Natural phenomena. Examples of explainable and inexplicable phenomena. Physical phenomena


In 1979, the Gorky People's University of Scientific and Technical Creativity released Methodological Materials for its new development " Complex method search for new technical solutions." We plan to introduce site readers to this interesting development, which in many ways was significantly ahead of its time. But today we offer you to familiarize yourself with a fragment of the third part of the teaching materials, published under the title "Arrays of Information". The list of physical effects proposed in it includes: there are only 127 positions. Currently specialized computer programs offer more detailed versions of physical effects indexes, but for a user who is still “not covered” by software support, the table of applications of physical effects created in Gorky is of interest. Its practical benefit is that at the input the solver had to indicate which function from those listed in the table it wants to provide and which type of energy it plans to use (as they would say now, indicate resources). The numbers in the cells of the table are the numbers of physical effects in the list. Each physical effect is provided with references to literary sources (unfortunately, almost all of them are currently bibliographic rarities).
The work was carried out by a team that included teachers from Gorky People's University: M.I. Vainerman, B.I. Goldovsky, V.P. Gorbunov, L.A. Zapolyansky, V.T. Korelov, V.G. Kryazhev, A.V. Mikhailov, A.P. Sokhin, Yu.N. Shelomok. The material presented to the reader’s attention is compact, and therefore can be used as handouts in classes at public schools of technical creativity.
Editor

List of physical effects and phenomena

Gorky People's University of Scientific and Technical Creativity
Gorky, 1979

N Name of physical effect or phenomenon Brief description of the essence of a physical effect or phenomenon Typical functions (actions) performed (see Table 1) Literature
1 2 3 4 5
1 Inertia The movement of bodies after the cessation of forces. A rotating or translational body moving by inertia can accumulate mechanical energy and produce a force effect 5, 6, 7, 8, 9, 11, 13, 14, 15, 21 42, 82, 144
2 Gravity force interaction of masses at a distance, as a result of which bodies can move, approaching each other 5, 6, 7, 8, 9, 11, 13, 14, 15 127, 128, 144
3 Gyroscopic effect Bodies rotating at high speed are able to maintain the position of their axis of rotation unchanged. External force to change the direction of the rotation axis leads to precession of the gyroscope, proportional to the force 10, 14 96, 106
4 Friction The force arising from the relative movement of two contacting bodies in the plane of their contact. Overcoming this force leads to the release of heat, light, wear and tear 2, 5, 6, 7, 9, 19, 20 31, 114, 47, 6, 75, 144
5 Replacing static friction with motion friction When the rubbing surfaces vibrate, the friction force decreases 12 144
6 Wear-free effect (Kragelsky and Garkunov) The steel-bronze pair with glycerin lubricant practically does not wear out 12 75
7 Johnson-Rabek effect Heating the metal-semiconductor rubbing surfaces increases the friction force 2, 20 144
8 Deformation Reversible or irreversible (elastic or plastic deformation) change in the relative position of body points under the influence of mechanical forces, electric, magnetic, gravitational and thermal fields, accompanied by the release of heat, sound, light 4, 13, 18, 22 11, 129
9 Poynting effect Elastic elongation and increase in volume of steel and copper wires when twisted. The properties of the material do not change 11, 18 132
10 Relationship between strain and electrical conductivity When a metal transitions to a superconducting state, its plasticity increases 22 65, 66
11 Electroplastic effect Increasing ductility and reducing brittleness of metal under the influence of direct electric current high density or pulse current 22 119
12 Bauschinger effect Reduction of resistance to initial plastic deformations when the sign of the load changes 22 102
13 Alexandrov effect With increasing ratio of the masses of elastically colliding bodies, the energy transfer coefficient increases only to a critical value, determined by the properties and configuration of the bodies 15 2
14 Memory alloys Parts made of some alloys (titanium-nickel, etc.) deformed by mechanical forces after heating restore exactly their original shape and are capable of creating significant force impacts. 1, 4, 11, 14, 18, 22 74
15 Explosion phenomenon Ignition of substances due to their instant chemical decomposition and the formation of highly heated gases, accompanied by a strong sound, the release of significant energy (mechanical, thermal), and a flash of light 2, 4, 11, 13, 15, 18, 22 129
16 Thermal expansion Changes in the size of bodies under the influence of a thermal field (during heating and cooling). May be accompanied by significant effort 5, 10, 11, 18 128,144
17 First-order phase transitions A change in the density of the aggregate state of substances at a certain temperature, accompanied by release or absorption 1, 2, 3, 9, 11, 14, 22 129, 144, 33
18 Phase transitions of the second order Abrupt changes in heat capacity, thermal conductivity, magnetic properties, fluidity (superfluidity), plasticity (superplasticity), electrical conductivity (superconductivity) upon reaching a certain temperature and without energy exchange 1, 3, 22 33, 129, 144
19 Capillarity Spontaneous flow of liquid under the action of capillary forces in capillaries and half-open channels (microcracks and scratches) 6, 9 122, 94, 144, 129, 82
20 Laminarity and turbulence Laminarity is the ordered movement of a viscous liquid (or gas) without interlayer mixing with a flow rate decreasing from the center of the pipe to the walls. Turbulence is the chaotic movement of a liquid (or gas) with random movement of particles along complex trajectories and an almost constant flow velocity across the cross section 5, 6, 11, 12, 15 128, 129, 144
21 Surface tension of liquids Surface tension forces, caused by the presence of surface energy, tend to reduce the interface 6, 19, 20 82, 94, 129, 144
22 Wetting Physico-chemical interaction of liquid with solid body. The character depends on the properties of the interacting substances 19 144, 129, 128
23 Autophobic effect When a liquid with low tension comes into contact with a high-energy solid, complete wetting first occurs, then the liquid collects into a drop, and a strong molecular layer of liquid remains on the surface of the solid 19, 20 144, 129, 128
24 Ultrasonic capillary effect Increasing the speed and height of liquid rise in capillaries under the influence of ultrasound 6 14, 7, 134
25 Thermocapillary effect Dependence of the speed of liquid spreading on the uneven heating of its layer. The effect depends on the purity of the liquid and its composition 1, 6, 19 94, 129, 144
26 Electrocapillary effect Dependence of surface tension at the interface between electrodes and electrolyte solutions or ionic melts on the electric potential 6, 16, 19 76, 94
27 Sorption The process of spontaneous condensation of a dissolved or vaporous substance (gas) on the surface of a solid or liquid. With low penetration of the sorbent substance into the sorbent, adsorption occurs, with deep penetration, absorption occurs. The process is accompanied by heat exchange 1, 2, 20 1, 27, 28, 100, 30, 43, 129, 103
28 Diffusion The process of equalizing the concentration of each component throughout the entire volume of a mixture of gas or liquid. The rate of diffusion in gases increases with decreasing pressure and increasing temperature 8, 9, 20, 22 32, 44, 57, 82, 109, 129, 144
29 Dufort effect The emergence of a temperature difference during diffusion mixing of gases 2 129, 144
30 Osmosis Diffusion through a semi-permeable septum. Accompanied by the creation of osmotic pressure 6, 9, 11 15
31 Heat and mass exchange Heat transfer. May be accompanied by mixing of the mass or caused by movement of the mass 2, 7, 15 23
32 Archimedes' Law The action of lift on a body immersed in a liquid or gas 5, 10, 11 82, 131, 144
33 Pascal's law Pressure in liquids or gases is transmitted evenly in all directions 11 82, 131, 136, 144
34 Bernoulli's law Constancy of total pressure in steady laminar flow 5, 6 59
35 Viscoelectric effect An increase in the viscosity of a polar non-conducting liquid when flowing between the capacitor plates 6, 10, 16, 22 129, 144
36 Thoms effect Reducing friction between a turbulent flow and a pipeline when a polymer additive is introduced into the flow 6, 12, 20 86
37 Coanda effect Deflection of the jet of liquid flowing from the nozzle towards the wall. Sometimes there is “sticking” of liquid 6 129
38 Magnus effect The emergence of a force acting on a cylinder rotating in the oncoming flow, perpendicular to the flow and the generatrix of the cylinder 5,11 129, 144
39 Joule-Thomson effect (choke effect) Change in gas temperature as it flows through a porous partition, diaphragm or valve (without exchange with environment) 2, 6 8, 82, 87
40 Water hammer Rapid shutdown of a pipeline with moving liquid causes sharp increase pressure propagating in the form of a shock wave and the appearance of cavitation 11, 13, 15 5, 56, 89
41 Electrohydraulic shock (Yutkin effect) Water hammer caused by pulsed electrical discharge 11, 13, 15 143
42 Hydrodynamic cavitation The formation of ruptures in a fast flow of continuous fluid as a result of a local decrease in pressure, causing destruction of the object. Accompanied by sound 13, 18, 26 98, 104
43 Acoustic cavitation Cavitation resulting from the passage of acoustic waves 8, 13, 18, 26 98, 104, 105
44 Sonoluminescence Faint glow of a bubble at the moment of its cavitation collapse 4 104, 105, 98
45 Free (mechanical) vibrations Natural damped oscillations when the system is removed from an equilibrium position. In the presence of internal energy, the oscillations become undamped (self-oscillations) 1, 8, 12, 17, 21 20, 144, 129, 20, 38
46 Forced vibrations Fluctuations year by periodic force, usually external 8, 12, 17 120
47 Acoustic paramagnetic resonance Resonant absorption of sound by a substance, depending on the composition and properties of the substance 21 37
48 Resonance A sharp increase in the amplitude of oscillations when the forced and natural frequencies coincide 5, 9, 13, 21 20, 120
49 Acoustic vibrations Distribution in the environment sound waves. The nature of the impact depends on the frequency and intensity of vibrations. Main purpose - force impact 5, 6, 7, 11, 17, 21 38, 120
50 Reverberation Aftersound caused by the transition of delayed reflected or scattered sound waves to a certain point 4, 17, 21 120, 38
51 Ultrasound Longitudinal vibrations in gases, liquids and solids in the frequency range 20x103-109 Hz. Beam propagation with effects of reflection, focusing, formation of shadows with the ability to transmit high energy density used for force and thermal effects 2, 4, 6, 7, 8, 9, 13, 15, 17, 20, 21, 22, 24, 26 7, 10, 14, 16, 90, 107, 133
52 Wave motion transfer of energy without transfer of matter in the form of a disturbance propagating at a finite speed 6, 15 61, 120, 129
53 Doppler-Fizeau effect Change in oscillation frequency during mutual movement of the source and receiver of oscillations 4 129, 144
54 Standing waves At a certain phase shift, the direct and reflected waves add up to a standing wave with a characteristic arrangement of disturbance maxima and minima (nodes and antinodes). There is no transfer of energy through nodes, and between neighboring nodes there is an interconversion of kinetic and potential energy. Force impact standing wave capable of creating the appropriate structure 9, 23 120, 129
55 Polarization Violation of axial symmetry of a transverse wave relative to the direction of propagation of this wave. Polarization is caused by: lack of axial symmetry in the emitter, or reflection and refraction at the boundaries of different media, or propagation in an anisotropic medium 4, 16, 19, 21, 22, 23, 24 53, 22, 138
56 Diffraction Wave bending around an obstacle. Depends on obstacle size and wavelength 17 83, 128, 144
57 Interference Strengthening and weakening of waves at certain points in space, which occurs when two or more waves overlap 4, 19, 23 83, 128, 144
58 Moire effect The appearance of a pattern when two systems of equidistant parallel lines intersect at a slight angle. A small change in the angle of rotation leads to a significant change in the distance between the elements of the pattern 19, 23 91, 140
59 Coulomb's law Attraction of unlike and repulsion of like electrically charged bodies 5, 7, 16 66, 88, 124
60 Induced charges The appearance of charges on a conductor under the influence of an electric field 16 35, 66, 110
61 Interaction of bodies with fields Changing the shape of bodies leads to a change in the configuration of the resulting electric and magnetic fields. This can be controlled by the forces acting on charged particles placed in such fields 25 66, 88, 95, 121, 124
62 Retracting the dielectric between the capacitor plates When the dielectric is partially introduced between the plates of the capacitor, its retraction is observed 5, 6, 7, 10, 16 66, 110
63 Conductivity Movement of free carriers under the influence of an electric field. Depends on the temperature, density and purity of the substance, its state of aggregation, external influence of forces causing deformation, and hydrostatic pressure. In the absence of free carriers, the substance is an insulator and is called a dielectric. Becomes a semiconductor when thermally excited 1, 16, 17, 19, 21, 25 123
64 Superconductivity A significant increase in the conductivity of some metals and alloys at certain temperatures, magnetic field and current density 1, 15, 25 3, 24, 34, 77
65 Law Joule-Lenz The release of thermal energy during the passage of electric current. The value is inversely proportional to the conductivity of the material 2 129, 88
66 Ionization The appearance of free charge carriers in substances under the influence of external factors(electromagnetic, electric or thermal fields, discharges in irradiation gases x-rays or a flow of electrons, alpha particles, during the destruction of bodies) 6, 7, 22 129, 144
67 Eddy currents (Foucault currents) Circular induction currents flow in a massive non-ferromagnetic plate placed in a changing magnetic field perpendicular to its lines. In this case, the plate heats up and is pushed out of the field 2, 5, 6, 10, 11, 21, 24 50, 101
68 Frictionless brake A heavy metal plate oscillating between the poles of an electromagnet “gets stuck” when the DC current is turned on and stops 10 29, 35
69 Conductor carrying current in a magnetic field The Lorentz force acts on electrons, which transmit force to the crystal lattice through ions. As a result, the conductor is pushed out of the magnetic field 5, 6, 11 66, 128
70 Conductor moving in a magnetic field When a conductor moves in a magnetic field, it begins to flow electricity 4, 17, 25 29, 128
71 Mutual induction Alternating current in one of two adjacent circuits causes the appearance of an induced emf in the other 14, 15, 25 128
72 Interaction of conductors with a current of moving electric charges Conductors carrying current are drawn towards each other or repel each other. Moving electric charges interact in a similar way. The nature of the interaction depends on the shape of the conductors 5, 6, 7 128
73 induced emf When a magnetic field changes or its movement in a closed conductor, an induced emf occurs. The direction of the induction current produces a field that prevents the change in magnetic flux causing induction 24 128
74 Surface effect (skin effect) High frequency currents flow only along the surface layer of the conductor 2 144
75 Electromagnetic field The mutual induction of electric and magnetic fields is the propagation of (radio waves, electromagnetic waves, light, x-rays and gamma rays). An electric field can also serve as its source. A special case of the electromagnetic field is light radiation (visible, ultraviolet and infrared). The thermal field can also serve as its source. The electromagnetic field is detected by the thermal effect, electrical action, light pressure, activation of chemical reactions 1, 2, 4, 5, 6, 7, 11, 15, 17, 19, 20, 21, 22, 26 48, 60, 83, 35
76 Charge in a magnetic field A charge moving in a magnetic field is subject to the Lorentz force. Under the influence of this force, the charge moves in a circle or spiral 5, 6, 7, 11 66, 29
77 Electrorheological effect Rapid reversible increase in viscosity of non-aqueous disperse systems in strong electric fields 5, 6, 16, 22 142
78 Dielectric in a magnetic field In a dielectric placed in an electromagnetic field, part of the energy turns into heat 2 29
79 Breakdown of dielectrics A drop in electrical resistance and thermal destruction of the material due to heating of the dielectric section under the influence of a strong electric field 13, 16, 22 129, 144
80 Electrostriction Elastic reversible increase in body size in an electric field of any sign 5, 11, 16, 18 66
81 Piezoelectric effect Formation of charges on the surface of a solid under the influence of mechanical stress 4, 14, 15, 25 80, 144
82 Inverse piezoelectric effect Elastic deformation of a solid under the influence of an electric field, depending on the sign of the field 5, 11, 16, 18 80
83 Electro-caloric effect Change in temperature of a pyroelectric when introduced into an electric field 2, 15, 16 129
84 Electrification The appearance of electrical charges on the surface of substances. It can also be caused in the absence of an external electric field (for pyroelectrics and ferroelectrics when the temperature changes). When a substance is exposed to a strong electric field with cooling or illumination, electrets are obtained that create an electric field around themselves 1, 16 116, 66, 35, 55, 124, 70, 88, 36, 41, 110, 121
85 Magnetization Orientation of intrinsic magnetic moments of substances in an external magnetic field. Based on the degree of magnetization, substances are divided into paramagnetic and ferromagnetic. In permanent magnets, the magnetic field remains after removal of the external electrical and magnetic properties 1, 3, 4, 5, 6, 8, 10, 11, 22, 23 78, 73, 29, 35
86 Effect of temperature on electrical and magnetic properties The electrical and magnetic properties of substances change dramatically near a certain temperature (Curie point). Above the Curie point, the ferromagnet becomes paramagnetic. Ferroelectrics have two Curie points at which either magnetic or electrical anomalies are observed. Antiferromagnets lose their properties at a temperature called the Néel point 1, 3, 16, 21, 22, 24, 25 78, 116, 66, 51, 29
87 Magneto-electric effect In ferroferromagnets, when a magnetic (electric) field is applied, a change in the electric (magnetic) permeability is observed 22, 24, 25 29, 51
88 Hopkins effect Increase in magnetic susceptibility as one approaches the Curie temperature 1, 21, 22, 24 29
89 Barkhausen effect Stepwise behavior of the magnetization curve of a sample near the Curie point with changes in temperature, elastic stress or external magnetic field 1, 21, 22, 24 29
90 Liquids that harden in a magnetic field viscous liquids (oils) mixed with ferromagnetic particles harden when placed in a magnetic field 10, 15, 22 139
91 Piezo magnetism The appearance of a magnetic moment when elastic stresses are applied 25 29, 129, 144
92 Magneto-caloric effect Change in temperature of a magnet when it is magnetized. For paramagnetic materials, increasing the field increases the temperature 2, 22, 24 29, 129, 144
93 Magnetostriction Change in the size of bodies when their magnetization changes (volumetric or linear), the object depends on temperature 5, 11, 18, 24 13, 29
94 Thermostriction Magnetostrictive deformation when heating bodies in the absence of a magnetic field 1, 24 13, 29
95 Einstein and de Haas effect Magnetization of a magnet causes it to rotate, and rotation causes magnetization 5, 6, 22, 24 29
96 Ferro-magnetic resonance Selective (by frequency) absorption of electromagnetic field energy. The frequency changes depending on the field intensity and temperature changes 1, 21 29, 51
97 Contact potential difference (Volta's law) The appearance of a potential difference when two different metals come into contact. The value depends on the chemical composition of the materials and their temperature 19, 25 60
98 Triboelectricity Electrification of bodies during friction. The magnitude and sign of the charge are determined by the state of the surfaces, their composition, density and dielectric constant 7, 9, 19, 21, 25 6, 47, 144
99 Seebeck effect The occurrence of thermoEMF in a circuit of dissimilar metals under the condition of different temperatures at the points of contact. When homogeneous metals come into contact, the effect occurs when one of the metals is compressed by uniform pressure or saturated with a magnetic field. The other conductor is in normal conditions 19, 25 64
100 Peltier effect The release or absorption of heat (except Joule) when current passes through a junction of dissimilar metals, depending on the direction of the current 2 64
101 Thomson phenomenon The release or absorption of heat (excessive over Joule) when current passes through an unevenly heated homogeneous conductor or semiconductor 2 36
102 Hall effect The appearance of an electric field in a direction perpendicular to the direction of the magnetic field and the direction of the current. In ferromagnets, the Hall coefficient reaches a maximum at the Curie point and then decreases 16, 21, 24 62, 71
103 Ettingshausen effect The occurrence of a temperature difference in the direction perpendicular to the magnetic field and current 2, 16, 22, 24 129
104 Thomson effect Change in the conductivity of a ferromanite conductor in a strong magnetic field 22, 24 129
105 Nernst effect The appearance of an electric field during transverse magnetization of a conductor perpendicular to the direction of the magnetic field and the temperature gradient 24, 25 129
106 Electric discharges in gases The emergence of an electric current in a gas as a result of its ionization and under the influence of an electric field. External manifestations and discharge characteristics depend on control factors (gas composition and pressure, space configuration, electric field frequency, current strength) 2, 16, 19, 20, 26 123, 84, 67, 108, 97, 39, 115, 40, 4
107 Electroosmosis Movement of liquids or gases through capillaries, solid porous diaphragms and membranes, and through the forces of very small particles under the influence of an external electric field 9, 16 76
108 Current potential The appearance of a potential difference between the ends of capillaries and also between the opposite surfaces of a diaphragm, membrane or other porous medium when liquid is forced through them 4, 25 94
109 Electrophoresis Movement of solid particles, gas bubbles, liquid droplets, as well as colloidal particles suspended in a liquid or gaseous medium under the influence of an external electric field 6, 7, 8, 9 76
110 Sedimentation potential The emergence of a potential difference in a liquid as a result of the movement of particles caused by non-electrical forces (settling of particles, etc.) 21, 25 76
111 Liquid crystals A liquid with elongated molecules tends to become cloudy in spots when exposed to an electric field and change color at different temperatures and viewing angles 1, 16 137
112 Light dispersion Dependence of the absolute refractive index on the radiation wavelength 21 83, 12, 46, 111, 125
113 Holography Obtaining three-dimensional images by illuminating an object with coherent light and photographing the interference pattern of the interaction of light scattered by the object with coherent radiation from the source 4, 19, 23 9, 45, 118, 95, 72, 130
114 Reflection and refraction When a parallel beam of light falls on a smooth interface between two isotropic media, part of the light is reflected back, and the other, refracted, passes into the second medium 4, 21
115 Light absorption and scattering When light passes through matter, its energy is absorbed. Some of it is re-radiated, the rest of the energy is converted into other forms (heat). Part of the re-emitted energy spreads in different directions and forms scattered light 15, 17, 19, 21 17, 52, 58
116 Emission of light. Spectral analysis A quantum system (atom, molecule), which is in an excited state, emits excess energy in the form of a portion of electromagnetic radiation. The atoms of each substance have a disrupted structure of radiative transitions that can be recorded optical methods 1, 4, 17, 21 17, 52, 58
117 Optical quantum generators (lasers) Amplification of electromagnetic waves by passing them through a medium with population inversion. Laser radiation is coherent, monochromatic, with a high energy concentration in the beam and low divergence 2, 11, 13, 15, 17, 19, 20, 25, 26 85, 126, 135
118 The phenomenon of total internal reflection All the energy of a light wave incident on the interface between transparent media from a medium that is optically denser is completely reflected into the same medium 1, 15, 21 83
119 Luminescence, luminescence polarization Radiation that is excessive under thermal radiation and has a duration exceeding the period of light oscillations. Luminescence continues for some time after the cessation of excitation (electromagnetic radiation, energy of an accelerated flow of particles, energy of chemical reactions, mechanical energy) 4, 14, 16, 19, 21, 24 19, 25, 92, 117, 68, 113
120 Quenching and stimulation of luminescence Exposure to a type of energy other than the one that excites luminescence can either stimulate or extinguish luminescence. Controlling factors: thermal field, electric and electromagnetic fields (IR light), pressure; humidity, presence of certain gases 1, 16, 24 19
121 Optical anisotropy difference optical properties substances in various directions, depending on their structure and temperature 1, 21, 22 83
122 Birefringence On the. At the interface between anisotropic transparent bodies, light is split into two mutually perpendicular polarized beams having different propagation velocities in the medium 21 54, 83, 138, 69, 48
123 Maxwell effect The occurrence of double refraction in a liquid flow. Determined by the action of hydrodynamic forces, flow velocity gradient, friction against the walls 4, 17 21
124 Kerr effect The appearance of optical anisotropy in isotropic substances under the influence of electric or magnetic fields 16, 21, 22, 24 99, 26, 53
125 Pockels effect The appearance of optical anisotropy under the influence of an electric field in the direction of light propagation. Slightly dependent on temperature 16, 21, 22 129
126 Faraday effect Rotation of the plane of polarization of light when passing through a substance placed in a magnetic field 21, 22, 24 52, 63, 69
127 Natural optical activity The ability of a substance to rotate the plane of polarization of light passing through it 17, 21 54, 83, 138

Physical Effect Selection Table

List of references to the array of physical effects and phenomena

1. Adam N.K. Physics and chemistry of surfaces. M., 1947

2. Aleksandrov E.A. ZhTF. 36, No. 4, 1954

3. Alievsky B.D. Application of cryogenic technology and superconductivity in electrical machines and devices. M., Informstandartelektro, 1967

4. Aronov M.A., Kolechitsky E.S., Larionov V.P., Minein V.R., Sergeev Yu.G. Electrical discharges in the air at high frequency voltage, M., Energy, 1969

5. Aronovich G.V. etc. Water hammer and surge tanks. M., Nauka, 1968

6. Akhmatov A.S. Molecular physics of boundary friction. M., 1963

7. Babikov O.I. Ultrasound and its application in industry. FM, 1958"

8. Bazarov I.P. Thermodynamics. M., 1961

9. Bathers J. Holography and its application. M., Energy, 1977

10. Baulin I. Beyond the hearing barrier. M., Knowledge, 1971

11. Bezhukhov N.I. Theory of elasticity and plasticity. M., 1953

12. Bellamy L. Infrared spectra of molecules. M., 1957

13. Belov K.P. Magnetic transformations. M., 1959

14. Bergman L. Ultrasound and its application in technology. M., 1957

15. Bladergren V. Physical chemistry in medicine and biology. M., 1951

16. Borisov Yu.Ya., Makarov L.O. Ultrasound in technology of the present and future. USSR Academy of Sciences, M., 1960

17. Born M. Atomic physics. M., 1965

18. Bruening G. Physics and application of secondary electron emission

19. Vavilov S.I. About “hot” and “cold” light. M., Knowledge, 1959

20. Weinberg D.V., Pisarenko G.S. Mechanical vibrations and their role in technology. M., 1958

21. Weisberger A. Physical methods in organic chemistry. T.

22. Vasiliev B.I. Optics of polarizing devices. M., 1969

23. Vasiliev L.L., Konev S.V. Heat transfer tubes. Minsk, Science and Technology, 1972

24. Venikov V.A., Zuev E.N., Okolotin V.S. Superconductivity in energy. M., Energy, 1972

25. Vereshchagin I.K. Electroluminescence of crystals. M., Nauka, 1974

26. Volkenshtein M.V. Molecular Optics, 1951

27. Volkenshtein F.F. Semiconductors as catalysts for chemical reactions. M., Knowledge, 1974

28. Volkenshtein F.F., Radical-recombination luminescence of semiconductors. M., Nauka, 1976

29. Vonsovsky S.V. Magnetism. M., Nauka, 1971

30. Voronchev T.A., Sobolev V.D. Physical foundations of electrovacuum technology. M., 1967

31. Garkunov D.N. Selective transfer in friction units. M., Transport, 1969

32. Geguzin Ya.E. Essays on diffusion in crystals. M., Nauka, 1974

33. Geilikman B.T. Statistical physics of phase transitions. M., 1954

34. Ginzburg V.L. The problem of high temperature superconductivity. Collection "The Future of Science" M., Znanie, 1969

35. Govorkov V.A. Electric and magnetic fields. M., Energy, 1968

36. Goldelii G. Application of thermoelectricity. M., FM, 1963

37. Goldansky V.I. Moesbauer effect and its

application in chemistry. USSR Academy of Sciences, M., 1964

38. Gorelik G.S. Oscillations and waves. M., 1950

39. Granovsky V.L. Electric current in gases. T.I, M., Gostekhizdat, 1952, vol.II, M., Science, 1971

40. Grinman I.G., Bakhtaev Sh.A. Gas discharge micrometers. Alma-Ata, 1967

41. Gubkin A.N. Physics of dielectrics. M., 1971

42. Gulia N.V. Revived energy. Science and Life, No. 7, 1975

43. De Boer F. Dynamic nature of adsorption. M., IL, 1962

44. De Groot S.R. Thermodynamics of irreversible processes. M., 1956

45. Denisyuk Yu.N. Images outside world. Nature, No. 2, 1971

46. ​​Deribere M. Practical application of infrared rays. M.-L., 1959

47. Deryagin B.V. What is friction? M., 1952

48. Ditchburn R. Physical optics. M., 1965

49. Dobretsov L.N., Gomoyunova M.V. Emission electronics. M., 1966

50. Dorofeev A.L. Eddy currents. M., Energy, 1977

51. Dorfman Ya.G. Magnetic properties and structure of matter. M., Gostekhizdat, 1955

52. Elyashevich M.A. Atomic and molecular spectroscopy. M., 1962

53. Zhevandrov N.D. Polarization of light. M., Nauka, 1969

54. Zhevandrov N.D. Anisotropy and optics. M., Nauka, 1974

55. Zheludev I.S. Physics of dielectric crystals. M., 1966

56. Zhukovsky N.E. About water hammer in water taps. M.-L., 1949

57. Zayt V. Diffusion in metals. M., 1958

58. Zaydel A.N. Fundamentals of spectral analysis. M., 1965

59. Zeldovich Ya.B., Raiser Yu.P. Physics shock waves and high-temperature hydrodynamic phenomena. M., 1963

60. Zilberman G.E. Electricity and magnetism, M., Nauka, 1970

61. Knowledge is power. No. 11, 1969

62. "Ilyukovich A.M. Hall effect and its application in measuring technology. J. Measuring technology, No. 7, 1960

63. Ios G. Course of theoretical physics. M., Uchpedgiz, 1963

64. Ioffe A.F. Semiconductor thermoelements. M., 1963

65. Kaganov M.I., Natsik V.D. Electrons slow down dislocation. Nature, No. 5.6, 1976

66. Kalashnikov, S.P. Electricity. M., 1967

67. Kantsov N.A. Corona discharge and its application in electric precipitators. M.-L., 1947

68. Karyakin A.V. Luminescent flaw detection. M., 1959

69. Quantum electronics. M., Soviet Encyclopedia, 1969

70. Kenzig. Ferroelectrics and antiferroelectrics. M., IL, 1960

71. Kobus A., Tushinsky Y. Hall sensors. M., Energy, 1971

72. Kok U. Lasers and holography. M., 1971

73. Konovalov G.F., Konovalov O.V. Automatic control system with electromagnetic powder couplings. M., Mechanical Engineering, 1976

74. Kornilov I.I. etc. Titanium nickelide and other alloys with a “memory” effect. M., Nauka, 1977

75. Kragelsky I.V. Friction and wear. M., Mechanical Engineering, 1968

76. Brief chemical encyclopedia, vol. 5., M., 1967

77. Koesin V.Z. Superconductivity and superfluidity. M., 1968

78. Kripchik G.S. Physics of magnetic phenomena. M., Moscow State University, 1976

79. Kulik I.O., Yanson I.K. Josephson effect in superconducting tunnel structures. M., Nauka, 1970

80. Lavrinenko V.V. Piezoelectric transformers. M. Energy, 1975

81. Langenberg D.N., Scalapino D.J., Taylor B.N. Josephson effects. Collection "What physicists are thinking about", FTT, M., 1972

82. Landau L.D., Akhizer A.P., Lifshits E.M. General physics course. M., Nauka, 1965

83. Landsberg G.S. General physics course. Optics. M., Gostekhteoretizdat, 1957

84. Levitov V.I. Corona AC. M., Energy, 1969

85. Lengyel B. Lasers. M., 1964

86. Lodge L. Elastic fluids. M., Nauka, 1969

87. Malkov M.P. Handbook on the physical and technical foundations of deep cooling. M.-L., 1963

88. Mirdel G. Electrophysics. M., Mir, 1972

89. Mostkov M.A. and others. Calculations of water hammer, M.-L., 1952

90. Myanikov L.L. Inaudible sound. L., Shipbuilding, 1967

91. Science and Life, No. 10, 1963; No. 3, 1971

92. Inorganic phosphors. L., Chemistry, 1975

93. Olofinsky N.F. Electrical enrichment methods. M., Nedra, 1970

94. Ono S, Kondo. Molecular theory surface tension in liquids. M., 1963

95. Ostrovsky Yu.I. Holography. M., Nauka, 1971

96. Pavlov V.A. Gyroscopic effect. Its manifestations and uses. L., Shipbuilding, 1972

97. Pening F.M. Electric discharges in gases. M., IL, 1960

98. Peirsol I. Cavitation. M., Mir, 1975

99. Instruments and experimental techniques. No. 5, 1973

100. Pchelin V.A. In a world of two dimensions. Chemistry and Life, No. 6, 1976

101. Pabkin L.I. High-frequency ferromagnets. M., 1960

102. Ratner S.I., Danilov Yu.S. Changes in proportionality and yield limits upon repeated loading. J. Factory Laboratory, No. 4, 1950

103. Rebinder P.A. Surfactants. M., 1961

104. Rodzinsky L. Cavitation versus cavitation. Knowledge is power, No. 6, 1977

105. Roy N.A. Occurrence and course ultrasonic cavitation. Acoustic magazine, volume 3, issue. I, 1957

106. Roitenberg Y.N., Gyroscopes. M., Nauka, 1975

107. Rosenberg L.L. Ultrasonic cutting. M., USSR Academy of Sciences, 1962

108. Samerville J.M. Electric arc. M.-L., Gosenergoizdat, 1962

109. Collection "Physical metallurgy". Vol. 2, M., Mir, 1968

110. Collection "Strong electric fields in technological processes". M., Energy, 1969

111. Collection " Ultraviolet radiation". M., 1958

112. Collection "Exoelectronic emission". M., IL, 1962

113. Collection of articles "Luminescent analysis", M., 1961

114. Silin A.A. Friction and its role in the development of technology. M., Nauka, 1976

115. Slivkov I.N. Electrical insulation and discharge in a vacuum. M., Atomizdat, 1972

116. Smolensky G.A., Krainik N.N. Ferroelectrics and antiferroelectrics. M., Nauka, 1968

117. Sokolov V.A., Gorban A.N. Luminescence and adsorption. M., Nauka, 1969

118. Soroko L. From the lens to the programmed optical relief. Nature, No. 5, 1971

119. Spitsyn V.I., Troitsky O.A. Electroplastic deformation of metal. Nature, No. 7, 1977

120. Strelkov S.P. Introduction to the theory of oscillations, M., 1968

121. Stroba J., Shimora J. Static electricity in industry. GZI, M.-L., 1960

122. Summ B.D., Goryunov Yu.V. Physico-chemical principles of wetting and spreading. M., Chemistry, 1976

123. Tables of physical quantities. M., Atomizdat, 1976

124. Tamm I.E. Fundamentals of the theory of electricity. M., 1957

125. Tikhodeev P.M. Light measurements in lighting engineering. M., 1962

126. Fedorov B.F. Optical quantum generators. M.-L., 1966

127. Feyman. The nature of physical laws. M., Mir, 1968

128. Feyman lectures on physics. T.1-10, M., 1967

129. Physical encyclopedic dictionary. T. 1-5, M., Soviet Encyclopedia, 1962-1966

130. Fransom M. Holography, M., Mir, 1972

131. Frenkel N.Z. Hydraulics. M.-L., 1956

132. Hodge F. Theory of ideally plastic bodies. M., IL, 1956

133. Khorbenko I.G. In a world of inaudible sounds. M., Mechanical Engineering, 1971

134. Khorbenko I.G. Sound, ultrasound, infrasound. M., Knowledge, 1978

135. Chernyshov et al. Lasers in communication systems. M., 1966

136. Chertousov M.D. Hydraulics. Special course. M., 1957

137. Chistyakov I.G. Liquid crystals. M., Nauka, 1966

138. Shercliffe W. Polarized light. M., Mir, 1965

139. Shliomis M.I. Magnetic fluids. Advances in physical sciences. T.112, issue. 3, 1974

140. Shneiderovich R.I., Levin O.A. Measuring plastic strain fields using the moiré method. M., Mechanical Engineering, 1972

141. Shubnikov A.V. Studies of piezoelectric textures. M.-L., 1955

142. Shulman Z.P. and others. Electrorheological effect. Minsk, Science and Technology, 1972

143. Yutkin L.A. Electrohydraulic effect. M., Mashgiz, 1955

144. Yavorsky B.M., Detlaf A. Handbook of physics for engineers and university students. M., 1965

The world is diverse - no matter how banal this statement may be, it really is. Everything that happens in the world is under the close attention of scientists. They have known some things for a long time, others still need to be discovered. Man, a curious creature, has always tried to know the world and the changes taking place in it. Such changes in the surrounding world are called “physical phenomena”. These include rain, wind, lightning, rainbows, and other similar natural effects.

Changes in the world around us are numerous and varied. Curious people could not stay away without trying to find the answer to the question of what caused such interesting physical phenomena.

It all started with the process of observing the world around us, which led to the accumulation of data. But even simple observation of nature evoked certain thoughts. Many physical phenomena, while remaining unchanged, manifested themselves in different ways. For example: the sun rises at different times, it rains or snows from the sky, a thrown stick flies either far or close. Why is this happening?

The appearance of such questions becomes evidence of the gradual development of human perception of the world, the transition from contemplative observation to active study of the environment. It is clear that each changing, manifesting differently physical phenomenon only accelerated this active study. As a result, attempts to experimentally understand nature appeared.

The first experiments looked quite simple, for example: if you throw a stick like this, will it fly far? What if you throw the stick differently? This is already an experimental study of the behavior of a physical body in flight, a step towards establishing a quantitative connection between it and the conditions that cause this flight.

Of course, everything that has been said is a very simplified and primitive presentation of attempts to study the world around us. But, in any case, even if in a primitive form, it makes it possible to consider the occurring physical phenomena as the basis for the emergence and development of science.

In this case, it does not matter what kind of science it is. The basis of any cognition process is observation of what is happening, the accumulation of initial data. Let it be physics with its study of the surrounding world, let it be biology studying nature, astronomy trying to understand the Universe - in any case, the process will proceed the same.

The physical phenomena themselves may be different. To be more precise, their nature will be different: rain is caused by some reasons, a rainbow by others, lightning by others. It took a very long time in the history of human civilization to understand this fact.

The science of physics studies various natural phenomena and its laws. It was she who established a quantitative connection between the various properties of objects, or, as physicists say, bodies, and the essence of these phenomena.

During the study, special tools, research methods, and units of measurement appeared that made it possible to describe what was happening. Knowledge about the world around us expanded, the results obtained led to new discoveries, and new tasks were put forward. There was a gradual identification of new specialties involved in solving specific applied problems. This is how heat engineering, the science of electricity, optics, and many, many other areas of knowledge within physics itself began to appear - not to mention the fact that other sciences appeared that dealt with completely different problems. But in any case, it must be recognized that the observation and study of the phenomena of the surrounding world allowed, over time, the formation of numerous new branches of knowledge that contributed to the development of civilization.

As a result, a whole system of studying and mastering the world, the surrounding nature and man himself emerged - from simple observation of physical phenomena.

This material describes physical phenomena as the basis for the formation and education of science, in particular physics. An idea is given of how the development of science took place, its stages such as observation of what is happening, experimental verification of facts and conclusions, and formulation of laws are considered.

A phenomenon is any manifestation of something, as well as any change in the world around us. The meaning of this word is determined by the context, namely the adjective next to the term “phenomenon”. It is difficult to understand what this phenomenon is without examples, so we will give them.

  • A physical phenomenon can be considered a change in the state of aggregation of a substance.
  • In this area there are such unusual natural phenomena as petrified waves.
  • He was frightened by something that could be called paranormal activity.

Let us take a closer look at the term “Phenomenon” depending on the context.

What is a physical phenomenon

First of all, note that a physical phenomenon is a process, not a result of something. This is the process of ongoing changes in the state or position of physical systems. Remember that a physical phenomenon is one in which the transformation of one substance into another does not occur. Its composition will remain the same, but its condition or position will change.

Physical phenomena are classified as follows:

  • Electrical phenomena. They involve electric charges. For example, lightning, electric current.
  • Mechanical phenomena. The movement will be relative to each other. For example, the movement of cars on the road.
  • Thermal phenomena. They are associated with changes in body temperature. For example, melting snow.
  • Optical phenomena. They are associated with the metamorphoses of light rays. For example, a rainbow.
  • Magnetic phenomena. They arise when magnetic properties appear in an object. For example, a compass with an arrow pointing north.
  • Atomic phenomena. Occur during metamorphoses in the internal structure of matter. For example, the glow of stars.

What are natural phenomena

Natural phenomena are considered to be climatic and meteorological manifestations of nature that occur naturally. Rain, snow, storm, earthquake are all examples of natural phenomena.

It is important to understand what a natural phenomenon is and how it is interconnected with physical phenomena. Thus, in one natural phenomenon one can count several physical phenomena. That is, the concept of “natural phenomenon” is broader. For example, a natural phenomenon such as a thunderstorm includes the following physical phenomena: the movement of clouds and rain (mechanical phenomena), lightning (electrical phenomenon), burning of a tree from a lightning strike (thermal phenomenon).

What is paranormal activity

When they talk about a paranormal phenomenon, they mean any changes in the surrounding reality that are not the norm, an ordinary phenomenon. They have no scientific explanation or evidence. Their existence goes beyond the understanding of the usual picture of the world. Examples of paranormal phenomena are: crying icons, the biofield of living beings.

Ticket No. 1

1. What does physics study? Some physical terms. Observations and experiments. Physical quantities. Measurement of physical quantities. Accuracy and error of measurements.

Physics is the science of the most general properties of bodies and phenomena.

How does a person understand the world? How does he explore natural phenomena, obtaining scientific knowledge about him?

A person receives his very first knowledge from observations behind nature.

To obtain the correct knowledge, sometimes simple observation is not enough and you need to carry out experiment – ​​specially prepared experiment .

Experiments are carried out by scientists a predetermined plan with a specific purpose .

During the experiments measurements are taken using special instruments of physical quantities. Examples physical quantities are: distance, volume, speed, temperature.

So, the source of physical knowledge is observations and experiments.

Physical laws are based and verified on facts established experimentally. An equally important way of knowing is theoretical description of the phenomenon . Physical theories make it possible to explain known phenomena and predict new, not yet discovered ones.

Changes that occur with bodies are called physical phenomena.

Physical phenomena are divided into several types.

Types of physical phenomena:

1. Mechanical phenomena (for example, the movement of cars, airplanes, celestial bodies, fluid flow).

2. Electrical phenomena (for example, electric current, heating of current-carrying conductors, electrification of bodies).

3. Magnetic phenomena (for example, the effect of magnets on iron, the influence of the Earth’s magnetic field on a compass needle).

4. Optical phenomena (for example, reflection of light from mirrors, emission of light rays from various light sources).

5. Thermal phenomena (melting ice, boiling water, thermal expansion of bodies).

6. Atomic phenomena (for example, the operation of atomic reactors, nuclear decay, processes occurring inside stars).

7. Sound phenomena (bell ringing, music, thunder, noise).

Physical terms- these are special words that are used in physics for brevity, certainty and convenience.

Physical body– this is every object around us. (Showing physical bodies: pen, book, desk)

Substance- this is all that they are made of physical bodies. (Showing physical bodies consisting of different substances)

Matter- this is everything that exists in the Universe regardless of our consciousness (celestial bodies, plants, animals, etc.)

Physical phenomena- these are changes that occur with physical bodies.

Physical quantities- these are the measurable properties of bodies or phenomena.

Physical devices– these are special devices that are designed to measure physical quantities and conduct experiments.


Physical quantities:
height h, mass m, path s, speed v, time t, temperature t, volume V, etc.

Units of measurement of physical quantities:

International System of Units SI:

(international system)


Basic:

Length - 1 m - (meter)

Time - 1 s - (second)

Weight - 1 kg - (kilogram)

Derivatives:

Volume - 1 m³ - (cubic meter)

Speed ​​- 1 m/s - (meter per second)


In this expression:

number 10 - numerical value of time,

the letter “s” is an abbreviation for a unit of time (second),

and the combination of 10 s is the time value.

Prefixes to unit names:

To make it more convenient to measure physical quantities, in addition to the basic units, multiple units are used, which are in 10, 100, 1000, etc. more basic

g - hecto (×100) k – kilo (× 1000) M – mega (× 1000 000)

1 km (kilometer) 1 kg (kilogram)

1 km = 1000 m = 10³ m 1 kg = 1000 g = 10³ g

About the world around us. In addition to ordinary curiosity, this was caused by practical needs. After all, for example, if you know how to lift
and move heavy stones, you will be able to build strong walls and build a house in which it is more convenient to live than in a cave or dugout. And if you learn to smelt metals from ores and make plows, scythes, axes, weapons, etc., you will be able to plow the field better and get a higher harvest, and in case of danger you will be able to protect your land.

In ancient times, there was only one science - it united all the knowledge about nature that humanity had accumulated by that time. Nowadays this science is called natural science.

Learning about physical science

Another example of an electromagnetic field is light. You will become familiar with some of the properties of light in Section 3.

3. Remembering physical phenomena

The matter around us is constantly changing. Some bodies move relative to each other, some of them collide and, possibly, collapse, others are formed from some bodies... The list of such changes can be continued and continued - it is not without reason that in ancient times the philosopher Heraclitus remarked: “Everything flows, everything changes.” Scientists call changes in the world around us, that is, in nature, a special term - phenomena.


Rice. 1.5. Examples of natural phenomena


Rice. 1.6. A complex natural phenomenon - a thunderstorm can be represented as a combination of a number of physical phenomena

Sunrise and sunset, a snow avalanche, a volcanic eruption, a horse running, a panther jumping - all these are examples of natural phenomena (Fig. 1.5).

To better understand complex natural phenomena, scientists divide them into a collection of physical phenomena - phenomena that can be described using physical laws.

In Fig. Figure 1.6 shows a set of physical phenomena that form a complex natural phenomenon - a thunderstorm. Thus, lightning - a huge electrical discharge - is an electromagnetic phenomenon. If lightning strikes a tree, it will flare up and begin to release heat - physicists in this case talk about a thermal phenomenon. The rumble of thunder and the crackle of flaming wood are sound phenomena.

Examples of some physical phenomena are given in the table. Take a look at the first row of the table, for example. What can be common between the flight of a rocket, the fall of a stone and the rotation of an entire planet? The answer is simple. All examples of phenomena given in this line are described by the same laws - the laws of mechanical motion. Using these laws, we can calculate the coordinates of any moving body (be it a stone, a rocket or a planet) at any point in time that interests us.


Rice. 1.7 Examples of electromagnetic phenomena

Each of you, taking off a sweater or combing your hair with a plastic comb, probably paid attention to the tiny sparks that appeared. Both these sparks and the mighty discharge of lightning belong to the same electromagnetic phenomena and, accordingly, are subject to the same laws. Therefore, you should not wait for a thunderstorm to study electromagnetic phenomena. It is enough to study how safe sparks behave to understand what to expect from lightning and how to avoid possible danger. For the first time such research was carried out by the American scientist B. Franklin (1706-1790), who invented an effective means of protection against lightning discharges - a lightning rod.

Having studied physical phenomena separately, scientists establish their relationship. Thus, a lightning discharge (an electromagnetic phenomenon) is necessarily accompanied by a significant increase in temperature in the lightning channel (a thermal phenomenon). The study of these phenomena in their interrelation made it possible not only to better understand the natural phenomenon of a thunderstorm, but also to find a way for the practical application of electromagnetic and thermal phenomena. Surely each of you, passing by a construction site, saw workers in protective masks and blinding flashes of electric welding. Electric welding (a method of joining metal parts using an electric discharge) is an example of the practical use of scientific research.


4. Determine what physics studies

Now that you have learned what matter and physical phenomena are, it is time to determine what the subject of physics is. This science studies: the structure and properties of matter; physical phenomena and their relationships.

  • let's sum it up

The world around us consists of matter. There are two types of matter: the substance from which all physical bodies are made, and the field.

Changes are constantly taking place in the world that surrounds us. These changes are called phenomena. Thermal, light, mechanical, sound, electromagnetic phenomena- all these are examples of physical phenomena.

The subject of physics is the structure and properties of matter, physical phenomena and their relationships.

  • Control questions

What does physics study? Give examples of physical phenomena. Can events that occur in a dream or imagination be considered physical phenomena? 4. What substances do the following bodies consist of: textbook, pencil, soccer ball, glass, car? What physical bodies can consist of glass, metal, wood, plastic?

Physics. 7th grade: Textbook / F. Ya. Bozhinova, N. M. Kiryukhin, E. A. Kiryukhina. - X.: Publishing house "Ranok", 2007. - 192 p.: ill.

Lesson content lesson notes and supporting frame lesson presentation interactive technologies accelerator teaching methods Practice tests, testing online tasks and exercises homework workshops and trainings questions for class discussions Illustrations video and audio materials photographs, pictures, graphs, tables, diagrams, comics, parables, sayings, crosswords, anecdotes, jokes, quotes Add-ons