Как делать уравнения с дробями. Как решать уравнения с дробями. Показательное решение уравнений с дробями


Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, .
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45
x=45-20=25

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Ответ: х = 1/3

Решим уравнение посложнее:

Здесь также присутствует ОДЗ: х -2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую - на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Запишем это же уравнение, но несколько по-другому

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Ответ: х = 2.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями , то отписывайтесь в комментариях.

Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

    Приведя дроби к общему знаменателю

    Используя основное свойство пропорции

Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

1 способ. Приведение дробей к общему знаменателю.

Пример 1

$\frac{2x+3}{2x-1}=\frac{x-5}{x+3}$

Решение:

1.Перенесем дробь из правой части уравнения в левую

\[\frac{2x+3}{2x-1}-\frac{x-5}{x+3}=0\]

Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

\[\frac{(2x+3)(х+3)}{(2x-1)(х+3)}-\frac{(x-5)(2х-1)}{(x+3)(2х-1)}=0\]

Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним, что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3={2х}^2+6х+3х+9\]

Приведем подобные слагаемые в полученном выражении

\[\left(2x+3\right)\left(х+3\right)=2х\cdot х+2х\cdot 3+3\cdot х+3\cdot 3={2х}^2+6х+3х+9=\] \[{=2х}^2+9х+9\]

Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

$\left(x-5\right)\left(2х-1\right)=х\cdot 2х-х\cdot 1-5\cdot 2х+5\cdot 1={2х}^2-х-10х+5={2х}^2-11х+5$

Тогда уравнение примет вид:

\[\frac{{2х}^2+9х+9}{(2x-1)(х+3)}-\frac{{2х}^2-11х+5}{(x+3)(2х-1)}=0\]

Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

\[\frac{{2х}^2+9х+9-({2х}^2-11х+5)}{(2x-1)(х+3)}=0\]

Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми, стоящими в скобках на противоположные

\[{2х}^2+9х+9-\left({2х}^2-11х+5\right)={2х}^2+9х+9-{2х}^2+11х-5\]

Приведем подобные слагаемые

${2х}^2+9х+9-\left({2х}^2-11х+5\right)={2х}^2+9х+9-{2х}^2+11х-5=20х+4$

Тогда дробь примет вид

\[\frac{{\rm 20х+4}}{(2x-1)(х+3)}=0\]

3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

\[{\rm 20х+4=0}\]

Решим линейное уравнение:

4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

Поставим условие, что знаменатели не равны $0$

х$\ne 0,5$ х$\ne -3$

Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и,конечно, не был бы включен в ответ.

Ответ: $-0,2.$

Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

Алгоритм решения уравнения, которое содержит переменную в знаменателе

    Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

    Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

    Приравнять числитель к $0$ и найти корни получившегося уравнения.

    Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

2 способ. Используем основное свойство пропорции

Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

Пример 2

Используем данное свойство для решения этого задания

\[\frac{2x+3}{2x-1}=\frac{x-5}{x+3}\]

1.Найдем и приравняем произведение крайних и средних членов пропорции.

$\left(2x+3\right)\cdot(\ x+3)=\left(x-5\right)\cdot(2x-1)$

\[{2х}^2+3х+6х+9={2х}^2-10х-х+5\]

Решив полученное уравнение, мы найдем корни исходного

2.Найдем допустимые значения переменной.

Из предыдущего решения (1 способ) мы уже нашли, что допустимы любые значения, кроме $-3$ и $0,5$.

Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

Инструкция

Пожалуй, самый очевидный момент здесь - это, конечно, . Числовые дроби не представляют никакой опасности (дробные уравнения, где во всех знаменателях стоят только числа, вообще будут линейными), а вот если в знаменателе стоит переменная, то это обязательно нужно учитывать и прописывать. Во-первых, это , что х, обращающее в 0 знаменатель, быть не может, и вообще нужно отдельно прописать тот факт, что икс не может равняться этому числу. Даже если у вас получится, что при подстановке в числитель всё прекрасно сходится и удовлетворяет условиям. Во-вторых, мы не можем умножать или обе части уравнения на , равное нулю.

После этого такого уравнения сводится к переносу всех его членов в левую часть так, чтобы в правой остался 0.

Нужно привести все члены к общему знаменателю, домножив, где нужно, числители на недостающие выражения.
Далее решаем обычное уравнение, написанное в числителе. Можем выносить общие множители за скобки, применять сокращённого умножения, приводить подобные, вычислять корни квадратного уравнения через дискриминант и т.д.

В итоге должно получиться разложение на множители в виде произведения скобок (х-(i-ый корень)). Также сюда могут входить многочлены, не имеющие корней, например, квадратный трёхчлен с дискриминантом, меньшим нуля (если, конечно, в задаче только действительные корни, как чаще всего и бывает).
Обязательно нужно разложить на множители и знаменатель с нахождения там скобок, уже содержащихся в числителе. Если в знаменателе стоят выражения типа (х-(число)), то лучше при приведении к общему знаменателю стоящие в нём скобки не перемножать "в лоб", а оставить в виде произведения исходных простых выражений.
Одинаковые скобки в числителе и знаменателе можно сократить, прописав предварительно, как говорилось выше, условия на х.
Ответ записывается в фигурных скобках, как множество значений х, либо просто перечислением: x1=..., х2=... и т.д.

Источники:

  • Дробные рациональные уравнения

То, без чего нельзя обойтись в физике, математике, химии. Как минимум. Учимся основам их решения.

Инструкция

В самой общей и простой классификации можно разделить по количеству переменных, в них содержащихся, и по степеням, в которых эти переменные стоят.

Решить уравнение все его корни либо доказать, что их нет.

Любое уравнений не более P корней, где P - максимальная данного уравнения.

Но часть этих корней может и совпадать. Так, например, уравнение х^2+2*x+1=0, где ^ - значок возведения в степень, сворачивается в квадрат выражения (х+1), то есть в произведение двух одинаковых скобок, каждая из которых даёт х=-1 в качестве решения.

Если в уравнении всего одна неизвестная, это значит, что вам удастся в явном виде найти его корни (действительные или комплексные).

Для этого скорей всего понадобятся, различные преобразования: сокращённого умножения, вычисления дискриминанта и корней квадратного уравнения, перенос слагаемых из одной части в другую, приведение к общему знаменателю, умножение обоих частей уравнения на одно и тоже выражение, в квадрат и прочее.

Преобразования, не влияющие на корни уравнения, тождественными. Они используются для упрощения процесса решения уравнения.

Также вы можете вместо традиционного аналитического воспользоваться графическим методом и записать данное уравнение в виде , проведя затем её исследование.

Если в уравнении неизвестных больше одной, то вам удастся лишь выразить одну из них через другую, показав тем самым набор решений. Таковы, например, уравнения с параметрами, в которых присутствует неизвестная x и параметр а. Решить параметрическое уравнение - значит для всех а выразить х через а, то есть рассмотреть все возможные случаи.

Если в уравнении стоят производные или дифференциалы неизвестных (смотри картинку), поздравляю, это дифференциальное уравнение, и тут вам не обойтись без высшей математики).

Источники:

  • Тождественные преобразования

Чтобы решить задачу с дробями , нужно научиться делать с ними арифметические действия. Они могут быть десятичные, но чаще всего используются натуральные дроби с числителем и знаменателем. Только после этого можно переходить на решения математических задач с дробными величинами.

Вам понадобится

  • - калькулятор;
  • - знания свойств дробей;
  • - умение производить действия с дробями.

Инструкция

Дробью называют запись деления одного числа на другое. Зачастую это сделать нацело нельзя, поэтому и оставляют это действие «неоконченным. Число, которое является делимым (оно стоит над или перед знаком дроби), называются числителем, а второе число (под знаком дроби или после него) – знаменателем. Если числитель больше знаменателя, дробь называется неправильной, и из нее можно выделить целую часть. Если числитель меньше знаменателя, то такая дробь называется правильной, и ее целая часть равна 0.

Задачи делятся на несколько видов. Определите, к какому из них задача. Простейший вариант – нахождение доли числа, выраженной дробью. Для решения этой задачи достаточно умножить это число на дробь. Например, на завезли 8 т картошки. В первую неделю было продано 3/4 от ее общего количества. Сколько картошки осталось? Чтобы решить эту задачу, число 8 умножьте на 3/4. Получится 8∙3/4=6 т.

Если нужно найти число по его части, умножьте известную часть числа на дробь, обратную той, которая показывает какова доля данной части в числе. Например, 8 из составляют 1/3 от общего количества учеников. Сколько в ? Поскольку 8 человек это часть, которая представляет 1/3 от всего количества, то найдите обратную дробь, которая равна 3/1 или просто 3. Затем для получения количества учеников в классе 8∙3=24 ученика.

Когда нужно найти какую часть числа составляет одно число от другого, поделите число, которое представляет часть на то, которое является целым. К примеру, если расстояние 300 км, а автомобиль проехал 200 км, какую часть этот составит от всего пути? Поделите часть пути 200 на полный путь 300, после сокращения дроби получите результат. 200/300=2/3.

Чтобы найти часть неизвестную долю от числа, когда есть известная, возьмите целое число за условную единицу, и отнимите от нее известную долю. Например, если уже прошло 4/7 части урока, еще осталось? Возьмите весь урок как условную единицу и отнимите от нее 4/7. Получите 1-4/7=7/7-4/7=3/7.

Дробные уравнения. ОДЗ.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения . Или их ещё называют гораздо солиднее – дробные рациональные уравнения . Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе . Хотя бы в одном. Например:

Напомню, если в знаменателях только числа , это линейные уравнения.

Как решать дробные уравнения ? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2) . Умножаем:

Это обычное умножение дробей, но распишу подробно:

Обратите внимание, я пока не раскрываю скобку (х + 2) ! Так, целиком, её и пишу:

В левой части сокращается целиком (х+2) , а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

А это уравнение уже решит всякий! х = 2 .

Решим ещё один пример, чуть посложнее:

Если вспомнить, что 3 = 3/1, а 2х = 2х/ 1, можно записать:

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2) . А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

А вот теперь уже раскрываем скобки:

Приводим подобные, переносим всё в левую часть и получаем:

Но до того мы другие задачи научимся решать. На проценты. Те ещё грабли, между прочим!

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.