Динамика биохимических процессов в организме во время мышечной работы. Организм человека, даже в состоянии покоя, расходует много энергии Организма в состоянии покоя


В Метаболизм ни при чем

Вы, наверное, читали или слышали, что после отметки «40 лет» люди неизбежно начинают набирать вес, а виноват в этом метаболизм, или обмен веществ. Он с возрастом замедляется, и мы толстеем. Так вот, слушайте последние новости из мира науки.

Во второй половине жизни метаболизм действительно замедляется, но темпы этого замедления совсем небольшие. Некоторые исследователи даже говорят — минимальные! Если вы не страдаете серьезным расстройством обмена веществ, то не он виноват в том, что вы поправились.

У метаболизма есть разные фазы

Метаболизм в состоянии покоя — это то, сколько энергии наш организм расходует, когда мы лежим на диване утром в воскресенье. Он зависит от комбинации постоянных факторов, например, роста, пола, наследственности, и тут ничего особо изменить не получится.

Кроме того, есть еще три фазы метаболизма, и все активные. Именно про них обычно говорят, что какие-то продукты или виды движения могут «замедлить» или «ускорить» ваш метаболизм.

Первая фаза — это обмен веществ во время еды. Оказывается, пока мы жуем, глотаем и перевариваем, мы тоже сжигаем небольшое количество калорий (примерно 10% суточной нормы). Это называется «термический эффект пищи». Этот процесс можно ускорить (совсем чуть-чуть), если пить стимулирующие напитки (например, зеленый чай или кофе) или есть много белка, заедая перцем чили. Однако не надейтесь таким образом сбросить килограммы — опытным путем доказано, что речь идет, скорее, о граммах. Продукты, ускоряющие метаболизм, делают это совсем незначительно.

Лучше сразу перейти ко второй фазе активного сжигания калорий — движению!

Любые движения — поднимаетесь ли вы по лестнице, нервно бродите туда-сюда по офису или в поте лица занимаетесь спортом, заставляют вас расходовать энергию. Это вторая фаза — метаболизм во время физических нагрузок.


После него наступает третья фаза: мы находимся в покое, а калории все равно «сгорают» . То есть, с точки зрения потери веса, лежать на диване после тренировки более эффективно, чем до. Это называется «кислородный долг» — нагрузка уже закончилась, а кислород в организме по инерции продолжает сжигаться повышенными темпами.

Так вот, если вы хотите сбросить вес, значение имеют только две последние фазы.

При этом характер нагрузок тоже важен. Например, многие думают, что силовые тренировки — штанга, гири, гантели и все в таком духе — позволяют сжигать килограммы более эффективно, но исследования это не подтверждают. Дело в том, что разные органы и части нашего тела сжигают разное количество калорий, и мускулы тут совсем не на первом месте. Мозг, например, потребляет больше калорий, чем бицепсы.

Вот что рассказывает Клод Бушар, профессор генетики из Биомедицинского центра университета Луизианы:

«Функция мозговой деятельности — это примерно 20% метаболизма в состоянии покоя. Следующим идет сердце, которое работает, не переставая — еще 15-20%. Потом — почки, легкие и другие ткани. На мышцы остается примерно 20-25%».

Поэтому, хотя упражнения на тренажерах — полезная, укрепляющая здоровье привычка, не надейтесь, что они помогут вам серьезно ускорить метаболизм. Лучше работают те виды движения, при которых работает всё: сердце активно бьется, легкие мощно дышат, то есть кардиотренировки :


  • ходьба,


  • плаванье и так далее.

В общем, секрет оказался простой и довольно скучный : во-первых, с возрастом мы просто меньше двигаемся — не только не занимаемся спортом, но и просто меньше ходим пешком и больше сидим. И второе — мы перестаем осознавать потребности собственного тела в питании. Механизм, который контролирует аппетит, с возрастом начинает работать хуже; мы не понимаем, что пора остановиться, и накладываем себе добавки.

Вывод только один: не валить все на метаболизм, он не виноват. Надо просто больше двигаться и уменьшить порции.

Правда, есть поговорка про то, что сложным советам никто не следует, потому что они слишком сложные. А простым — потому что слишком простые.

Ксения Чурмантеева

Этот пост о том сколько калорий необходимо мозгу, а сколько мышцам, как рассчитывается базовый обмен веществ и как определить затраты энергии на ту или иную активность. Разберем некоторые исследования и полученные факты.

Начну без долгих предисловий и воды, а перейду сразу к исследованиям, табличкам и фактам 🙂

К «Прочим» относятся кости, кожа, кишечник, железы. Легкие не были измерены по методологическим обстоятельствам, но были оценены на уровне 200 ккал/кг (примерно также, как и печень).

Забавный факт – жировые клетки также расходуют калории. Да, это значение не столь велико (около 4,5 ккал/кг), но полагать, что жировые клетки полностью инертны – не верно. Адипоциты производят большое количество гормонов (например, лептин о котором я уже говорила в видео), и это требует энергозатрат.

Адипоцит, секреторная ф-ция:


В состоянии «покоя» 70-80% энергозатрат приходится на органы, которые занимают не более 7% от общей массы тела (печень, сердце, почки, мозг). В то же время мышцы могут занимать около 40% от общей массы тела, но при этом расходуют в состоянии «покоя» 22% энергии, что как-то маловато.

Вот хорошая иллюстрация соотношения массы органов и тканей к энергозатратам организма в состоянии «покоя»:

Вот еще одно любопытное исследование, оно показывает, как изменяется вес составных компонентов тела (жира, мышц, прочих органов) при общем изменении веса тела.

Ссылка на исследование : Peters A, Bosy-Westphal A, Kubera B, Langemann D, Goele K, Later W, Heller M, Hubold C, Müller MJ. Why doesn’t the brain lose weight, when obese people diet? Obes Facts. 2011;4(2):151-7. doi: 10.1159/000327676. Epub 2011 Apr 7.

Скажу сразу, диета на размер мозга не влияет 😉 Масса мозга у взрослого человека остается практически неизменной при похудение или наборе веса. А вот масса мышц, жира, почек, печени зависит от изменения веса тела.

Посмотрите как мало весят кости! Так что отговорка — «Да у меня просто кость тяжелая!» не пройдет 🙂

Получается, что уровень базового обмена веществ или обмен веществ в состоянии «покоя» можно грубо оценивать на уровне 22-24 ккал на кг веса тела . Все это очень индивидуально и зависит от размера определенных органов, тканей, активной клеточной массы. Но в среднем это 22-24 ккал (у мужчин чуть больше, т.к. средний процент жировой ткани у них чуть меньше, а мышц больше), так что для женщины весом 55 кг базовый обмен равен примерно 1265 ккал. Но это БАЗОВЫЙ обмен, то есть физическая активность минимальна.

Physical activity ratios (PAR) или коэффициент физической активности.

Наверное, слышали, что час интенсивного бега это 300-400 ккал, но как мы выяснили, уровень базового обмена зависит от размера определенных органов, тканей, активной клеточной массы, так и расход калорий для одинакового рода физической активности у разных людей отличается.

На графике ниже представлены коэффициент физической активности (PAR). В чем суть, например, наш вес 55 кг и базовый обмен (BMR) составляет 1 265 ккал или 0,87 ккал в минуту, значит для расчета общей нормы энергозатрат надо умножить BMR на PAR и на время той или иной активности. Пример, мы спим 8 часов в день (480 минут * 0,87 BMR * 0.93 PAR = 388 ккал на сон), гуляли 2 часа (120 минут * 0,87 BMR * 3,9 PAR = 407 ккал) и т.д.

Ссылка на исследование : Stefano Lazzer, Grace O’Malley, Michel Vermorel Metabolic And Mechanical Cost Of Sedentary And Physical Activities In Obese Children And Adolescents

Вряд ли кто-то будет все это рассчитывать, лично я для цели определения энергозатрат от физической активности использую спортивные часы, ну а базовый обмен веществ посчитать не сложно.

Напоследок, информация для тех, кто любит в офисе пить чай вприкуску с шоколадкой и горсткой печенюшек, дескать умственная деятельность очень энергозатратна.

Средний показатель энергозатрат мозга 0,23-0,25 ккал в минуту. В то время как увеличение энергозатрат мозга на «мыслительный процесс» добавляет около 1% к общим энергозатратам, а максимальный уровень энергозатрат не больше 10% от общих энергозатрат мозга.

«Event-related changes in cerebral blood flow and glucose uptake are no more than 10% of the physiologic baseline in typical cognitive paradigms. Concomitant changes in energy utilization are on the order of 1%»

Ссылка на исследование: Raichle , M . E ., and Mintun , M . A . (2006). Brain work and brain imaging . Annual Review of Neuroscience , 29, 449-476

Получается, что для решение суперсложных задач весь рабочий день (8 часов * 0,25 ккал * 60 мин. * 1,10) мозгу необходимо аж 132 ккал , а это целых 1,5 банана! 😉

Вот такая статья. Ну а я желаю Всем хорошего настроения, здоровья, классной фигуры и суперэффективных мозгов!)

Несколько слов об этой статье:
Во-первых, как и говорил в паблике - данная статья переведена с другого языка (пускай и, в принципе, близкого русскому, но все равно перевод - это достаточно сложная работа). Забавно то, что после того, как все перевел - нашел в интернете небольшую часть этой, уже переведенной на русский язык, статьи. Жаль потраченного времени. Ну да ладно..

Во-вторых, это статья о биохимии! Отсюда надо сделать вывод, что она будет тяжелой для восприятия, и как тут ни старайся ее упростить - все равно объяснить все на пальцах невозможно, поэтому подавляющее большинство описанных механизмов объяснять простым языком не стал, чтобы не запутывать читающих еще больше. Если внимательно и вдумчиво читать, то во всем можно будет разобраться. Ну и в-третьих, в статье присутствует достаточное количество терминов (некоторые вкратце объясняются в скобках, некоторые - нет. т.к. двумя-тремя словами их не объяснить, а если их начинать расписывать, то статья может стать слишком большой и абсолютно непонятной). Поэтому, я бы советовал использовать интернет-поисковики для тех слов, значения которых вам неизвестно.

Возможен вопрос типа: "Зачем выкладывать такие сложные статьи, если в них трудно разобраться?" Такие статьи нужны для того, чтобы понимать какие процессы в организме протекают в тот или иной промежуток времени. Считаю, что только после знания подобного рода материала можно начинать создавать для себя методические системы по тренингу. Если же этого не знать, то многие из способов изменить тело будут наверняка из разряда "ткнуть пальцем в небо", т.е. они понятно на чем основанные. Это лишь мое мнение.

И еще просьба: если в статье есть что-то, на ваш взгляд, неверное, или какая-то неточность, то прошу об этом написать в комментариях (или мне в Л.С.).

Поехали..


Организм человека, а уж тем более спортсмена, никогда не работает в "линейном" (неизменном) режиме. Очень часто тренировочный процесс может заставить его перейти на предельно возможные для него "обороты". Для того, чтобы выдержать нагрузку, организм начинает оптимизировать свою работу под данный тип стресса. Если рассматривать именно силовой тренинг (бодибилдинг, пауэрлифтинг, тяжелая атлетика и пр.), то первым, кто подает сигнал в теле человека о необходимых временных перестройках (адаптация) являются наши мышцы.

Мышечная деятельность вызывает изменения не только в работающем волокне, но и приводит к биохимическим изменениям во всем организме. Усилению мышечного энергетического обмена предшествует значительное повышение активности нервной и гуморальной систем.

В предстартовом состоянии активизируется действие гипофиза, коры надпочечников, поджелудочной железы. Совместное действие адреналина и симпатической нервной системы приводит к: повышению ЧСС, увеличению объема циркулирующей крови, образованию в мышцах и проникновению в кровь метаболитов энергетического обмена (СО2, СН3-СН (ОН)-СООН, АМФ). Происходит перераспределение ионов калия, что приводит к расширению кровеносных сосудов мышц, сужению сосудов внутренних органов. Вышеуказанные факторы приводят к перераспределению общего кровотока организма, улучшая доставку кислорода к работающим мышцам.

Поскольку внутриклеточных запасов макроэргов хватает на непродолжительное время, то в предстартовом состоянии происходит мобилизация энергетических ресурсов организма. Под действием адреналина (гормон надпочечников) и глюкагона (гормон поджелудочной железы) усиливается распад гликогена печени до глюкозы, которая током крови переносится к работающим мышцам. Внутримышечный и печеночный гликоген - субстрат для ресинтеза АТФ в креатинфосфатных и гликолитических процессах.


С увеличением продолжительности работы (стадия аэробного ресинтеза АТФ), основную роль в энергообеспечении мышечного сокращения начинают играть продукты распада жиров (жирные кислоты и кетоновые тела). Липолиз (процесс расщепления жиров) активируется адреналином и соматотропином (он же "гормон роста"). В это же время усиливается печеночный «захват» и окисление липидов крови. В результате печень выбрасывает в кровяное русло значительные количества кетоновых тел, которые доокисляются до углекислого газа и воды в работающих мышцах. Процессы окисления липидов и углеводов протекают параллельно, а от количества последних зависит функциональная активность головного мозга и сердца. Поэтому, в период аэробного ресинтеза АТФ протекают процессы глюконеогенеза - синтез углеводов из веществ углеводородной природы. Регулирует этот процесс гормон надпочечников - кортизол. Основным субстратом глюконеогенеза являются аминокислоты. В незначительных количествах образования гликогена происходит и из жирных кислот (печень).

Переходя из состояния покоя к активной мышечной работе, потребность в кислороде значительно возрастает, поскольку последний является конечным акцептором электронов и протонов водорода системы дыхательной цепи митохондрий в клетках, обеспечивая процессы аэробного ресинтеза АТФ.

На качество кислородного обеспечения работающих мышц влияет «закисление» крови метаболитами процессов биологического окисления (молочная кислота, углекислый газ). Последние воздействуют на хеморецепторы стенок кровеносных сосудов, которые передают сигналы в ЦНС, усиливая активность дыхательного центра продолговатого мозга (участок перехода головного мозга в спинной).

Кислород из воздуха распространяется в кровь через стенки легочных альвеол (см. рисунок) и кровеносных капилляров вследствие разности его парциальных давлений:


1) Парциальное давление в альвеолярном воздухе - 100-105 мм. рт. ст
2) Парциальное давление в крови в состоянии покоя - 70-80 мм. рт. ст
3) Парциальное давление в крови при активной работе - 40-50 мм. рт. ст

Только небольшой процент кислорода, поступающего в кровь, растворяется в плазме (0.3 мл на 100 мл крови). Основная часть связывается в эритроцитах гемоглобином:

Hb + O2 -> HbO2​

Гемоглобин - белковая мультимолекула, состоящая из четырех вполне самостоятельных субъединиц. Каждая субъединица связана с гемом (гем - железосодержащая простетическая группа).

Присоединение кислорода к железосодержащей группе гемоглобина объясняют понятием родства. Родство к кислороду в различных белках различно и зависит от структуры белковой молекулы.

Молекула гемоглобина может присоединять 4 молекулы кислорода. На способность гемоглобина связывать кислород влияют следующие факторы: температура крови (чем она ниже, тем лучше связывается кислород, а ее повышение способствует распаду окси-гемоглобина); щелочная реакция крови.

После присоединения первых молекул кислорода, кислородная родство гемоглобина повышается в результате конформационных изменений полипептидных цепей глобина.
Обогащенная в легких кислородом кровь поступает в большой круг кровообращения (сердце в состоянии покоя перекачивает ежеминутно 5-6 литров крови, транспортируя при этом 250 - 300 мл О2). Во время же интенсивной работы за одну минуту скорость перекачки возрастает до 30-40 литров, а количество кислорода, что переносится кровью, составляет 5-6 литров.

Попадая в работающие мышцы (благодаря наличию высоких концентраций СО2 и повышенной температуре) происходит ускоренный распад оксигемоглобина:

H-Hb-O2 -> H-Hb + O2​

Поскольку давление углекислого газа в ткани больше, чем в крови, то освобожденный от кислорода гемоглобин обратимо связывает СО2, образуя карбаминогемоглобин:

H-Hb + СО2 -> H-Hb-CO2​


который распадается в легких до углекислого газа и протонов водорода:

H-Hb-CO2 -> H + + Hb-+ CO2​


Протоны водорода нейтрализуются отрицательно заряженными молекулами гемоглобина, а углекислый газ выводится в окружающую среду:

H + + Hb -> H-Hb​


Несмотря на определенную активацию биохимических процессов и функциональных систем в предстартовом состоянии, при переходе из состояния покоя к интенсивной работе наблюдается определенный дисбаланс между потребностью в кислороде и его доставкой. Количество кислорода, которое необходимо для удовлетворения организма при выполнении мышечной работы, называется кислородным спросом организма. Однако, повышенная потребность кислорода какое-то время не может быть удовлетворена, потому необходимо некоторое время, чтобы усилить деятельность систем дыхания и кровообращения. Поэтому, начало любой интенсивной работы происходит в условиях недостаточного количества кислорода - кислородного дефицита.

Если работа осуществляется с максимальной мощностью за короткий промежуток времени, то потребность в кислороде так велика, что не может быть удовлетворена даже максимально возможным поглощением кислорода. Например, при беге на 100 м, организм снабжается кислородом на 5-10%, а 90-95% кислорода поступает после финиша. Избыток потребленного кислорода после выполненной работы называется кислородным долгом.

Первая часть кислорода, которая идет на ресинтез креатинфосфата (распавшегося при работе), получила название алактатного кислородного долга; вторая же часть кислорода, идущего на устранение молочной кислоты и ресинтез гликогена, называется лактатным кислородным долгом.

Рисунок. Кислородный приход, кислородный дефицит и кислородный долг при длительной работе разной мощности. А - при легкой, Б - при тяжелой, и В - при истощающей работе; I - период врабатывания; II - устойчивое (А, Б) и ложное устойчивое (В) состояние во время работы; III - восстановительный период после выполнения упражнения; 1 - алактатный, 2 - гликолитический компоненты кислородного долга (по Волкову Н. И., 1986).

Алактатный кислородный долг компенсируется относительно быстро (30 сек. - 1 мин.). Характеризует вклад креатинфосфата в энергетическое обеспечение мышечной деятельности.

Лактатный кислородный долг полностью компенсируется за 1.5-2 часа по окончании работы. Указывает долю гликолитических процессов в энергообеспечении. При длительной интенсивной работе в образовании лактатного кислородного долга присутствует значительная доля других процессов.

Выполнение интенсивной мышечной работы невозможно без интенсификации обменных процессов в нервной ткани и тканях сердечной мышцы. Лучшее энергообеспечение сердечной мышцы обусловливается рядом биохимических и анатомо-физиологических особенностей:
1. Сердечная мышца пронизана чрезвычайно большим количеством кровеносных капиляров по которым течет кровь с большой концентрацией кислорода.
2. Наиболее активными являются ферменты аэробного окисления.
3. В состоянии покоя в качестве энергетических субстратов используются жирные кислоты, кетоновые тела, глюкоза. При напряженной мышечной работе основным энергетическим субстратом является молочная кислота.

Интенсификация обменных процессов нервной ткани выражается в следующем:
1. Увеличивается потребление глюкозы и кислорода в крови.
2. Повышается скорость восстановления гликогена и фосфолипидов.
3. Усиливается распад белков и образование аммиака.
4. Снижается общее количество запасов макроэргических фосфатов.


Поскольку биохимические изменения происходят в живых тканях, то непосредственно их наблюдать и изучать довольно проблематично. Поэтому, зная основные закономерности протекания обменных процессов, основные выводы об их течении делают на основе результатов анализа крови, мочи, выдыхаемого воздуха. Так, например, вклад креатинфосфатной реакции в энергетическое обеспечение мышц оценивается концентрацией продуктов распада (креатина и креатинина) в крови. Наиболее точным показателем интенсивности и емкости аэробных механизмов энергообеспечения является количество потребленного кислорода. Уровень развития гликолитических процессов оценивают по содержанию молочной кислоты в крови как во время работы, так и в первые минуты отдыха. Изменение показателей кислотного равновесия позволяет сделать вывод о способности организма противостоять кислым метаболитам анаэробного обмена.

Изменение скорости метаболических процессов при мышечной деятельности зависит от:
- Общего количества мышц, которые участвуют в работе;
- Режима работы мышц (статический или динамический);
- Интенсивности и продолжительности работы;
- Количества повторов и пауз отдыха между упражнениями.

В зависимости от количества мышц, участвующих в работе, последняя делится на локальную (в исполнении участвуют менее 1/4 всех мышц), региональную и глобальную (участвуют более 3/4 мышц).
Локальная работа (шахматы, стрельба) - вызывает изменения в работающей мышце, не вызывая биохимических изменений в организме в целом.
Глобальная работа (ходьба, бег, плавание, лыжные гонки, хоккей и др..) - вызывает большие биохимические изменения во всех органах и тканях организма, наиболее сильно активизирует деятельность дыхательной и сердечно-сосудистой систем. В энергообеспечении работающих мышц чрезвычайно велик процент аэробных реакций.
Статический режим мышечного сокращения приводит к пережиму капиляров, а значит к худшему обеспечения кислородом и энергетическими субстратами работающие мышцы. В качестве энергетического обеспечения деятельности выступают анаэробные процессы. Отдыхом после выполнения статической работы должна быть динамическая низкоинтенсивная работы.
Динамический режим работы гораздо лучше обеспечивает кислородом работающие мышцы, потому попеременное сокращение мышц действует как своеобразный насос, проталкивая кровь сквозь капилляры.

Зависимость биохимических процессов от мощности выполняемой работы и ее длительности выражается в следующем:
- Чем выше мощность (высокая скорость распада АТФ), тем выше доля анаэробного ресинтеза АТФ;
- Мощность (интенсивность), при которой достигается наивысшая степень гликолитических процессов энергообеспечения, называется мощностью истощения.

Максимально возможная мощность определяется как максимальная анаэробная мощность. Мощность работы обратно пропорционально связана с продолжительностью работы: чем выше мощность, тем быстрее происходят биохимические изменения, приводящие к возникновению усталости.

Из всего сказанного можно сделать несколько простых выводов:
1) Во время тренировочного процесса идет интенсивный расход различных ресурсов (кислород, жирные кислоты, кетоны, белки, гормоны и многое другое). Именно поэтому организм спортсмена постоянно нуждается в обеспечении себя полезными веществами (питание, витамины, пищевые добавки). Без подобной поддержки велика вероятность причинить вред здоровью.
2) При переходе в "боевой" режим телу человека требуется некоторое время, чтобы адаптироваться к нагрузке. Именно поэтому не стоит с первой минуты тренировки предельно себя нагружать - организм просто к этому не готов.
3) По окончании тренировки тоже нужно помнить, что опять же требуется время, чтобы тело из возбужденного состояния перешло в спокойное. Хорошим вариантом для решения данного вопроса является заминка (снижение тренировочной интенсивности).
4) У организма человека есть свои пределы (ЧСС, давление, количество полезных веществ в крови, скорость синтеза веществ). Исходя из этого нужно подбирать оптимальный под себя тренинг по интенсивности и продолжительности, т.е. найти ту середину, при которой можно получить максимум положительного и мимимум отрицательного.
5) Должна использоваться как статика, так и динамика!
6) Не все так сложно, как сперва кажется..

На этом и закончим.

P.S. Касательно усталости - есть еще одна статья (о которой тоже вчера писал в паблике - "Биохимические изменения при усталости и в период отдыха". Она в два раза короче и в 3 раза проще этой, но не знаю стоит ли ее здесь выкладывать. Просто суть ее в том, что она подытоживает выложенную здесь статью о суперкомпенсации и о "токсинах усталости". Для коллекции (полноты всей картины) могу ее тоже представить. Пишите в комментариях - нужно или нет.

Метаболизм в состоянии покоя – это базовый уровень обмен веществ. Базовый обмен веществ важнейший фактор, влияющий на вес. Показатель базового обмена веществ определяет скорость метаболизма в состоянии покоя и определяет, какое количество энергии человек расходует ежедневно при отсутствии интенсивных физических нагрузок. В зависимости от особенностей работы тела человека его организм может расходовать до 1200 до 3100 ккал/сутки. Под состоянием покоя необходимо понимать не только отсутствие физической активности, но и поддержание стандартной температуры тела. Тем не менее, даже когда человек спит, его организм функционирует и расходует энергию. Самый энергоемкий процесс – это пищеварение. При расщеплении пищи потребляется 40% всей энергии. Процесс расщепления пищи не только потребляет, но и высвобождает необходимую энергию, которая используется для обеспечения функционирования внутренних органов: сердца, легких, почек, печени, кишечника, мышц и т.д. При избыточном накоплении калорий, которые не превращаются в энергию, происходит их накопление в организме про запас, при этом уровень метаболизма снижается, нарушая всю систему обмена.

Схема обмена веществ

Что такое БОВ?

Метаболизм в покое расходует свою энергию на поддержание жизнедеятельности организма, и с помощью вырабатываемого тепла организмом можно измерить базовый расход энергии. Значение базового обмена веществ (БОВ) является очень важным для поддержания правильного веса, поэтому этот показатель с возрастом снижается, что обусловлено сокращением мышечной массы. Тем не менее, увеличение мышечной массы не влияет на скорость БОВ. Энергия, которая затрачивается на поддержание температуры тела и его активности, влияет на БОВ в наибольшей степени.

При расчете БОВ необходимо учитывать наличие жировых отложений, которые у людей формируются по–разному. Жировой слой расходуется организмом при отсутствии другого источника энергии, за счет чего достигается похудение. Медленный метаболизм влияет на вес, поэтому его уровень необходим для похудения. На уровень базового обмена веществ влияют различные факторы: пол, мышечная масса, рост и возраст человека. Основной обмен веществ – это количество калорий, которые расходуются организмом в состоянии неактивности и обеспечивают жизнедеятельность организма в частности внутренних органов и поддержания стабильной температуры. То есть, это базовый уровень, который сжигается организмом, когда он бездействует (например, сидит на диване).