«Презентация на тему:» Интегралы и их применение в жизни человека. Презентация на тему "интеграл и его применение"


Владимир 2002 год

Владимирский государственный университет, Кафедра общей и прикладной физики

Вступление

Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений. Поэтому, я и решила исследовать интеграл и его применение.

История интегрального исчисления

История понятия интеграла тесно связана с задачами нахождения квадратур. Задачами о квадратуре той или иной плоской фигуры математики Древней Греции и Рима называли задачи на вычисление площадей. Латинское слово quadratura переводится как “придание квадратной формы”. Необходимость в специальном термине объясняется тем, что в античнoe время (и позднее, вплоть до XVIII столетия) еще не были достаточно развиты представления о действительных числах. Математики оперировали с их геометрическими аналогами или скалярными величинами, которые нельзя перемножать. Поэтому и задачи на нахождение площадей приходилось формулировать, например, так: «Построить квадрат, равновеликий данному кругу». (Эта классическая задача “о квадратуре круга” круга» не может, как известно, быть решена с помощью циркуля и линейки.)

Символ ò введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summ a). Само слово интеграл придумал Я. Б е р у л л и (1690 г.) Вероятн о, оно происходит от латинского integro , которое переводится как приводи ь в прежнее состояние, восстанавливать. (Действительно, операция интегрирования восстанавливает функцию, дифференцированием которой получена подынтегральная функция.) Возможно, происхождение термина инт грал иное: слово integer означает целый.

В современной литературе множество всех первообразных для функции f(х) называется также неопределенным интегралом. Это понятие выделил Лейбниц, который заметил, что в е первообразные функции отличаются на произвольн ю постоянн ю. b

называют определенным интегралом (обо начение ввел К. Фурье (1768-1830), но пределы интегрирования указывал уже Эй лер).

Многие значительные достижения математиков Древней Греции в решении задач на нахождение квадратур (т. е. вычисление площадей) плоских фигур, а также кубатур (вычисление объемов) тел связаны с применением метода исчерпывания, предложенным Евдоксом Книдским (ок. 408 - ок. 355 до н.э.). С помощью этого метода Евдокс доказал, например, что площади двух кругов относятся как квадраты их диаметров, а объем конуса равен 1/3 объёма цилиндра, имеющего такие же основание и высоту.

Метод Евдокса был усовершенствован Архимедом. Основные этапы, характеризующие метод Архимеда: 1) доказывается, что площадь круга меньше площади любого описанного около него правильного многоугольника, но больше площади любого вписанного; 2) доказывается, что при неограниченном удвоении числа сторон разность площадей этих многоугольн иков стремится к нулю; 3) для вычисления площади круга остается найти значение, к которому стремится отношение площади правильного многоугольника при неограниченном удвоении числа его сторон.

С помощью метода исчерпывания, целого ряда других остроумных соображений (в том числе с привлечением моделей механики) Архимед решил многие задачи. Он дал оценку числа p (3.10/71

Архимед предвосхитил многие идеи интегрального исчисления. (Добавим, что практически и первые теоремы о пределах были доказаны им.) Но потребовалось более полутора тысяч лет, прежде чем эти идеи нашли четкое выражение и были доведены до уровня исчисления.

Математики XVII столетия, получившие многие новые результаты, учились на трудах Архимеда. Активно применялся и другой метод - метод неделимых, который также зародился в Древней Греции (он связан в первую очередь с атомистическими воззрениями Демокрита). Например, криволинейную трапецию (рис. 1, а) они представляли себе составленной из вертика ьных отрезков длиной f(х), которым тем не менее приписывали площадь, равн ю бесконечно малой величине f(х) . В соответствии с таким пониманием искомая площадь считалась равной сумме

бесконечно большого числа бесконечно малых площадей. Иногда даже подчеркивалось, что отдельные слагаемые в этой сумме - нули, но нули особого рода, которые, сложенные в бесконечном числе, дают вполне определенную положительную сумму.

На такой кажущейся теперь по меньшей мере сомнительной основе И. Кеплер (1571-1630) в своих сочинениях “Новая астрономия”.

(1609 г.) и «Стереометрия винных бочек» (1615 г.) правильно вычислил ряд площадей (например, площадь фигуры ограниченной эллипсом) и объемов (тело разрезалось на 6ecконечно тонкие пластинки). Эти исследования были продолжены итальянскими математиками Б. Кавальери (1598-1647) и Э.Торричелли (1608-1647). Сохраняет свое значение и в наше время сформулированный Б. Кавальери принцип, введенный им при некоторых дополнительных предположениях.

Пусть требуется найти площадь фигуры, изображенной на рисунке 1,б, где кривые, ограничивающие фигуру сверху и снизу, имеют уравнения y = f(x) и y=f(x)+c.

Представляя фигуру составленной из «неделимых», по терминологии Кавальери, бесконечно тонких столбиков, замечаем, что все они имеют общую длину с. Передвигая их в вертикальном направлении, можем составить из них прямоугольник с основанием b-а и высотой с. Поэтому искомая площадь равна площади полученного прямоугольника, т.е.

S = S1 = c (b – а).

Общий принцип Кавальери для площадей плоских фигур формулируется так: Пусть прямые некоторого пучка параллельных пересекают фигуры Ф1 и Ф2 по отрезкам равной длины (рис. 1,в). Тогда площади фигур Ф1 и Ф2 равны.

Аналогичный принцип действует в стереометрии и оказывается полезн м при нахождении объемов.

В XVII в. были сделаны многие открытия, относящиеся к интегральному исчислению. Так, П.Ферма уже в 1629 г. задачу квадратуры любой кривой у = хn, где п - целое (т.е по существу вывел формулу ò хndx = (1/n+1)хn+1), и на этой основе решил ряд задач на нахождение центров тяжести. И. Кеплер при выводе своих знаменитых законов движения планет фактически опирался на идею приближенного интегрирования. И. Барроу (1630-1677), учитель Ньютона, близко подошел к пониманию связи интегрирования и дифференцирования. Большое значение имели работы по представлению функций в виде степенных рядов.

Однако при всей значимости результатов, полученных многими чрезвычайно изобретательными математиками XVII столетия исчисления еще не было. Необходимо было выделить общие идеи лежащие в основе решения многих частных задач, а также установить связь операций дифференцирования и интегрирования, дающую достаточно общий алгоритм. Это сделали Ньютон и Лейбниц, открывшие независимо друг от друга факт, известным под названием формулы Ньютона - Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научится находить первообразные многих функций, дать логические нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано.

Методы математического анализа активно развивались в следующем столетии (в первую очередь следует назвать имена Л. Эйлера, завершившего систематическое исследование интегрирования элементарных функций, и И. Бернулли). В развитии интегрального исчисления приняли участие русские математики М.В.Остроградский (1801-1862), В.Я.Буняковский (1804-1889), П.Л.Ч бышев (1821-1894). Принципиальное значение имели, в частности, результаты Чебышева, доказавшего, что существуют интегралы, не выразимые через элементарные функции.

Строгое изложение теории интеграла появилось только в прошлом веке. Решение этой задачи связано с именами О.Коши, одного из крупнейших математиков, немецкого ученого Б.Римана (1826-1866), французского математика Г.Дарбу (1842-1917).

Ответы на многие вопросы, связанные с существованием площадей и объемов фигур, были получены с созданием К. Жорданом (1838-1922) теории меры.

Сведения из истории появления производной:Лозунгом многих математиков XVII в. был: «Двигайтесь вперёд, и вера в правильность результатов к вам
придёт».
Термин «производная» - (франц. deriveе - позади, за) ввёл в 1797 г. Ж. Лагранж. Он же ввёл
современные обозначения y " , f ‘.
обозначение lim –сокращение латинского слова limes (межа, граница). Термин «предел» ввёл И. Ньютон.
И. Ньютон называл производную флюксией, а саму функцию - флюентой.
Г. Лейбниц говорил о дифференциальном отношении и обозначал производную так:
Лагранж Жозеф Луи (1736-1813)
французский математик и механик

Ньютон:

« Был этот мир глубокой тьмой окутан. Да будет свет! И вот
явился Ньютон.» А.Поуг.
Исаак Ньютон (1643-1727) один из создателей
дифференциального исчисления.
Главный его труд- «Математические начала
натуральной философии»-оказал колоссальное
влияние на развитие естествознания, стал
поворотным пунктом в истории естествознания.
Ньютон ввёл понятие производной, изучая законы
механики, тем самым раскрыл её механический
смысл.

Что называется производной функции?

Производной функции в данной точке называется предел
отношения приращения функции в этой точке к
приращению аргумента, когда приращение аргумента
стремится к нулю.

Физический смысл производной.

Скорость есть производная от пути по времени:
v(t) = S′(t)
Ускорение есть производная
скорости по времени:
a(t) = v′(t) = S′′(t)

Геометрический смысл производной:

Угловой коэффициент касательной к графику
функции равен производной этой функции,
вычисленной в точке касания.
f′(x) = k = tga

Производная в электротехнике:

В наших домах, на транспорте, на заводах: всюду работает
электрический ток. Под электрическим током понимают
направленное движение свободных электрически заряженных
частиц.
Количественной характеристикой электрического тока является сила
тока.
В
цепи электрического тока электрический заряд меняется с
течением времени по закону q=q (t). Сила тока I есть производная
заряда q по времени.
В электротехнике в основном используется работа переменного тока.
Электрический ток, изменяющийся со временем, называют
переменным. Цепь переменного тока может содержать различные
элементы: нагревательные приборы, катушки, конденсаторы.
Получение переменного электрического тока основано на законе
электромагнитной индукции, формулировка которого содержит
производную магнитного потока.

Производная в химии:

◦ И в химии нашло широкое применение дифференциальное
исчисление для построения математических моделей химических
реакций и последующего описания их свойств.
◦ Химия – это наука о веществах, о химических превращениях
веществ.
◦ Химия изучает закономерности протекания различных реакций.
◦ Скоростью химической реакции называется изменение
концентрации реагирующих веществ в единицу времени.
◦ Так как скорость реакции v непрерывно изменяется в ходе
процесса, ее обычно выражают производной концентрации
реагирующих веществ по времени.

Производная в географии:

Идея социологической модели Томаса Мальтуса состоит в том, что прирост населения
пропорционально числу населения в данный момент времени t через N(t), . Модель
Мальтуса неплохо действовала для описания численности населения США с 1790 по 1860
годы. Ныне эта модель в большинстве стран не действует.

Интеграл и его применение:

Немного из истории:

История понятия интеграла уходит корнями
к математикам Древней Греции и Древнего
Рима.
Известны работы учёного Древней Греции Евдокса Книдского (ок.408-ок.355 до н.э.) на
нахождение объёмов тел и вычисления
площадей плоских фигур.

Большое распространение интегральное исчисление получило в XVII веке. Учёные:
Г. Лейбниц (1646-1716) и И. Ньютон (1643-1727) открыли независимо друг от
друга и практически одновременно формулу, названную в последствии формулой
Ньютона - Лейбница, которой мы пользуемся. То, что математическую формулу
вывели философ и физик никого не удивляет, ведь математика-язык, на котором
говорит сама природа.

Символ введен
Лейбницем (1675 г.). Этот знак является
изменением латинской буквы S
(первой буквы слова сумма). Само слово интеграл
придумал
Я. Бернулли (1690 г.). Вероятно, оно происходит от
латинского integero, которое переводится как
приводить в прежнее состояние, восстанавливать.
Пределы интегрирования указал уже Л.Эйлер
(1707-1783). В 1697 году появилось название
новой ветви математики - интегральное
исчисление. Его ввёл Бернулли.

В математическом анализе интегралом функции называют
расширение понятия суммы. Процесс нахождения интеграла
называется интегрированием. Этот процесс обычно используется при
нахождений таких величин как площадь, объём, масса, смещение и т.
д., когда задана скорость или распределение изменений этой величины
по отношению к некоторой другой величине (положение, время и т. д.).

Что такое интеграл?

Интеграл - одно из важнейших понятий математического анализа, которое
возникает при решении задач о нахождении площади под кривой, пройденного пути при
неравномерном движении, массы неоднородного тела, и т. п., а также в задаче о
восстановлении функции по её производной

Ученые стараются все физические
явления выразить в виде
математической формулы. Как
только у нас есть формула, дальше
уже можно при помощи нее
посчитать что угодно. А интеграл
- это один из основных
инструментов работы с
функциями.

Методы интегрирования:

1.Табличный.
2.Сведение к табличному преобразованием подынтегрального
выражения в сумму или разность.
3.Интегрирование с помощью замены переменной (подстановкой).
4.Интегрирование по частям.

Применение интеграла:

◦ Математика
◦ Вычисления S фигур.
◦ Длина дуги кривой.
◦ V тела на S параллельных
сечений.
◦ V тела вращения и т.д
Физика
Работа А переменной силы.
S – (путь) перемещения.
Вычисление массы.
Вычисление момента инерции линии,
круга, цилиндра.
◦ Вычисление координаты центра
тяжести.
◦ Количество теплоты и т.д.



Слайд 2

Историческая справка

История понятия интеграла тесно связана с задачами нахождения квадратур, т.е. задачами на вычисление площадей. Вычислениями площадей поверхностей и объемов тел занимались еще математики Древней Греции и Рима. Первым европейским математиком, получившим новые формулы для площадей фигур и объемов тел, был знаменитый астроном И. Кеплер. После исследований ряда ученых (П.Ферма, Д.Валлиса) И. Барроу открыл связь между задачами отыскания площадей и проведением касательной (т.е. между интегрированием и дифференцированием). Исследование связи между этими операциями, свободное от геометрического языка, было дано И.Ньютоном и Г. Лейбницем. Современное обозначение интеграла восходит к Лейбницу, у которого оно выражало мысль, что площадь криволинейной трапеции есть сумма площадей бесконечно тонких полосок шириной d и высоты f(x). Сам знак интеграла является стилизованной латинской буквой S (summa). Символ интеграла введен с 1675г., а вопросами интегрального исчисления занимаются с 1696г. Хотя интеграл изучают, в основном, ученые–математики, но и физики внесли свой вклад в эту науку. Практически ни одна формула физики не обходится без дифференциального и интегрального исчислений.

Слайд 3

Краткая история интегрального исчисления

Многие значительные достижения математиков Древней Греции в решении задач на нахождение площадей, а также объемов тел связаны с именем Архимеда(287-212 до н. э.) Развивая идеи предшественников Архимед определил длину окружности и площадь круга, объем и поверхность шара. В работах «О шаре и цилиндре», «О спиралях», «О коноидах и сферах», он показал, что определение объемов шара, эллипсоида, гиперболоида и параболоида вращения сводится к определению объема конуса и цилиндра. Архимед разработал и применил методы, предвосхитившие созданное в XVII в. интегральное исчисление. Потребовалось более полутора тысяч лет, прежде чем идеи Архимеда нашли четкое выражение и были доведены до уровня исчисления. В XVII в. математики уже умели вычислять площади многих фигур с кривыми границами и объемы многих тел. А общая теория была создана во второй половине XVII в. в трудах великого английского математика Иссака Ньютона(1643-1716) и великого немецкого математика Готфрида Лейбница(1646-1716). Ньютон и Лейбниц являются основателями интегрального исчисления. Они открыли важную теорему, носящую их имя: где f(x) – функция, интегрируемая на отрезке , F(x) – одна из ее первообразных. Рассуждения, которые приводили Ньютон и Лейбниц, несовершенны с точки зрения современного математического анализа. В XVIII в. крупнейший представитель математического анализа Леонард Эйлер эти понятия обобщил в своих трудах. Только в начале XIX в. были окончательно созданы понятия интегрального исчисления. Обычно при этом отмечают заслуги французского математика Огюстена Коши и немецкого математика Георга Римана. Само слово интеграл придумал Я.Бернулли(1690г.). Оно происходит от латинского integro, которое переводится как приводить в прежнее состояние, восстанавливать. В1696г. появилось и название новой ветви математики – интегральное исчисление, которое ввел И.Бернулли. Употребляющееся сейчас название первообразная функция заменило более раннее «примитивная функция», которое ввел Лагранж (1797 г.). Обозначение определенного интеграла ввел Иосиф Бернулли, а нижние и верхние пределы Леонард Эйлер.

Слайд 4

Неопределенный интеграл

Математические операции образуют пары двух взаимно обратных действий, например, сложение и вычитание, умножение и деление, возведение в целую положительную степень и извлечение корня. Дифференцирование дает возможность для заданной функции F(х) находить ее производную F´(х). Существует действие, обратное дифференцированию – это интегрирование – нахождение функции F(х) по известной ее производной f(x) = F´(х)или дифференциалу f(x)dx. Функция F(х) называется первообразной для функции f(x), если F´(х) = f(x) или dF(x)=f(x)dx.Если функция f(x) имеет первообразную F(х), то она имеет бесконечное множество первообразных, причем все ее первообразные содержатся в выражении F(х) +С, где С – постоянная. Неопределенным интегралом от функции f(x)(или от выражения f(x)dx) называется совокупность всех ее первообразных. Обозначение ∫f(x)dx = F(х) +С. Здесь ∫ – знак интеграла, f(x) - подынтегральная функция, f(x)dx - подынтегральное выражение, х – переменная интегрирования. Отыскание неопределенного интеграла называется интегрированием функции. Свойства неопределенного интеграла Производная от неопределенного интеграла равна подынтегральной функции: (∫ f(x)dx)´ = f(x) Дифференциал от неопределенного интеграла равен подынтегральному выражению: d (∫ f(x)dx) = f(x) dx Интеграл от дифференциала первообразной равен самой первообразной и дополнительному слагаемому С:∫d (F(x)) = F(х) +С Постоянный множитель можно выносить за знак неопределенного интеграла: ∫a f(x) dx =a ∫f(x) dx Интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от слагаемых: ∫ dx = ∫ dx ± ∫ dx

Слайд 5

Определенный интеграл

Понятие определенного интеграла выводится через криволинейную трапецию. Криволинейной трапецией называется фигура, ограниченная линиями y = f(x), y = 0, x=a, x=b.Площадь криволинейной трапеции выражается интегральной суммой или числом, которое называется определенным интегралом. Определенный интеграл вычисляется по формуле Ньютона – Лейбница. = F (x)|ba= F(b) – F(a) Общность обозначения определенного и неопределенного интегралов подчеркивает тесную связь между ними: определенный интеграл – это число, а неопределенный интеграл – совокупность первообразных функций. Связь между определенным и неопределенным интегралом выражается формулой Ньютона – Лейбница. Свойства определенного интеграла: Если верхний и нижний пределы интегрирования поменять местами, то определенный интеграл сохранит абсолютную величину, но изменит свой знак на противоположный. Если верхняя и нижняя границы интегрирования равны, то определенный интеграл равен нулю. Если отрезок интегрирования разбить на несколько частей, определенный интеграл на отрезке будет равен сумме определенных интегралов этих отрезков. Определенный интеграл от суммы функций, заданных на отрезке равен сумме определенных интегралов от слагаемых функций. Постоянный множитель к подынтегральной функции можно выносить за знак определенного интеграла. Оценка определенного интеграла: если m ≤ f(x) ≤ M на , то m (b – a)

Слайд 6

Геометрический смысл определенного интеграла

Пусть функция y=f(x) непрерывна на отрезке и f(x) ≥ 0. Фигура, ограниченная графиком АВ функции y=f(x), прямыми x=a, x=b и осью Ох (см. рисунок), называется криволинейной трапецией. Интегральная сумма и ее слагаемые имеют простой геометрический смысл: произведение равно площади прямоугольника с основанием и высотой, а сумма представляет собой площадь заштрихованной ступенчатой фигуры, изображенной на рисунке. Очевидно, что эта площадь зависит от разбиенияотрезка на частичные отрезки и выбора количества точек разбиения. Чем меньше ∆ х, тем площадь ступенчатой фигуры ближе к площади криволинейной трапеции. Следовательно, за точную площадь S криволинейной трапеции принимается предел интегральной суммы. Таким образом, с геометрической точки зрения определенный интеграл от неотрицательной функции численно равен площади соответствующей криволинейной трапеции.

Слайд 7

Методы интегрирования

1. Непосредственное интегрирование Непосредственным интегрированием принято называть вычисление неопределенных интегралов путем приведения их к табличным с применением основных свойств. Здесь могут представиться следующие случаи: 1) данный интеграл берется непосредственно по формуле соответствующего табличного интеграла; 2) данный интеграл после применения свойств приводится к одному или нескольким табличным интегралам; 3) данный интеграл после элементарных тождественных преобразований над подынтегральной функцией и применением свойств приводится к одному или нескольким табличным интегралам. 2. Интегрирование методом замены переменной (способом подстановки) Замена переменной в неопределенном интеграле производится с помощью подстановок двух видов: х = φ (t), где φ (t) – монотонная, непрерывно дифференцируемая функция новой переменной t. Формула замены переменной в этом случае имеет вид ∫f(x) = ∫f [φ (t)] φ΄ (t) d(t); 2) u = ψ(x), где u – новая переменная. Формула замены переменной при такой подстановке: ∫f [ψ(х)] ψ ΄(х) d(х) = ∫f (u) du 3. Интегрирование по частям Интегрированием по частям называется нахождение интеграла по формуле ∫udv = uv - ∫v du, где u = φ (x), v = ψ(х) – непрерывно дифференцируемые функции от х. С помощью этой формулы нахождение интеграла ∫udv сводится к отысканию другого интеграла ∫v du; ее применение целесообразно в тех случаях, когда последний интеграл либо проще исходного, либо ему подобен. При этом за u берется такая функция, которая при дифференцировании упрощается, а за dv – та часть подынтегрального выражения, интеграл от которого известен или может быть найден.

Слайд 8

Таблица неопределенных интегралов

  • Слайд 9

    Повторение теоретического материала

    Как найти площади изображенных фигур?

    Слайд 10

    Продолжаем повторять

  • Слайд 11

    Применение интеграла

    Кроме этого определенный интеграл используется для вычисления площадей плоских фигур, объемов тел вращения, длин дуг кривых.

    Слайд 12

    Вычисление объемов тел

    Пусть задано тело объемом V, причем имеется такая прямая, что, какую бы плоскость, перпендикулярную этой прямой, мы ни взяли, нам известна площадь S сечения тела этой плоскостью. Но плоскость, перпендикулярная оси Ох, пересекает ее в некоторой точке х. Следовательно, каждому числу х (из отрезка [а; b]) поставлено в соответствие единственное число S (х) - площадь сечения тела этой плоскостью. Тем самым на отрезке [а; b] задана функция S(x). Если функция S непрерывна на отрезке [а; b] то справедлива формула:

    Слайд 13

    ПРОВЕРЬ СЕБЯ!

    Найдите площадь изображенных фигур 1 – 5. Ответы: 1) S = 2/3 (четность функции); 2) S = 1 (площадь прямоугольного треугольника); 3) S = 4 (равенство фигур); 4) S = 2π (площадь полукруга); 5) S = 1 (площадь треугольника).

    Слайд 14

    Найди ошибку!

    Найти сумму площадей бесконечного количества фигур, заштрихованных на рисунках. (Аргумент каждой следующей функции увеличивается в 2 раза) Интересная задача! Ответ: sin nx=0 ; x=π/n; где n=1,2,4,8,16…; S=2+1+1/2+1/4+1/8+…=2/(1-1/2)=4 Ответ: 4.

    Слайд 15

    Программированный контроль

    Верные ответы: I вариант: 2,3,1 ; II вариант: 2,4,2.

    Слайд 16

    Самостоятельная работа

    Вычислите площадь фигуры, ограниченной линиями (схематично изобразив графики функций). 1) y = 6 + x – x2 и y = 6 – 2x; 2) y = 2x2 и y = x + 1 ; 3) y = 1 – x и y = 3 – 2x – x2 ; 4) y = x2 и y = . Ответ: 1) 4,5 ; 2) 9/8 ; 3) 4,5 ; 4) 1/3 .

    Слайд 17

    Задачи на вычисление объемов

    Найдите объем тела, полученного при вращении вокруг оси абсцисс фигуры, ограниченной линиями: 1) y = x2 + 1, x = 0, x = 1, y = 0 ; 2) y = , x = 1 , x = 4 , y = 0 ; 3) y = 2x , y = x + 3, x = 0 , x = 1 ; 4) y = x + 2 , y = 1 , x = 0 , x = 2 ; 5) у2 – 4 х = 0, х – 2 = 0, х – 4 = 0, у = 0; 6) у2 – х + 1 = 0, х – 2 = 0, у = 0; 7) y = - x2 + 2х, у = 0; 8) у2 = 2 х, х – 2 = 0, у = 0; 9) y = , x = 3 , y = 0 ; 10) у = 1 – x2 , у = 0. Ответ: 1) ; 2) 7,5  ; 3) 11 ; 4) 16 ⅔; 5) 24 ; 6) /2; 7) 16/15; 8) 4 ; 9) 2 ; 10) 16/15.

    Слайд 18

    Задачи из ЕГЭ

    Найти площадь фигуры, ограниченной линиями 2) Фигура, ограниченная линиями y=x+6, x=1, y=0 делится параболой y=x 2+2x+4 на две части. Найти площадь каждой части. 3) Найти ту первообразную F(x) функции f(x)=2x+4, график которой касается прямой у=6х+3. Вычислить площадь фигуры, ограниченной графиком найденной первообразной и прямыми у=6х+3 и у=0.

    Слайд 19

    Контрольные вопросы

    Какое действие называется интегрированием? Какая функция называется первообразной для функции f(x)? Чем отличаются друг от друга различные первообразные функции для данной функции f(x)? Дайте определение неопределенного интеграла. Как проверить результат интегрирования? Чему равна производная от неопределенного интеграла? Чему равен ∫ d(lnx8 – sin 3x)? Перечислите методы интегрирования. Дайте определение определенного интеграла. Сформулируйте теорему Ньютона – Лейбница. Перечислите свойства определенного интеграла. Как вычислить площадь плоской фигуры с помощью интеграла (составьте словесный алгоритм)? Перечислите области применения интеграла, назовите величины, которые можно вычислить с помощью интеграла.

    Слайд 20

    Для любителей математики

    1) Вычислить площадь фигуры, ограниченной данными линиями:y=x2 при x0, y=1, y=4, x=0 Решение: Данная фигура симметрична криволинейной трапеции, ограниченной прямыми х=1, х=4, у=0, графиком функции, обратной у=х2, x0. Поэтому эти фигуры имеют равные площади и 2) Найти площадь фигуры, ограниченной прямыми у=3х+1, у=9-х, у=х+1. Решение: Вершины полученного ABC имеют координаты: А(0;1), В(2;7), С(4;5). Можно заметить, что ABC - прямоугольный (произведение угловых коэффициентов прямых у=х+1 у=9-х равно -1). Поэтому применение интеграла для вычисления S(ABC) не рационально. Её всегда можно найти как разность площадей треугольников, у которых известны высота и основание или же можно использовать координатный метод.

    Слайд 21

    Домашнее задание

    Найти площади фигур, ограниченных линиями (1-7) у=х2 (х0), у=1, у=4, х=0 у= х2-4х+8, у=3х2-х3, если х [-2;3] у=х2-4х+sin2(x/2), y=-3-cos2(x/2), если х у=3х+1, у=9-х, у=х+1 у=|x-2|, x|y|=2;x=1;x=3 y= arcsin x; у=0; x=0,5; x=1 При каком значении а прямая х=а делит площадь фигуры, ограниченной линиями у=2/х; х=1; х=3 в отношении 1:3? Вычислить исходя из его геометрического смысла.

    Слайд 22

    Список литературы

    Н. А. Колмогоров, «Алгебра и начала анализа», Москва, Просвещение,2000г. М. И. Башмаков, «Алгебра и начала анализа», Москва, ДРОФА,2002г. Ш.А.Алимов, «Алгебра и начала анализа», 11 кл., Москва, ДРОФА, 2004г. Л. В. Киселева, Пособие по математике для студентов медицинских училищ и колледжей, Москва, ФГОУ«ВУНМЦ Росздрава», 2005г. http://www.nerungri.edu.ru http://tambov.fio.ru http://www.zachetka.ru http://edu.of.ru http://festival.1september.ru

    Посмотреть все слайды

    Иванов Сергей, студент гр.14-ЭОП-33Д

    Работа может быть использована на обобщающем уроке по темам "Производная", "Интеграл".

    Скачать:

    Предварительный просмотр:

    Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


    Подписи к слайдам:

    ГБПОУ КНТ им. Б. И. Корнилова Исследовательская работа по теме: « применение Производных и интегралов в физике, математике и электротехнике.» Студента гр. 2014-эоп-33д иванова сергея.

    1 .История появления производной. В конце 17 века великий английский учёный Исаак Ньютон доказал что Путь и скорость связаны между собой формулой: V (t)= S ’(t) и такая связь существует между количественными характеристиками самых различных процессов исследуемых: физикой, (a = V ’= x ’’ , F = ma = m * x ’’ , импульс P = mV = mx ’ , кинетическая E = mV 2 /2= mx ’ 2 /2), химией, биологией, и техническими науками. Это открытие Ньютона стало поворотным пунктом в истории естествознания.

    1 .История появления производной. Честь открытия основных законов математического анализа наравне с Ньютоном принадлежит немецкому математику Готфриду Вильгельму Лейбницу. К этим законам Лейбниц пришел, решая задачу проведения касательной к произвольной кривой, т.е. сформулировал геометрический смысл производной, что значение производной в точке касания есть угловой коэффициент касательной или tg угла наклона касательной с положительным направлением оси О X . Термин производная и современные обозначения y ’ , f ’ ввёл Ж.Лагранж в 1797г.

    2 .История появления интеграла. Понятие интеграла и интегральное исчисление возникли из потребности вычислять площади (квадратуру) любых фигур и объёмы (кубатуру) произвольных тел. Предыстория интегрального исчисления восходит к древности. Первым известным методом для расчёта интегралов является метод для исследования площади или объёма криволинейных фигур - метод исчерпывания Евдокса (Евдокс Книдский (ок. 408 г. до н.э. - ок. 355 г. до н.э.) - древнегреческий математик, механик и астроном), который был предложен примерно в 370 до н. э. Суть этого метода заключается в следующем: фигура, площадь или объем которой пытались найти, разбивалась на бесконечное множество частей, для которых площадь или объём уже известны.

    «Метод исчерпывания» Предположим, что нам надо вычислить объём лимона, имеющего неправильную форму, и поэтому применить какую-либо известную формулу объёма нельзя. С помощью взвешивания найти объём также трудно, так как плотность лимона в разных частях его разная. Поступим следующим образом. Разрежем лимон на тонкие дольки. Каждую дольку приближённо можно считать цилиндриком, радиус основания, которого можно измерить. Объём такого цилиндра вычислить легко по готовой формуле. Сложив объёмы маленьких цилиндров, мы получим приближенное значение объёма всего лимона. Приближение будет тем точнее, чем на более тонкие части мы сможем разрезать лимон.

    2 .История появления интеграла. Вслед за Евдоксом метод «исчерпывания» и его варианты для вычисления объёмов и площадей применял древний учёный Архимед. Успешно развивая идеи своих предшественников, он определил длину окружности, площадь круга, объём и поверхность шара. Он показал, что определение объёмов шара, эллипсоида, гиперболоида и параболоида вращения сводится к определению объёма цилиндра.

    Основой теории дифференциальных уравнений стало дифференциальное исчисление, созданное Лейбницем и Ньютоном. Сам термин «дифференциальное уравнение» был предложен в 1676 году Лейбницем. 3 .История появления дифференциальных уравнений. Первоначально дифференциальные уравнения возникли из задач механики, в которых требовалось определить координаты тел, их скорости и ускорения, рассматриваемые как функции времени при различных воздействиях. К дифференциальным уравнениям приводили также некоторые рассмотренные в то время геометрические задачи.

    3 .История появления дифференциальных уравнений. Из огромного числа работ XVII века по дифференциальным уравнениям выделяются работы Эйлера (1707-1783) и Лагранжа (1736-1813). В этих работах была прежде развита теория малых колебаний, а следовательно - теория линейных систем дифференциальных уравнений; попутно возникли основные понятия линейной алгебры (собственные числа и векторы в n -мерном случае). Вслед за Ньютоном Лаплас и Лагранж, а позже Гаусс (1777-1855) развивают также методы теории возмущений.

    4 .Применение производной и интеграла в математике: В математике производную широко используют в решениях многих задач, уравнений, неравенств, а так же в процессе исследования функции. Пример: Алгоритм исследования функции на экстремум: 1)О.О.Ф. 2) y ′=f ′(x), f ′(x)=0 и решаем уравнение. 3)О.О.Ф. разбиваем на интервалы. 4)Определяем знак производной на каждом интервале. Если f ′(x)>0 , то функция возрастает. Если f ′(x)

    4 .Применение производной и интеграла в математике: Интеграл (определенный интеграл) используют в математике (геометрии) для нахождения площади криволинейной трапеции. Пример: Алгоритм нахождения площади плоской фигуры с помощью определенного интеграла: 1)Строим график указанных функций. 2)Указать фигуру ограниченную этими линиями. 3)Найти пределы интегрирования, записать определенный интеграл и вычислить его.

    5 .Применение производной и Интеграла в физике. В физике производную используют в основном для решения задач, например: нахождение скорости или ускорения каких-либо тел. Пример: 1)Закон движения точки по прямой задается формулой s(t)= 10t^2 , где t -время (в секундах), s(t) -отклонение точки в момент времени t (в метрах) от начального положения. Найди скорость и ускорение в момент времени t, если: t=1,5 с. 2)Материальная точка движется прямолинейно по закону x(t)= 2+20t+5t2. Найдите скорость и ускорение в момент времени t=2с (х – координата точки в метрах, t – время в секундах).

    Физическая величина Среднее значение Мгновенное значение Скорость Ускорение Угловая скорость Сила тока Мощность

    5 .Применение производной и Интеграла в физике. Интеграл также используется в задачах, например: нахождение скорости или пути. Тело движется со скоростью v(t) = t + 2 (м/с). Найти путь, который пройдет тело за 2 секунды после начала движения. Пример:

    6 .Применение производной и Интеграла в электротехнике. Производная также нашла применение в электротехнике. В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени. I=q ′(t) Пример: 1)Заряд, протекающий через проводник, меняется по закону q=sin(2t-10) Найти силу тока в момент времени t=5 cек. Интеграл в электротехнике можно использовать для решения обратных задач, т.е. нахождение электрического заряда зная силу тока и т.д. 2)Электрический заряд протекающий через проводник, начиная с момента t = 0, задаётся формулой q(t) = 3t2 + t + 2.Найдите силу тока в момент времени t = 3с. Интеграл в электротехнике можно использовать для решения обратных задач, т.е. нахождение электрического заряда зная силу тока и т.д.

    Представьте, что у нас есть какая-то функция зависимости чего-то от чего-то.

    Например, вот так примерно можно на графике представить скорость моей работы в зависимости от времени суток:

    Скорость я измеряю в строках кода в минуту, в реальной жизни я программист.

    Объем работы - это скорость работы умножить на время. То есть если я пишу 3 строки в минуту, то в час получается 180. Если у нас есть такой график, можно узнать, сколько работы я сделал за день: это площадь под графиком. Но как это посчитать?

    Разделим график на столбики равной ширины величиной в час. А высоту этих столбиков сделаем равной скорости работы в середине этого часа.

    Площадь каждого столбика по отдельности легко посчитать, надо умножить его ширину на высоту. Получается, что площадь каждого столбика - это сколько примерно я работы сделал за каждый час. А если просуммировать все столбики, то получится примерная моя работа за день.

    Проблема в том, что результат получится примерный, а нам нужно точное число. Разобьем график на столбики по полчаса:

    На картинке видно, что это уже гораздо ближе к тому, что мы ищем.

    Так уменьшать отрезки на графике можно до бесконечности, и каждый раз мы все ближе и ближе будем подходить к площади под графиком. А когда ширина столбиков будет стремиться к нулю, тогда сумма их площадей будет стремиться к площади под графиком. Это и называется интегралом и обозначается вот так:

    В этой формуле f(x) означает функцию, которая зависит от величины x, а буквы a и b - это отрезок на котором мы хотим найти интеграл.

    Зачем это нужно?

    Ученые стараются все физические явления выразить в виде математической формулы. Как только у нас есть формула, дальше уже можно при помощи нее посчитать что угодно. А интеграл - это один из основных инструментов работы с функциями.

    Например, если у нас есть формула круга, мы можем при помощи интеграла посчитать его площадь. Если у нас есть формула шара, то мы можем посчитать его объем. При помощи интегрирования находят энергию, работу, давление, массу, электрический заряд и многие другие величины.

    Нет, зачем мне это нужно?

    Да низачем - просто так, из любопытства. На самом деле интегралы входят даже в школьную программу, но не так много людей вокруг помнят, что это такое.