символов, составленная в соответствии с принятыми в математике правилами.

Разъясним все составные части озвученного определения.

В числовых выражениях могут участвовать абсолютно любые числа: от натуральных до действительных, и даже комплексных. То есть, в числовых выражениях можно встретить

Со знаками арифметических действий все понятно – это знаки сложения, вычитания, умножения и деления, имеющие соответственно вид «+», «−» , «·» и «:». В числовых выражениях может присутствовать один из этих знаков, некоторые из них или все сразу, и причем по нескольку раз. Вот примеры числовых выражений с ними: 3+6 , 2,2+3,3+4,4+5,5 , 41−2·4:2−5+12·3·2:2:3:12−1/12 .

Что касается скобок , то имеют место как числовые выражения, в которых есть скобки, так и выражения без них. Если в числовом выражении есть скобки, то они в основном

А иногда скобки в числовых выражениях имеют какое-нибудь определенное отдельно указанное специальное предназначение. К примеру, можно встретить квадратные скобки, обозначающие целую часть числа, так числовое выражение +2 обозначает, что к целой части числа 1,75 прибавляется число 2 .

Из определения числового выражения также видно, что в выражении могут присутствовать , , log , ln , lg , обозначения или и т.п. Вот примеры числовых выражений с ними: tgπ , arcsin1+arccos1−π/2 и .

Деление в числовых выражениях может быть обозначено с помощью . В этом случае имеют место числовые выражения с дробями. Приведем примеры таких выражений: 1/(1+2) , 5+(2·3+1)/(7−2,2)+3 и .

В качестве специальных математических символов и обозначений, которые можно встретить в числовых выражениях, приведем . Для примера покажем числовое выражение с модулем .

Что такое буквенные выражения?

Понятие буквенных выражений дается практически сразу после знакомства с числовыми выражениями. Вводится оно примерно так. В некотором числовом выражении одно из чисел не записывается, а вместо него ставится кружочек (или квадратик, или нечто подобное), и говорится, что вместо кружочка можно подставить некоторое число. Для примера приведем запись . Если вместо квадратика поставить, например, число 2 , то получится числовое выражение 3+2 . Так вот вместо кружочков, квадратиков и т.п. условились записывать буквы, а такие выражения с буквами назвали буквенными выражениями . Вернемся к нашему примеру , если в этой записи вместо квадратика поставить букву a , то получится буквенное выражение вида 3+a .

Итак, если допустить в числовом выражении присутствие букв, которыми обозначены некоторые числа, то получится так называемое буквенное выражение. Дадим соответствующее определение.

Определение.

Выражение, содержащее буквы, которыми обозначены некоторые числа, называется буквенным выражением .

Из данного определения понятно, что принципиально буквенное выражение отличается от числового выражения тем, что может содержать буквы. Обычно в буквенных выражениях используются маленькие буквы латинского алфавита (a, b, c, … ), а при обозначении углов – маленькие буквы греческого алфавита (α, β, γ, … ).

Итак, буквенные выражения могут быть составлены из чисел, букв и содержать все математические символы, которые могут встречаться в числовых выражениях, такие как скобки, знаки корней, логарифмы, тригонометрические и другие функции и т.п. Отдельно подчеркнем, что буквенное выражение содержит по крайней мере одну букву. Но может содержать и несколько одинаковых или различных букв.

Теперь приведем несколько примеров буквенных выражений. Например, a+b – это буквенное выражение с буквами a и b . Вот другой пример буквенного выражения 5·x 3 −3·x 2 +x−2,5 . И приведем пример буквенного выражения сложного вида: .

Выражения с переменными

Если в буквенном выражении буква обозначает величину, которая принимает не какое-то одно конкретное значение, а может принимать различные значения, то эту букву называют переменной и выражение называют выражением с переменной .

Определение.

Выражение с переменными – это буквенное выражение, в котором буквы (все или некоторые) обозначают величины, принимающие различные значения.

Например, пусть в выражении x 2 −1 буква x может принимать любые натуральные значения из интервала от 0 до 10 , тогда x – есть переменная, а выражение x 2 −1 есть выражение с переменной x .

Стоит отметить, что переменных в выражении может быть несколько. К примеру, если считать x и y переменными, то выражение является выражением с двумя переменными x и y .

Вообще, переход от понятия буквенного выражения к выражению с переменными происходит в 7 классе, когда начинают изучать алгебру. До этого момента буквенные выражения моделировали какие-то конкретные задачи. В алгебре же начинают смотреть на выражение более общо, без привязки к конкретной задаче, с пониманием того, что данное выражение подходит под огромное число задач.

В заключение этого пункта обратим внимание еще на один момент: по внешнему виду буквенного выражения невозможно узнать, являются ли входящие в него буквы переменными или нет. Поэтому ничто нам не мешает считать эти буквы переменными. При этом разница между терминами «буквенное выражение» и «выражение с переменными» исчезает.

Список литературы.

  • Математика . 2 кл. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др.] - 3-е изд. - М.: Просведение, 2012. - 96 с.: ил. - (Школа России). - ISBN 978-5-09-028297-0.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

Выражения, составленные из чисел, знаков действий и скобок, называются числовыми выражениями . Число, являющееся результатом выполнения всех действий в числовом выражении, называют значением числового выражения . О числовых выражениях, которые не имеют значения, говорят, что они не имеют смысла .

Для сравнения чисел используют знаки ,,,,,. При этом могут использоваться двойные неравенства вида
и т.п. Неравенства, в которых используются знакии, называютстрогими , в которых используют знаки и, –нестрогими .

Выражения, составленные из чисел, букв, знаков действий и скобок, называются буквенными выражениями или выражениями с переменной или с переменными . Множество значений переменной, при которых выражение с переменной имеет числовое значение (имеет смысл), называют областью допустимых значений переменной данного выражения.

Выражения с переменными используются для записи чисел определенного вида. Например, запись
означает любое трехзначное число, у которогосотен,десятков иединиц, т.е.
. С помощью буквенных выражений удобно записывать математические правила, законы, определения. Например,определение модуля (абсолютной величины) числа можно записать так:
.

Элементы статистики

Ряд чисел, полученных в результате статистического исследования, называется статистической выборкой или просто выборкой , а каждое число этого ряда – вариантой выборки . Количество чисел в ряду называют объемом выборки. Запись выборки, когда последующая варианта не меньше предыдущей, называется упорядоченным рядом данных (или вариационным рядом ).

Средним арифметическим выборки называется частное суммы всех вариант выборки и количества вариант (т.е. частное суммы всех вариант и объема выборки). Количество появлений одной и той же варианты в выборке называют частотой этой варианты. Варианта выборки, имеющая наибольшую частоту, называется модой выборки . Разность наибольшей и наименьшей вариант выборки называют размахом выборки . Если в упорядоченном ряду данных нечетное число вариант, то средняя по счету варианта называется медианой . Если в упорядоченном ряду четное число вариант, то среднее арифметическое двух средних по счету вариант называется медианой .

Подготовительный вариант



На уроках алгебры в школе мы сталкиваемся с выражениями различного вида. По мере изучения нового материала записи выражений становятся все разнообразнее и сложнее. Например, познакомились со степенями – в составе выражений появились степени, изучили дроби – появились дробные выражения и т.д.

Для удобства описания материала, выражениям, состоящим из схожих элементов, дали определенные названия, чтобы выделить их из всего разнообразия выражений. В этой статье мы ознакомимся с ними, то есть, дадим обзор основных выражений, изучаемых на уроках алгебры в школе.

Навигация по странице.

Одночлены и многочлены

Начнем с выражений, имеющих название одночлены и многочлены . На момент написания этой статьи разговор про одночлены и многочлены начинается на уроках алгебры в 7 классе. Там даются следующие определения.

Определение.

Одночленами называются числа, переменные, их степени с натуральным показателем, а также любые произведения, составленные из них.

Определение.

Многочлены – это сумма одночленов.

Например, число 5 , переменная x , степень z 7 , произведения 5·x и 7·x·2·7·z 7 – это все одночлены. Если же взять сумму одночленов, например, 5+x или z 7 +7+7·x·2·7·z 7 , то получим многочлен.

Работа с одночленами и многочленами часто подразумевает выполнение действий с ними. Так на множестве одночленов определено умножение одночленов и возведение одночлена в степень , в том смысле, что в результате их выполнения получается одночлен.

На множестве многочленов определено сложение, вычитание, умножение, возведение в степень. Как определяются эти действия, и по каким правилам они выполняются, мы поговорим в статье действия с многочленами .

Если говорить про многочлены с единственной переменной, то при работе с ними значительную практическую значимость имеет деление многочлена на многочлен , а также часто такие многочлены приходится представлять в виде произведения, это действие имеет название разложение многочлена на множители .

Рациональные (алгебраические) дроби

В 8 классе начинается изучение выражений, содержащих деление на выражение с переменными. И первыми такими выражениями выступают рациональные дроби , которые некоторые авторы называют алгебраическими дробями .

Определение.

Рациональная (алгебраическая) дробь это дробь, числителем и знаменателем которой являются многочлены, в частности, одночлены и числа.

Приведем несколько примеров рациональных дробей: и . К слову, любая обыкновенная дробь является рациональной (алгебраической) дробью.

На множестве алгебраических дробей вводятся сложение, вычитание, умножение, деление и возведение в степень. Как это делается объяснено в статье действия с алгебраическими дробями .

Часто приходится выполнять и преобразование алгебраических дробей , наиболее распространенными из них являются сокращение и приведение к новому знаменателю.

Рациональные выражения

Определение.

Выражения со степенями (степенные выражения) – это выражения, содержащие степени в своей записи.

Приведем несколько примеров выражений со степенями. Они могут не содержать переменных, например, 2 3 , . Также имеют место степенные выражения с переменными: и т.п.

Не помешает ознакомиться с тем, как выполняется преобразование выражений со степенями .

Иррациональные выражения, выражения с корнями

Определение.

Выражения, содержащие логарифмы называют логарифмическими выражениями .

Примерами логарифмических выражений являются log 3 9+lne , log 2 (4·a·b) , .

Очень часто в выражениях встречаются одновременно и степени и логарифмы, что и понятно, так как по определению логарифм есть показатель степени. В результате естественно выглядят выражения подобного вида: .

В продолжение темы обращайтесь к материалу преобразование логарифмических выражений .

Дроби

В этом пункте мы рассмотрим выражения особого вида - дроби.

Дробь расширяет понятие . Дроби также имеют числитель и знаменатель, находящиеся соответственно сверху и снизу горизонтальной дробной черты (слева и справа наклонной дробной черты). Только в отличие от обыкновенных дробей, в числителе и знаменателе могут быть не только натуральные числа, но и любые другие числа, а также любые выражения.

Итак, дадим определение дроби.

Определение.

Дробь – это выражение, состоящее из разделенных дробной чертой числителя и знаменателя, которые представляют собой некоторые числовые или буквенные выражения или числа.

Данное определение позволяет привести примеры дробей.

Начнем с примеров дробей, числителями и знаменателями которых являются числа: 1/4 , , (−15)/(−2) . В числителе и знаменателе дроби могут быть и выражения, как числовые, так и буквенные. Вот примеры таких дробей: (a+1)/3 , (a+b+c)/(a 2 +b 2) , .

А вот выражения 2/5−3/7 , дробями не являются, хотя и содержат дроби в своих записях.

Выражения общего вида

В старших классах, особенно в задачах повышенной трудности и задачах группы С в ЕГЭ по математике, будут попадаться выражения сложного вида, содержащие в своей записи одновременно и корни, и степени, и логарифмы, и тригонометрические функции, и т.п. Например, или . Они по виду подходят под несколько типов перечисленных выше выражений. Но их обычно не относят ни к одному из них. Их считают выражениями общего вида , а при описании говорят просто выражение, не добавляя дополнительных уточнений.

Завершая статью, хочется сказать, что если данное выражение громоздкое, и если Вы не совсем уверены, к какому виду оно относится, то лучше назвать его просто выражением, чем назвать его таким выражением, каким оно не является.

Список литературы.

  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Математика. 6 класс: учеб. для общеобразоват. учреждений / [Н. Я. Виленкин и др.]. - 22-е изд., испр. - М.: Мнемозина, 2008. - 288 с.: ил. ISBN 978-5-346-00897-2.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.











Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: познакомить с понятиями выражение с переменными, значение выражения с переменными, формула, учить различать выражения, которые не имеют смысла.

Вид урока: комбинированный урок.

Оборудование: карточки для индивидуального опроса, карточки для игры «Математическое лото», презентация.

Ход урока

I. Инициация.

А) Проверка готовности к уроку.

Б) Приветствие.

II. Домашнее задание.

с.7 № 25, 31, 44.

III. Актуализация знаний.

А) Проверка домашнего задания.

840=23*3*5*7; 1260=22*3*5*31

НОД (840, 1260)=23*3*5*7*31=26040.

Ответ: 26040.

НОД (120, 280, 320)=23*5=40

40>30, 40 (уч.) – в первом классе.

Ответ: 40 учащихся.

1 способ

х=3,2*200/1000; х=0,64.

0,64 (%) – жира

х=2,5*200/1000; х=0,5.

0,5 (%) – белка

х=4,7*200/1000; х=0,94.

0,94 (%) – углеводов

2 способ

1000/200=5 (раз) – уменьшился объем молока

  1. 3,2:5=0,64 (%) – жира
  2. 2,5:5=0,5 (%) – белка
  3. 4,7:5=0,94 (%) – углеводов

Ответ: 0,64 %,0,5 %, 0,94 %.

а) 28+15; б) 6*3; в) 3-8,7; г) 0,8:0,4.

Б) Индивидуальные карточки.

  1. Найти НОД чисел 24 и 34.
  2. Найти значение выражения: а) 69,95+27,8; б) 54,5-6,98.
  1. Найти НОД чисел 27 и 19.
  2. Вычислить: а) 85-98,04; б) 65,7*13,4.
  1. Найти НОД чисел 17 и 36.
  2. Вычислить: а) 0,48*5,6; б) 67,89-23,3.

В) Математическое лото.

Выполнить действия и получить изображение.

8,5-7,3 5,6+0,9 2,5-(3,2+1,8)
4,7*12,3 2*9,5+14 6,1*(8,4:4)
65:1,3 (10-2,7):5 (6,4+7):2

1,2 6,5 -2,5
57,81 33 12,81
50 1,46 6,7

IV. Формирование новых понятий и убеждений.

1. Новый материал.

Выражения с переменными

Двигаясь со скоростью 70 км/ч, автомобиль за 3 ч пройдет 70*3 км, за 4 ч – 70*4 км, за 5 ч – 70*5 км, за 5,5 ч – 70*5,5 км.

– А какое расстояние пройдет автомобиль за t часов? Вообще за t ч он пройдет 70t км. Изменяя значение t, мы можем с помощью выражения 70t находить путь, пройденный автомобилем за разные промежутки времени. Для этого достаточно вместо буквы t подставить ее значение и выполнить умножение. Букву t в выражении 70t называют переменной, а само выражение 70t – выражением с переменной.

Приведем еще пример. Пусть длины сторон прямоугольника равны а см и в см. Тогда его площадь равна ав см2. Выражение ав содержит две переменные а и в. Оно показывает, как находить площадь прямоугольника при различных значениях а и в. Например:

если а = 8 и в = 11, то ав = 8-11 = 88;

если а = 25 и в = 4, то ав = 25-4=100.

Если в выражение с переменными подставить вместо каждой переменной какое-либо ее значение, то получится числовое выражение. Его значение называют значением выражения с переменными при выбранных значениях переменных.

Так, число 88 есть значение выражения ab при а = 8 и 6=11, чис­ло 100 есть значение этого выражения при а = 25 и 6 = 4.

Некоторые выражения не имеют смысл при некоторых значениях переменной, а другие имеют смысл при всех значениях перемен­ных. Примерами могут служить выражения

х(х + 1), ау – 4.

Выражения с переменными используются для записи формул. Рассмотрим примеры.

Любое четное число m можно представить в виде произведения числа 2 и целого числа n, т. е. m=2n.

Если в эту формулу вместо n подставлять целые числа, то значе­ниями переменной m будут четные числа. Формулу m= 2n называют формулой четного числа.

Формулу m= 2n + 1, где n – целое число, называют формулой не­четного числа.

Аналогично формуле четного числа можно записать формулу чис­ла, кратного любому другому натуральному числу.

Например, формулу числа, кратного 3, можно записать так: m=3n, где n – целое число.

V. Применение полученных знаний на практике.

Выполнение №№ 19-24 по учебнику.

Резерв №26.

VI. Рефлексия.

  1. Что называется выражением c переменными?
  2. Что такое значение выражения с переменной?
  3. Приведите примеры выражения с переменными.

I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

Примеры алгебраических выражений:

2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

Примеры. Найти значение выражения:

1) a + 2b -c при a = -2; b = 10; c = -3,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

Решение .

1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

— 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

|-8| + |-5| -|6| = 8 + 5 -6 = 7.

III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

Примеры. При каких значениях переменной выражение не имеет смысла?

Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Примеры.

a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

Решение . Вспомним распределительное свойство (закон) умножения:

(a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
(а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

3) a·(6m -2n + k) = 6am -2an +ak.

б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

Решение. Применим законы (свойства) сложения:

a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
(a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

Решение. Применим законы (свойства) умножения:

a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
(a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).

7) 4 · х · (-2,5) = -4 · 2,5 · х = -10х.

8) -3,5 · · (-1) = 7у.

9) 3а · (-3) · 2с = -18ас.

Если алгебраическое выражение дано в виде сократимой дроби, то пользуясь правилом сокращения дроби его можно упростить, т.е. заменить тождественно равным ему более простым выражением.

Примеры. Упростите, используя сокращение дробей.

Решение. Сократить дробь — это значит разделить ее числитель и знаменатель на одно и то же число (выражение), отличное от нуля. Дробь 10) сократим на 3b ; дробь 11) сократим на а и дробь 12) сократим на 7n . Получаем:

Алгебраические выражения применяют для составления формул.

Формула – это алгебраическое выражение, записанное в виде равенства и выражающее зависимость между двумя или несколькими переменными. Пример: известная вам формула пути s=v·t (s — пройденный путь, v — скорость, t — время). Вспомните, какие еще формулы вы знаете.

Страница 1 из 1 1