Как металлы реагируют с водой. Общая характеристика металлов


По своей химической активности металлы очень сильно различаются. О химической активности металла можно примерно судить по его положению в .

Самые активные металлы расположены в начале этого ряда (слева), самые малоактивные - в конце (справа).
Реакции с простыми веществами. Металлы вступают в реакции с неметаллами с образованием бинарных соединений. Условия протекания реакций, а иногда и их продукты сильно различаются для разных металлов.
Так, например, щелочные металлы активно реагируют с кислородом (в том числе в составе воздуха) при комнатной температуре с образованием оксидов и пероксидов

4Li + O 2 = 2Li 2 O;
2Na + O 2 = Na 2 O 2

Металлы средней активности реагируют с кислородом при нагревании. При этом образуются оксиды:

2Mg + O 2 = t 2MgO.

Малоактивные металлы (например, золото, платина) с кислородом не реагируют и поэтому на воздухе практически не изменяют своего блеска.
Большинство металлов при нагревании с порошком серы образуют соответствующие сульфиды:

Реакции со сложными веществами. С металлами реагируют соединения всех классов - оксиды (в том числе вода), кислоты, основания и соли.
Активные металлы бурно взаимодействуют с водой при комнатной температуре:

2Li + 2H 2 O = 2LiOH + H 2 ;
Ba + 2H 2 O = Ba(OH) 2 + H 2 .

Поверхность таких металлов, как, например, магний и алюминий, защищена плотной пленкой соответствующего оксида. Это препятствует протеканию реакции с водой. Однако если эту пленку удалить или нарушить ее целостность, то эти металлы также активно вступают в реакцию. Например, порошкообразный магний реагирует с горячей водой:

Mg + 2H 2 O = 100 °C Mg(OH) 2 + H 2 .

При повышенной температуре с водой вступают в реакцию и менее активные металлы: Zn, Fe, Mil и др. При этом образуются соответствующие оксиды. Например, при пропускании водяного пара над раскаленными железными стружками протекает реакция:

3Fe + 4H 2 O = t Fe 3 O 4 + 4H 2 .

Металлы, стоящие в ряду активности до водорода, реагируют с кислотами (кроме HNO 3) с образованием солей и водорода. Активные металлы (К, Na, Са, Mg) реагируют с растворами кислот очень бурно (с большой скоростью):

Ca + 2HCl = CaCl 2 + H 2 ;
2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 .

Малоактивные металлы часто практически не растворяются в кислотах. Это обусловлено образованием на их поверхности пленки нерастворимой соли. Например, свинец, стоящий в ряду активности до водорода, практически не растворяется в разбавленной серной и соляной кислотах вследствие образования на его поверхности пленки нерастворимых солей (PbSO 4 и PbCl 2).

Вам необходимо включить JavaScript, чтобы проголосовать

Основания сложные вещества, которые состоят из катиона металла Ме + (или металлоподобного катиона, например, иона аммония NH 4 +) и гидроксид-аниона ОН — .

По растворимости в воде основания делят на растворимые (щелочи) и нерастворимые основания . Также есть неустойчивые основания , которые самопроизвольно разлагаются.

Получение оснований

1. Взаимодействие основных оксидов с водой. При этом с водой реагируют в обычных условиях только те оксиды, которым соответствует растворимое основание (щелочь). Т.е. таким способом можно получить только щёлочи:

основный оксид + вода = основание

Например , оксид натрия в воде образует гидроксид натрия (едкий натр):

Na 2 O + H 2 O → 2NaOH

При этом оксид меди (II) с водой не реагирует :

CuO + H 2 O ≠

2. Взаимодействие металлов с водой. При этом с водой реагируют в обычных условиях только щелочные металлы (литий, натрий, калий. рубидий, цезий) , кальций, стронций и барий. При этом протекает окислительно-восстановительная реакция, окислителем выступает водород, восстановителем является металл.

металл + вода = щёлочь + водород

Например , калий реагирует с водой очень бурно :

2K 0 + 2H 2 + O → 2K + OH + H 2 0

3. Электролиз растворов некоторых солей щелочных металлов . Как правило, для получения щелочей электролизу подвергают растворы солей, образованных щелочными или щелочноземельными металлами и бескилородными кислотами (кроме плавиковой) – хлоридами, бромидами, сульфидами и др. Более подробно этот вопрос рассмотрен в статье .

Например , электролиз хлорида натрия:

2NaCl + 2H 2 O → 2NaOH + H 2 + Cl 2

4. Основания образуются при взаимодействии других щелочей с солями. При этом взаимодействуют только растворимые вещества, а в продуктах должна образоваться нерастворимая соль, либо нерастворимое основание:

либо

щелочь + соль 1 = соль 2 ↓ + щелочь

Например: карбонат калия реагирует в растворе с гидроксидом кальция:

K 2 CO 3 + Ca(OH) 2 → CaCO 3 ↓ + 2KOH

Например: хлорид меди (II) взаимодействет в растворе с гидроксидом натрия. При этом выпадает голубой осадок гидроксида меди (II) :

CuCl 2 + 2NaOH → Cu(OH) 2 ↓ + 2NaCl

Химические свойства нерастворимых оснований

1. Нерастворимые основания взаимодействуют с сильными кислотами и их оксидами (и некоторыми средними кислотами). При этом образуются соль и вода .

нерастворимое основание + кислота = соль + вода

нерастворимое основание + кислотный оксид = соль + вода

Например , гидроксид меди (II) взаимодействует с сильной соляной кислотой:

Cu(OH) 2 + 2HCl = CuCl 2 + 2H 2 O

При этом гидроксид меди (II) не взаимодействует с кислотным оксидом слабой угольной кислоты – углекислым газом:

Cu(OH) 2 + CO 2 ≠

2. Нерастворимые основания разлагаются при нагревании на оксид и воду.

Например , гидроксид железа (III) разлагается на оксид железа (III) и воду при прокаливании:

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

3. Нерастворимые основания не взаимодействуют с амфотерными оксидами и гидроксидами.

нерастворимое оснвоание + амфотерный оксид ≠

нерастворимое основание + амфотерный гидроксид ≠

4. Некоторые нерастворимые основания могут выступать в качестве восстановителей . Восстановителями являются основания, образованные металлами с минимальной или промежуточной степенью окисления , которые могут повысить свою степень окисления (гидроксид железа (II), гидроксид хрома (II) и др.).

Например , гидроксид железа (II) можно окислить кислородом воздуха в присутствии воды до гидроксида железа (III):

4Fe +2 (OH) 2 + O 2 0 + 2H 2 O → 4Fe +3 (O -2 H) 3

Химические свойства щелочей

1. Щёлочи взаимодействуют с любыми кислотами – и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли , если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты . В избытке щёлочи образуется средняя соль и вода:

щёлочь (избыток) + кислота = средняя соль + вода

щёлочь + многоосновная кислота (избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты , фосфаты или гидрофосфаты .

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

NaOH + H 3 PO 4 → NaH 2 PO 4 + H 2 O

При мольном соотношении количества щелочи и кислоты 2:1 образуются гидрофосфаты:

2NaOH + H 3 PO 4 → Na 2 HPO 4 + 2H 2 O

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.

3NaOH + H 3 PO 4 → Na 3 PO 4 + 3H 2 O

2. Щёлочи взаимодействуют с амфотерными оксидами и гидроксидами. При этом в расплаве образуются обычные соли , а в растворе – комплексные соли .

щёлочь (расплав) + амфотерный оксид = средняя соль + вода

щёлочь (расплав) + амфотерный гидроксид = средняя соль + вода

щёлочь (раствор) + амфотерный оксид = комплексная соль

щёлочь (раствор) + амфотерный гидроксид = комплексная соль

Например , при взаимодействии гидроксида алюминия с гидроксидом натрия в расплаве образуется алюминат натрия. Более кислотный гидроксид образует кислотный остаток:

NaOH + Al(OH) 3 = NaAlO 2 + 2H 2 O

А в растворе образуется комплексная соль:

NaOH + Al(OH) 3 = Na

Обратите внимание, как составляется формула комплексной соли: сначала мы выбираем центральный атом (к ак правило, это металл из амфотерного гидроксида). Затем дописываем к нему лиганды — в нашем случае это гидроксид-ионы. Число лигандов, как правило, в 2 раза больше, чем степень окисления центрального атома. Но комплекс алюминия — исключение, у него число лигандов чаще всего равно 4. Заключаем полученный фрагмент в квадртаные скобки — это комплексный ион. Определяем его заряд и снаружи дописываем нужное количество катионов или анионов.

3. Щёлочи взаимодействуют с кислотными оксидами. При этом возможно образование кислой или средней соли , в зависимости от мольного соотношения щёлочи и кислотного оксида. В избытке щёлочи образуется средняя соль, а в избытке кислотного оксида образуется кислая соль:

щёлочь (избыток) + кислотный оксид = средняя соль + вода

либо:

щёлочь + кислотный оксид (избыток) = кислая соль

Например , при взаимодействии избытка гидроксида натрия с углекислым газом образуется карбонат натрия и вода:

2NaOH + CO 2 = Na 2 CO 3 + H 2 O

А при взаимодействии избытка углекислого газа с гидроксидом натрия образуется только гидрокарбонат натрия:

2NaOH + CO 2 = NaHCO 3

4. Щёлочи взаимодействуют с солями. Щёлочи реагируют только с растворимыми солями в растворе , при условии, что в продуктах образуется газ или осадок . Такие реакции протекают по механизму ионного обмена .

щёлочь + растворимая соль = соль + соответствующий гидроксид

Щёлочи взаимодействуют с растворами солей металлов, которым соответствуют нерастворимые или неустойчивые гидроксиды.

Например , гидроксид натрия взаимодействует с сульфатом меди в растворе :

Cu 2+ SO 4 2- + 2Na + OH — = Cu 2+ (OH) 2 — ↓ + Na 2 + SO 4 2-

Также щёлочи взаимодействуют с растворами солей аммония .

Например , гидроксид калия взаимодействует с раствором нитрата аммония:

NH 4 + NO 3 — + K + OH — = K + NO 3 — + NH 3 + H 2 O

! При взаимодействии солей амфотерных металлов с избытком щёлочи образуется комплексная соль!

Давайте рассмотрим этот вопрос подробнее. Если соль, образованная металлом, которому соответствует амфотерный гидроксид , взаимодействует с небольшим количеством щёлочи, то протекает обычная обменная реакция, и в осадок выпадает гидроксид этого металла .

Например , избыток сульфата цинка реагирует в растворе с гидроксидом калия:

ZnSO 4 + 2KOH = Zn(OH) 2 ↓ + K 2 SO 4

Однако, в данной реакции образуется не основание, а амфотерный гидроксид . А, как мы уже указывали выше, амфотерные гидроксиды растворяются в избытке щелочей с образованием комплексных солей . Таким образом, при взаимодействии сульфата цинка с избытком раствора щёлочи образуется комплексная соль, осадок не выпадает:

ZnSO 4 + 4KOH = K 2 + K 2 SO 4

Таким образом, получаем 2 схемы взаимодействия солей металлов, которым соответствуют амфотерные гидроксиды, с щелочами:

соль амф.металла (избыток) + щёлочь = амфотерный гидроксид↓ + соль

соль амф.металла + щёлочь (избыток) = комплексная соль + соль

5. Щёлочи взаимодействуют с кислыми солями. При этом образуются средние соли, либо менее кислые соли.

кислая соль + щёлочь = средняя соль + вода

Например , гидросульфит калия реагирует с гидроксидом калия с образованием сульфита калия и воды:

KHSO 3 + KOH = K 2 SO 3 + H 2 O

Свойства кислых солей очень удобно определять, разбивая мысленно кислую соль на 2 вещества — кислоту и соль. Например, гидрокарбонта натрия NaHCO 3 мы разбиваем на уольную кислоту H 2 CO 3 и карбонат натрия Na 2 CO 3 . Свойства гидрокарбоната в значительной степени определяются свойствами угольной кислоты и свойствами карбоната натрия.

6. Щёлочи взаимодействуют с металлами в растворе и расплаве. При этом протекает окислительно-восстановительная реакция, в растворе образуется комплексная соль и водород , в расплаве — средняя соль и водород .

Обратите внимание! С щелочами в растворе реагируют только те металлы, у которых оксид с минимальной положительной степенью окисления металла амфотерный!

Например , железо не реагирует с раствором щёлочи, оксид железа (II) — основный. А алюминий растворяется в водном растворе щелочи, оксид алюминия — амфотерный:

2Al + 2NaOH + 6H 2 + O = 2Na + 3H 2 0

7. Щёлочи взаимодействуют с неметалами. При этом протекают окислительно-восстановительные реакции. Как правило, неметаллы диспропорционируют в щелочах . Не реагируют с щелочами кислород, водород, азот, углерод и инертные газы (гелий, неон, аргон и др.):

NaOH +О 2 ≠

NaOH +N 2 ≠

NaOH +C ≠

Сера, хлор, бром, йод, фосфор и другие неметаллы диспропорционируют в щелочах (т.е. самоокисляются-самовосстанавливаются).

Например , хлор при взаимодействии с холодной щелочью переходит в степени окисления -1 и +1:

2NaOH +Cl 2 0 = NaCl — + NaOCl + + H 2 O

Хлор при взаимодействии с горячей щелочью переходит в степени окисления -1 и +5:

6NaOH +Cl 2 0 = 5NaCl — + NaCl +5 O 3 + 3H 2 O

Кремний окисляется щелочами до степени окисления +4.

Например , в растворе:

2NaOH +Si 0 + H 2 + O= NaCl — + Na 2 Si +4 O 3 + 2H 2 0

Фтор окисляет щёлочи:

2F 2 0 + 4NaO -2 H = O 2 0 + 4NaF — + 2H 2 O

Более подробно про эти реакции можно прочитать в статье .

8. Щёлочи не разлагаются при нагревании.

Исключение — гидроксид лития:

2LiOH = Li 2 O + H 2 O

Уравнения реакций отношения металлов:

  • а) к простым веществам: кислороду, водороду, галогенам, сере, азоту, углероду;
  • б) к сложным веществам: воде, кислотам, щелочам, солям.
  1. К металлам относятся s-элементы I и II групп, все s-элементы, р-элементы III группы (кроме бора), а также олово и свинец (IV группа), висмут (V группа) и полоний (VI группа). Металлы в большинстве своем имеют на внешнем энергетическом уровне 1-3 электрона. У атомов d-элементов внутри периодов слева направо происходит заполнение d-подуровней предвнешнего слоя.
  2. Химические свойства металлов обусловлены характерным строением их внешних электронных оболочек.

В пределах периода с увеличением заряда ядра радиусы атомов при одинаковом числе электронных оболочек уменьшаются. Наибольшими радиусами обладают атомы щелочных металлов. Чем меньше радиус атома, тем больше энергия ионизации, а чем больше радиус атома, тем меньше энергия ионизации. Так как атомы металлов обладают наибольшими радиусами атомов, то для них характерны в основном низкие значения энергии ионизации и сродства к электрону. Свободные металлы проявляют исключительно восстановительные свойства.

3) Металлы образуют оксиды, например:

С водородом реагируют только щелочные и щелочноземельные металлы, образуя гидриды:

Металлы реагируют с галогенами, образуя галогениды, с серой - сульфиды, с азотом - нитриды, с углеродом - карбиды.

С увеличением алгебраического значения стандартного электродного потенциала металла Е 0 в ряду напряжений способность металла реагировать с водой уменьшается. Так, железо реагирует с водой только при очень высокой температуре:

Металлы с положительным значением стандартного электродного потенциала, то есть стоящие после водорода в ряду напряжений, не реагируют с водой.

Характерны реакции металлов с кислотами. Металлы с отрицательным значением Е 0 вытесняют водород из растворов НСl, H 2 S0 4 , H 3 P0 4 и т. д.

Металл с меньшим значением Е 0 вытесняет металл с большим значением Е 0 из растворов солей:

Важнейшие соединения кальция, получаемые в промышленности, их химические свойства и способы получения.

Оксид кальция СаО называют негашеной известью. Его получают обжигом известняка СаС0 3 --> СаО + СО, при температуре 2000° С. Оксид кальция обладает свойствами основного оксида:

а) реагирует с водой с выделением большого количества теплоты:

СаО + Н 2 0 = Са(ОН) 2 (гашеная известь).

б) реагирует с кислотами, образуя соль и воду:

СаО + 2НСl = СаСl 2 + Н 2 О

СаО + 2Н + = Са 2+ + Н 2 О

в) реагирует с кислотными оксидами с образованием соли:

СаО + С0 2 = СаС0 3

Гидроксид кальция Са(ОН) 2 применяется в виде гашеной извести, известкового молока и известковой воды.

Известковое молоко - это взвесь, образованная при смешивании избытка гашеной извести с водой.

Известковая вода - прозрачный раствор, полученный при фильтровании известкового молока. Используется в лаборатории для обнаружения оксида углерода (IV).

Са(ОН) 2 + СО 2 = СаСО 3 + Н 2 О

При длительном пропускании оксида углерода (IV) paствор становится прозрачным, так как образуется кислая соль, растворимая в воде:

СаС0 3 + С0 2 + Н 2 О = Са(НСО 3 ) 2

Если полученный прозрачный раствор гидрокарбоната кальция нагреть, то снова происходит помутнение, так как выпадает осадок СаС0 3 :

Металлы занимают в Периодической таблице левый нижний угол. Металлы относятся к семействам s-элементов, d-элементов, f-элементов и частично - р-элементов.

Самым типичным свойством металлов является их способность отдавать электроны и переходить в положительно заряженные ионы. Причём металлы могут проявлять только положительную степень окисления.

Ме - ne = Me n +

1. Взаимодействие металлов с неметаллами.

а) Взаимодействие металлов с водородом .

С водородом непосредственно реагируют щелочные и щелочноземельные металлы, образуя гидриды .

Например :

Ca + H 2 = CaH 2

Образуются нестехиометрические соединения с ионной кристаллической структурой.

б) Взаимодействие металлов с кислородом.

Все металлы за исключением Au, Ag, Pt окисляются кислородом воздуха.

Пример:

2Na + O 2 = Na 2 O 2 (пероксид)

4K + O 2 = 2K 2 O

2Mg + O 2 = 2MgO

2Cu + O 2 = 2CuO

в) Взаимодействие металлов с галогенами .

Все металлы реагируют с галогенами с образованием галогенидов.

Пример:

2Al + 3Br 2 = 2AlBr 3

В основном это ионные соединения: MeHal n

г) Взаимодействие металлов с азотом .

С азотом взаимодействуют щелочные и щелочноземельные металлы.

Пример :

3Ca + N 2 = Ca 3 N 2

Mg + N 2 = Mg 3 N 2 - нитрид.

д) Взаимодействие металлов с углеродом .

Соединения металлов и углерода - карбиды. Они образуются при взаимодействии расплавов с углеродом. Активные металлы образуют с углеродом стехиометрические соединения:

4Al + 3C = Al 4 C 3

Металлы - d-элементы образуют соединения нестехиометрического состава типа твердых растворов: WC, ZnC, TiC - используются для получения сверхтвёрдых сталей.

2. Взаимодействие металлов с водой.

С водой реагируют металлы, имеющие более отрицательный потенциал, чем окислительно-восстановительный потенциал воды.

Активные металлы более активно реагируют с водой, разлагая воду с выделением водорода.

Na + 2H 2 O = H 2 + 2NaOH

Менее активные металлы медленно разлагают воду и процесс тормозится из-за образования нерастворимых веществ.

3. Взаимодействие металлов с растворами солей.

Такая реакция возможна, если реагирующий металл активнее, чем находящийся в соли:

Zn + CuSO 4 = Cu 0 ↓ + ZnSO 4

0,76 B., = + 0,34 B.

Металл, обладающий более отрицательным или менее положительным стандартным электродным потенциалом, вытесняет другой металл из раствора его соли.

4. Взаимодействие металлов с растворами щелочей.

Со щелочами могут взаимодействовать металлы, дающие амфотерные гидрооксиды или обладающие высокими степенями окисления в присутствии сильных окислителей. При взаимодействии металлов с растворами щелочей, окислителем является вода.

Пример :

Zn + 2NaOH + 2H 2 O = Na 2 + H 2


1 Zn 0 + 4OH - - 2e = 2- окисление

Zn 0 - восстановитель

1 2H 2 O + 2e = H 2 + 2OH - восстановление

H 2 O - окислитель

Zn + 4OH - + 2H 2 O = 2- + 2OH - + H 2

Металлы, обладающие высокими степенями окисления, могут взаимодействовать со щелочами при сплавлении:

4Nb +5O 2 +12KOH = 4K 3 NbO 4 + 6H 2 O

5. Взаимодействие металлов с кислотами.

Это сложные реакции, продукты взаимодействия зависят от активности металла, от вида и концентрации кислоты и от температуры.

По активности металлы условно делятся на активные, средней активности и малоактивные.

Кислоты условно делятся на 2 группы:

I группа - кислоты, обладающие невысокой окислительной способностью: HCl, HI, HBr, H 2 SO 4(разб.) , H 3 PO 4 , H 2 S, окислитель здесь H + . При взаимодействии с металлами выделяется кислород (H 2 ). С кислотами первой группы реагируют металлы, обладающие отрицательным электродным потенциалом.

II группа - кислоты, обладающие высокой окислительной способностью: H 2 SO 4(конц.) , HNO 3(разб.) , HNO 3(конц.) . В этих кислотах окислителями являются анионы кислоты: . Продукты восстановления аниона могут быть самыми разнообразными и зависят от активности металла.

H 2 S - c активными металлами

H 2 SO 4 +6е S 0 ↓ - с металлами средней активности

SO 2 - c малоактивными металлами

NH 3 (NH 4 NO 3)- c активными металлами

HNO 3 +4,5e N 2 O, N 2 - с металлами средней активности

NO - c малоактивными металлами

HNO 3(конц.) - NO 2 - c металлами любой активности.

Если металлы обладают переменной валентностью, то с кислотами I группы металлы приобретают низшую положительную степень окисления: Fe → Fe 2+ , Cr → Cr 2+ . При взаимодействии с кислотами II группы - степень окисления +3: Fe → Fe 3+ , Cr → Cr 3+ , при этом никогда не выделяется водород.

Некоторые металлы (Fe, Cr, Al, Ti, Ni и др.) в растворах сильных кислот, окисляясь, покрываются плотной оксидной плёнкой, которая защищает металл от дальнейшего растворения (пассивация), но при нагревании оксидная плёнка растворяется, и реакция идёт.

Малорастворимые металлы, обладающие положительным электродным потенциалом, могут растворяться в кислотах I группы, в присутствии сильных окислителей.

Московский государственный индустриальный университет

Факультет прикладной математики и технической физики

Кафедра химии

Лабораторная работа

Химические свойства металлов

Москва 2012

Цель работы. Изучение свойств s -, p -, d -элементов-металлов (Mg, Al, Fe, Zn) и их соединений.

1. Теоретическая часть

Все металлы по своим химическим свойствам являются восстановителями, т.е. они отдают электроны при протекании химической реакции. Атомы металлов относительно легко отдают валентные электроны и переходят в положительно заряженные ионы.

1.1. Взаимодействие металлов с простыми веществами

При взаимодействии металлов с простыми веществами в качестве окислителей обычно выступают неметаллы. Металлы реагируют с неметаллами с образованием бинарных соединений.

1. При взаимодействии с кислородом металлы образуют оксиды:

2Mg + O 2 2MgO,

2Cu + O 2 2CuO.

2. Металлы реагируют с галогенами (F 2 , Cl 2 , Br 2 , I 2) с образованием солей галогеноводородных кислот:

2Na + Br 2 = 2NaBr,

Ba + Cl 2 = BaCl 2 ,

2Fe + 3Cl 2 2FeCl 3 .

3. При взаимодействии металлов с серой образуются сульфиды (соли сероводородной кислоты H 2 S):

4. С водородом взаимодействуют активные металлы с образованием гидридов металлов, которые являются солеподобными веществами:

2Na + H 2 2NaH,

Ca + H 2 CaH 2 .

В гидридах металлов водород имеет степень окисления (-1).

Металлы могут взаимодействовать и с другими неметаллами: азотом, фосфором, кремнием, углеродом с образованием соответственно нитридов, фосфидов, силицидов, карбидов. Например:

3Mg + N 2 Mg 3 N 2 ,

3Ca + 2P Ca 3 P 2 ,

2Mg + Si Mg 2 Si,

4Al + 3C Al 4 C 3 .

5. Металлы могут также взаимодействовать между собой с образованием интерметаллических соединений :

2Mg + Cu = Mg 2 Cu,

2Na + Sb = Na 2 Sb.

Интерметаллическими соединениями (или интерметаллидами ) называют соединения, образуемые между собой элементами, которые относятся обычно к металлам.

1.2. Взаимодействие металлов с водой

Взаимодействие металлов с водой – это окислительно-восстановительный процесс, в котором металл является восстановителем, а вода выполняет роль окислителя. Реакция протекает по схеме:

Me + n H 2 O = Me(OH) n + n /2 H 2 .

С водой при обычных условиях взаимодействуют щелочные и щелочноземельные металлы с образованием растворимых оснований и водорода:

2Na + 2H 2 O = 2NaOH + H 2 ,

Ca + 2H 2 O = Ca(OH) 2 + H 2 .

Магний реагирует с водой при нагревании:

Mg + 2H 2 O Mg(OH) 2 + H 2 .

Железо и некоторые другие активные металлы взаимодействуют с горячим водяным паром:

3Fe + 4H 2 O Fe 3 O 4 + 4H 2 .

Металлы, имеющие положительные электродные потенциалы, не взаимодействуют с водой.

Не взаимодействуют с водой 4d -элементы (кроме Cd), 5d -элементы и Cu (3d -элемент).

1.3. Взаимодействие металлов с кислотами

По характеру действия на металлы наиболее распространенные кислоты можно разделить на две группы.

1. Кислоты-неокислители: хлороводородная (соляная, HCl), бромоводородная (HBr), йодоводородная (HI), фтороводородная (HF), уксусная (CH 3 COOH), разбавленная серная (H 2 SO 4 (разб.)), разбавленная ортофосфорная (H 3 PO 4 (разб.)).

2. Кислоты-окислители: азотная (HNO 3) в любой концентрации, концентрированная серная (H 2 SO 4 (конц.)), концентрированная селеновая (H 2 SeO 4(конц.)) .

Взаимодействие металлов с кислотами-неокислителями . Окисление металлов ионами водорода H + в растворах кислот-неокислителей происходит более энергично, чем в воде.

Все металлы, имеющие отрицательное значение стандартного электродного потенциала, т.е. находящиеся в электрохимическом ряду напряжений до водорода, вытесняют водород из кислот-неокислителей. Реакция протекает по схеме:

Ме + n H + = Me n + + n /2 H 2 .

Например:

2Al +6HCl = 2AlCl 3 + 3H 2 ,

Mg + 2CH 3 COOH = Mg(CH 3 COO) 2 + H 2 ,

2Ti + 6HCl = 2TiCl 3 + 3H 2 .

Металлы с переменной степенью окисления (Fe, Cо, Ni и др.) образуют ионы в своей низшей степени окисления (Fe 2+ , Co 2+ , Ni 2+ и другие):

Fe + H 2 SO 4 (разб) = FeSO 4 + H 2 .

При взаимодействии некоторых металлов с кислотами-неокислителями: HCl, HF, H 2 SO 4 (разб.) , HCN образуются нерастворимые продукты, предохраняющие металл от дальнейшего окисления. Так, поверхность свинца в HCl (разб) и H 2 SO 4(разб) пассивируется плохо растворимыми солями PbCl 2 и PbSO 4 соответственно.

Взаимодействие металлов с кислотами-окислителями . Серная кислота в разбавленном растворе – слабый окислитель, а в концентрированном – очень сильный. Окисляющая способность концентрированной серной кислоты H 2 SO 4 (конц.) определяется анионом SO 4 2  , окислительный потенциал которого значительно выше, чем иона H + . Концентрированная серная кислота является сильным окислителем за счёт атомов серы в степени окисления (+6). Кроме того, в концентрированном растворе H 2 SO 4 содержится мало ионов H + , так как в концентрированном растворе она слабо ионизирована. Поэтому при взаимодействии металлов с H 2 SO 4 (конц.) водород не выделяется.

Реагируя с металлами как окислитель, H 2 SO 4 (конц.) переходит чаще всего в оксид серы (IV) (SO 2), а при взаимодействии с сильными восстановителями – в S или H 2 S:

Me + H 2 SO 4 (конц)  Me 2 (SO 4) n + H 2 O + SO 2 (S, H 2 S).

Для удобства запоминания рассмотрим электрохимический ряд напряжений, который выглядит так:

Li, Rb, K, Cs, Ba, Sr, Ca, Na, Mg, Be, Al, Mn, Zn, Cr, Fe, Cd, Co, Ni, Sn, Pb, (H), Cu, Hg, Ag, Pt, Au .

В табл. 1. представлены продукты восстановления концентрированной серной кислоты при взаимодействии с металлами различной активности.

Таблица 1.

Продукты взаимодействия металлов с концентрированной

серной кислотой

Cu + 2H 2 SO 4 (конц) = CuSO 4 + SO 2 + 2H 2 O,

4Mg + 5H 2 SO 4 (конц) = 4MgSO 4 + H 2 S + 4H 2 O.

Для металлов средней активности (Mn, Cr, Zn, Fe) соотношение продуктов восстановления зависит от концентрации кислоты.

Общая тенденция такова: чем выше концентрация H 2 SO 4 , тем глубже протекает восстановление.

Это означает, что формально каждый атом серы из молекулH 2 SO 4 может забрать у металла не только два электрона (и перейти в ), но и шесть электронов (и перейти в) и даже восемь (и перейти в):

Zn + 2H 2 SO 4 (конц) = ZnSO 4 + SO 2 + 2H 2 O,

3Zn + 4H 2 SO 4 (конц) = 3ZnSO 4 + S + 4H 2 O,

4Zn + 5H 2 SO 4 (конц) = 4ZnSO 4 + H 2 S + 4H 2 O.

Свинец с концентрированной серной кислотой взаимодействует с образованием растворимого гидросульфата свинца (II), оксида серы (IV) и воды:

Pb + 3H 2 SO 4 = Pb(HSO 4) 2 + SO 2 + 2H 2 O.

Холодная H 2 SO 4 (конц) пассивирует некоторые металлы (например, железо, хром, алюминий), что позволяет перевозить кислоту в стальной таре. При сильном нагревании концентрированная серная кислота взаимодействует и с этими металлами:

2Fe + 6H 2 SO 4 (конц) Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O.

Взаимодействие металлов с азотной кислотой. Окислительная способность азотной кислоты определяется анионом NO 3  , окислительный потенциал которого значительно выше, чем ионов H + . Поэтому при взаимодействии металлов с HNO 3 водород не выделяется. Нитрат-ион NO 3  , имеющий в своём составе азот в степени окисления (+ 5), в зависимости от условий (концентрации кислоты, природы восстановителя, температуры) может принимать от одного до восьми электронов. Восстановление аниона NO 3  может протекать с образованием различных веществ по следующим схемам:

NO 3  + 2H + + e = NO 2 + H 2 O,

NO 3  + 4H + + 3e = NO + 2H 2 O,

2NO 3  + 10H + + 8e = N 2 O + 5H 2 O,

2NO 3  + 12H + + 10e = N 2 + 6H 2 O,

NO 3  + 10H + + 8e = NH 4 + + 3H 2 O.

Азотная кислота обладает окислительной способностью при любой концентрации. При прочих равных условиях проявляются следующие тенденции: чем активнее металл, реагирующий с кислотой, и чем меньше концентрация раствора азотной кислоты , тем более глубоко она восстанавливается .

Это можно пояснить следующей схемой:

, ,
,
,

Концентрация кислоты

Активность металла

Окисление веществ азотной кислотой сопровождается образованием смеси продуктов её восстановления (NO 2 , NO, N 2 O, N 2 , NH 4 +), состав которых определяется природой восстановителя, температурой и концентрацией кислоты. Среди продуктов преобладают оксиды NO 2 и NO. Причём при взаимодействии с концентрированным раствором HNO 3 чаще выделяется NO 2 , а с разбавленной – NO.

Уравнения окислительно-восстановительных реакций с участием HNO 3 составляются условно, с включением только одного продукта восстановления, образующегося в большем количестве:

Me + HNO 3  Me (NO 3) n + H 2 O + NO 2 (NO, N 2 O, N 2 , NH 4 +).

Например, в газовой смеси, образующейся при действии на достаточно активный металл цинк (
= - 0,76 B) концентрированной (68%-й) азотной кислоты, преобладает – NO 2 , 40%-й – NO; 20%-й – N 2 O; 6%-й – N 2 . Очень разбавленная (0,5%-я) азотная кислота восстанавливается до ионов аммония:

Zn + 4HNO 3 (конц.) = Zn(NO 3) 2 + 2NO 2 + 2H 2 O,

3Zn + 8HNO 3 (40%) = 3Zn(NO 3) 2 + 2NO + 4H 2 O,

4Zn + 10HNO 3 (20%) = 4Zn(NO 3) 2 + N 2 O + 5H 2 O,

5Zn + 12HNO 3 (6%) = 5Zn(NO 3) 2 + N 2 + 6H 2 O,

4Zn + 10HNO 3 (0,5%) = 4Zn(NO 3) 2 + NH 4 NO 3 + 3H 2 O.

С малоактивными металлом медью (
= + 0,34B) реакции идут по следующим схемам:

Cu + 4HNO 3 (конц) = Cu(NO 3) 2 + 2NO 2 + 2H 2 O,

3Cu + 8HNO 3 (разб) = 3 Cu(NO 3) 2 + 2NO + 4H 2 O.

В концентрированной HNO 3 растворяются практически все металлы, кроме Au, Ir, Pt, Rh, Ta, W, Zr. А такие металлы как Al, Be, Bi, Co, Cr, Fe, Nb, Ni, Pb, Th, U, а также нержавеющие стали пассивируются кислотой с образованием устойчивых оксидных плёнок, плотно прилегающих к поверхности металла и защищающих его от дальнейшего окисления. Однако Al и Fe начинают растворяться при нагревании, а Cr устойчив к действию даже горячей HNO 3:

Fe + 6HNO 3 Fe(NO 3) 3 + 3NO 2 + 3H 2 O.

Металлы, для которых характерны высокие степени окисления (+6, +7, +8), с концентрированной азотной кислотой образуют кислородсодержащие кислоты. При этом HNO 3 восстанавливается до NO, например:

3Re + 7HNO 3 (конц) = 3HReO 4 + 7NO + 2H 2 O.

В очень разбавленной HNO 3 уже отсутствуют молекулы HNO 3 , существуют только ионы H + и NO 3  . Поэтому очень разбавленная кислота (~ 3-5%) взаимодействует с Al и не переводит в раствор Cu и другие мало активные металлы:

8Al + 30HNO 3 (очень разб) = 8Al(NO 3) 3 + 3NH 4 NO 3 + 9H 2 O.

Смесь концентрированных азотной и соляной кислот (1:3) называется царской водкой. Она растворяет Au и платиновые металлы (Pd, Pt, Os, Ru). Например:

Au + HNO 3 (конц.) + 4HCl = H + NO + 2H 2 O.

Указанные металлы растворяются в HNO 3 и в присутствии других комплексообразователей, но процесс протекает очень медленно.