Сложение нескольких дробей. Сложение и вычитание алгебраических дробей с разными знаменателями (основные правила, простейшие случаи)


На данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с разными знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с разными знаменателями. Для этого дроби необходимо привести к общему знаменателю. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. При этом мы уже умеем приводить алгебраические дроби к общему знаменателю. Сложение и вычитание дробей с разными знаменателями - одна из наиболее важных и сложных тем в курсе 8 класса. При этом данная тема будет встречаться во многих темах курса алгебры, которые вы будете изучать в дальнейшем. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с разными знаменателями, а также разберём целый ряд типовых примеров.

Рассмотрим простейший пример для обыкновенных дробей.

Пример 1. Сложить дроби: .

Решение:

Вспомним правило сложения дробей. Для начала дроби необходимо привести к общему знаменателю. В роли общего знаменателя для обыкновенных дробей выступает наименьшее общее кратное (НОК) исходных знаменателей.

Определение

Наименьшее натуральное число, которое делится одновременно на числа и .

Для нахождения НОК необходимо разложить знаменатели на простые множители, а затем выбрать все простые множители, которые входят в разложение обоих знаменателей.

; . Тогда в НОК чисел должны входить две двойки и две тройки: .

После нахождения общего знаменателя, необходимо для каждой из дробей найти дополнительный множитель (фактически, поделить общий знаменатель на знаменатель соответствующей дроби).

Затем каждая дробь умножается на полученный дополнительный множитель. Получаются дроби с одинаковыми знаменателями, складывать и вычитать которые мы научились на прошлых уроках.

Получаем: .

Ответ: .

Рассмотрим теперь сложение алгебраических дробей с разными знаменателями. Сначала рассмотрим дроби, знаменатели которых являются числами.

Пример 2. Сложить дроби: .

Решение:

Алгоритм решения абсолютно аналогичен предыдущему примеру. Легко подобрать общий знаменатель данных дробей: и дополнительные множители для каждой из них.

.

Ответ: .

Итак, сформулируем алгоритм сложения и вычитания алгебраических дробей с разными знаменателями :

1. Найти наименьший общий знаменатель дробей.

2. Найти дополнительные множители для каждой из дробей (поделив общий знаменатель на знаменатель данной дроби).

3. Домножить числители на соответствующие дополнительные множители.

4. Сложить или вычесть дроби, пользуясь правилами сложения и вычитания дробей с одинаковыми знаменателями.

Рассмотрим теперь пример с дробями, в знаменателе которых присутствуют буквенные выражения.

Пример 3. Сложить дроби: .

Решение:

Поскольку буквенные выражения в обоих знаменателях одинаковы, то следует найти общий знаменатель для чисел . Итоговый общий знаменатель будет иметь вид: . Таким образом, решение данного примера имеет вид:.

Ответ: .

Пример 4. Вычесть дроби: .

Решение:

Если «схитрить» при подборе общего знаменателя не удаётся (нельзя разложить на множители или воспользоваться формулами сокращённого умножения), то в качестве общего знаменателя приходится брать произведение знаменателей обеих дробей.

Ответ: .

Вообще, при решении подобных примеров, наиболее сложным заданием является нахождение общего знаменателя.

Рассмотрим более сложный пример.

Пример 5. Упростить: .

Решение:

При нахождении общего знаменателя необходимо прежде всего попытаться разложить знаменатели исходных дробей на множители (чтобы упростить общий знаменатель).

В данном конкретном случае:

Тогда легко определить общий знаменатель: .

Определяем дополнительные множители и решаем данный пример:

Ответ: .

Теперь закрепим правила сложения и вычитания дробей с разными знаменателями.

Пример 6. Упростить: .

Решение:

Ответ: .

Пример 7. Упростить: .

Решение:

.

Ответ: .

Рассмотрим теперь пример, в котором складываются не две, а три дроби (ведь правила сложения и вычитания для большего количества дробей остаются такими же).

Пример 8. Упростить: .

Найдите числитель и знаменатель. Дробь включает два числа: число, которое расположено над чертой, называется числителем, а число, которое находится под чертой – знаменателем. Знаменатель обозначает общее количество частей, на которые разбито некоторое целое, а числитель – это рассматриваемое количество таких частей.

  • Например, в дроби ½ числителем является 1, а знаменателем 2.

Определите знаменатель. Если две и более дроби имеют общий знаменатель, у таких дробей под чертой находится одно и то же число, то есть в этом случае некоторое целое разбито на одинаковое количество частей. Складывать дроби с общим знаменателем очень просто, так как знаменатель суммарной дроби будет таким же, как у складываемых дробей. Например:

  • У дробей 3/5 и 2/5 общий знаменатель 5.
  • У дробей 3/8, 5/8, 17/8 общий знаменатель 8.
  • Определите числители. Чтобы сложить дроби с общим знаменателем, сложите их числители, а результат запишите над знаменателем складываемых дробей.

    • У дробей 3/5 и 2/5 числители 3 и 2.
    • У дробей 3/8, 5/8, 17/8 числители 3, 5, 17.
  • Сложите числители. В задаче 3/5 + 2/5 сложите числители 3 + 2 = 5. В задаче 3/8 + 5/8 + 17/8 сложите числители 3 + 5 + 17 = 25.

  • Запишите суммарную дробь. Помните, что при сложении дробей с общим знаменателем он остается без изменений – складываются только числители.

    • 3/5 + 2/5 = 5/5
    • 3/8 + 5/8 + 17/8 = 25/8
  • Если нужно, преобразуйте дробь. Иногда дробь можно записать в виде целого числа, а не обыкновенной или десятичной дроби. Например, дробь 5/5 легко преобразуется в 1, так как любая дробь, у которой числитель равен знаменателю, есть 1. Представьте пирог, разрезанный на три части. Если вы съедите все три части, то вы съедите целый (один) пирог.

    • Любую обыкновенную дробь можно преобразовать в десятичную; для этого разделите числитель на знаменатель. Например, дробь 5/8 можно записать так: 5 ÷ 8 = 0,625.
  • Если возможно, упростите дробь. Упрощенная дробь – эта дробь, числитель и знаменатель которой не имеют общих делителей.

    • Например, рассмотрим дробь 3/6. Здесь и у числителя, и у знаменателя есть общий делитель, равный 3, то есть числитель и знаменатель нацело делятся на 3. Поэтому дробь 3/6 можно записать так: 3 ÷ 3/6 ÷ 3 = ½.
  • Если нужно, преобразуйте неправильную дробь в смешанную дробь (смешанное число). У неправильной дроби числитель больше знаменателя, например, 25/8 (у правильной дроби числитель меньше знаменателя). Неправильную дробь можно преобразовать в смешанную дробь, которая состоит из целой части (то есть целого числа) и дробной части (то есть правильной дроби). Чтобы преобразовать неправильную дробь, например, 25/8, в смешанное число, выполните следующие действия:

    • Разделите числитель неправильной дроби на ее знаменатель; запишите неполное частное (целый ответ). В нашем примере: 25 ÷ 8 = 3 плюс некоторый остаток. В данном случае целый ответ – это целая часть смешанного числа.
    • Найдите остаток. В нашем примере: 8 х 3 = 24; полученный результат вычтите из исходного числителя: 25 - 24 = 1, то есть остаток равен 1. В данном случае остаток – это числитель дробной части смешанного числа.
    • Запишите смешанную дробь. Знаменатель не меняется (то есть равен знаменателю неправильной дроби), поэтому 25/8 = 3 1/8.
  • Одними из самых сложных для понимания школьника являются разные действия с простыми дробями. Это связано с тем, что детям еще сложно мыслить абстрактно, а дроби, по сути, для них именно так и выглядят. А потому, излагая материал, учителя часто прибегают к аналогиям и объясняют вычитание и сложение дробей буквально на пальцах. Хотя без правил и определений не обходится ни один урок школьной математики.

    Базовые понятия

    Прежде чем приступить к любым , желательно усвоить несколько базовых определений и правил. Изначально важно понимать, что такое дробь. Под ней подразумевается число, представляющее собой одну или несколько долей единицы. Например, если буханку разрезать на 8 частей и 3 ломтика из них выложить в тарелку, то 3/8 и будет дробью. Причем в таком написании это будет простой дробью, где число над чертой - это числитель, а под ней - знаменатель. А вот если ее записать как 0,375, это уже будет десятичная дробь.

    К тому же простые дроби подразделяют на правильные, неправильные и смешанные. К первым относят все те, числитель которых меньше знаменателя. Если наоборот, знаменатель меньше числителя, это уже будет неправильная дробь. В случае если перед правильной стоит целое число, говорят о смешанных числах. Таким образом, дробь 1/2 - правильная, а 7/2 - нет. А если ее записать в таком виде: 3 1 / 2 , то она станет смешанной.

    Чтобы легче было разобраться в том, что такое сложение дробей, и с легкостью его выполнять, важно еще запомнить Его суть в следующем. Если числитель и знаменатель умножить на одно и то же число, то дробь не изменится. Именно это свойство позволяет совершать простейшие действия с обыкновенными и другими дробями. По факту это означает, что 1/15 и 3/45, по сути, одно и то же число.

    Сложение дробей с одинаковыми знаменателями

    Выполнение этого действия обычно не вызывает больших затруднений. Сложение дробей в этом случае очень сильно напоминает подобное действие с целыми числами. Знаменатель остается без изменений, а числители просто складываются между собой. Например, если нужно сложить дроби 2/7 и 3/7, то решение школьной задачи в тетради будет вот таким:

    2/7 + 3/7 = (2+3)/7 = 5/7.

    К тому же такое сложение дробей можно объяснить на простом примере. Взять обычное яблоко и разрезать, например, на 8 частей. Выложить отдельно сначала 3 части, а затем добавить к ним еще 2. И в результате в чашке будет лежать 5/8 целого яблока. Саму арифметическую задачу записывают, как показано ниже:

    3/8 + 2/8 = (3+2)/8 = 5/8.

    Но зачастую встречаются задачи посложнее, где нужно сложить между собой, например, 5/9 и 3/5. Вот здесь и возникают первые сложности в действиях с дробями. Ведь сложение таких чисел потребует дополнительных знаний. Теперь в полной мере потребуется вспомнить об их основном свойстве. Чтобы сложить дроби из примера, для начала их нужно привести к одному общему знаменателю. Для этого необходимо просто перемножить 9 и 5 между собой, числитель "5" умножить на 5, а "3", соответственно, на 9. Таким образом, уже складываются такие дроби: 25/45 и 27/45. Теперь только осталось сложить числители и получить ответ 52/45. На листке бумаги пример будет выглядеть так:

    5/9 + 3/5 = (5 х 5)/(9 х 5) + (3 х 9)/(5 х 9) = 25/45 + 27/45 = (25+27)/45 = 52/45 = 1 7 / 45 .

    Но сложение дробей с такими знаменателями не всегда требует простого перемножения чисел под чертой. Сначала ищут наименьший общий знаменатель. К примеру, как для дробей 2/3 и 5/6. Для них это будет число 6. Но не всегда ответ очевиден. В этом случае стоит вспомнить правило поиска наименьшего общего кратного (сокращенно НОК) двух чисел.

    Под ним понимают наименьший общий множитель двух целых чисел. Чтобы его найти, раскладывают каждое на простые множители. Теперь выписывают те из них, которые входят хотя бы один раз в каждое число. Перемножают их между собой и получают тот самый знаменатель. На деле все выглядит немного проще.

    Например, требуется сложить дроби 4/15 и 1/6. Так, 15 получается перемножением простых цифр 3 и 5, а шесть - два и три. Значит, НОК для них будет 5 х 3 х 2 = 30. Теперь, разделив 30 на знаменатель первой дроби, получим множитель для ее числителя - 2. А для второй дроби это будет число 5. Таким образом, остается сложить обыкновенные дроби 8/30 и 5/30 и получить ответ 13/30. Все предельно просто. В тетради же следует эту задачу записать так:

    4/15 + 1/6 = (4 х 2)/(15 х 2) + (1 х 5)/(6 х 5) = 8/30 + 5/30 = 13/30.

    НОК (15, 6) = 30.

    Сложение смешанных чисел

    Теперь, зная все основные приемы в сложении простых дробей, можно попробовать свои силы на более сложных примерах. И это будут смешанные числа, под которыми понимают дробь такого вида: 2 2 / 3 . Здесь перед правильной дробью выписана целая часть. И многие путаются при совершении действий с такими числами. В действительности, здесь работают все те же правила.

    Чтобы сложить между собой смешанные числа, отдельно складывают целые части и правильные дроби. А затем уже суммируют эти 2 результата. На практике все намного проще, стоит только немного поупражняться. Например, в задаче требуется сложить такие смешанные числа: 1 1 / 3 и 4 2 / 5 . Чтобы это сделать, сначала складываются 1 и 4 - получится 5. Затем суммируют 1/3 и 2/5, используя приемы приведения к наименьшему общему знаменателю. Решением будет 11/15. А окончательный ответ - это 5 11 / 15 . В школьной тетради это будет выглядеть гораздо короче:

    1 1 / 3 + 4 2 / 5 = (1 + 4) + (1/3 + 2/5) = 5 + 5/15 + 6/15 = 5 + 11/15 = 5 11 / 15 .

    Сложение десятичных дробей

    Помимо обыкновенных дробей, есть и десятичные. Они, кстати, намного чаще встречаются в жизни. Например, цена в магазине выглядит часто таким образом: 20,3 рубля. Это и есть та самая дробь. Конечно, такие складывать намного проще, чем обыкновенные. В принципе, нужно просто сложить 2 обыкновенных числа, главное, в нужном месте поставить запятую. Вот тут и возникают сложности.

    К примеру требуется сложить такие 2,5 и 0,56. Чтобы сделать это правильно, нужно к первой в конце дописать ноль, и все будет в порядке.

    2,50 + 0,56 = 3,06.

    Важно знать, что любая десятичная дробь может быть преобразована в простую, но не любую простую дробь можно записать как десятичную. Так, из нашего примера 2,5 = 2 1 / 2 и 0,56 = 14/25. А вот такая дробь, как 1/6, будет только приблизительно равна 0,16667. Такая же ситуация будет с другими подобными числами - 2/7, 1/9 и так далее.

    Заключение

    Многие школьники, не понимая практической стороны действий с дробями, относятся к этой теме спустя рукава. Однако в более эти базовые знания позволят щелкать как орешки сложные примеры с логарифмами и нахождением производных. А потому стоит один раз хорошо разобраться в действиях с дробями, чтобы потом не кусать от досады локти. Ведь вряд ли педагог в старших классах будет возвращаться к этой, уже пройденной, теме. Любой старшеклассник должен уметь выполнять подобные упражнения.

    Дробные выражения сложны для понимания ребёнком. У большинства возникают сложности, связанные с . При изучении темы «сложение дробей с целыми числами», ребёнок впадает в ступор, затрудняясь решить задание. Во многих примерах перед тем как выполнить действие нужно произвести ряд вычислений. Например, преобразовать дроби или перевести неправильную дробь в правильную.

    Объясним ребёнку наглядно. Возьмём три яблока, два из которых будут целыми, а третье разрежем на 4 части. От разрезанного яблока отделим одну дольку, а остальные три положим рядом с двумя целыми фруктами. Получим ¼ яблока в одной стороне и 2 ¾ — в другой. Если мы их соединим, то получим целых три яблока. Попробуем уменьшить 2 ¾ яблока на ¼, то есть уберём ещё одну дольку, получим 2 2/4 яблока.

    Рассмотрим подробнее действия с дробями, в составе которых присутствуют целые числа:

    Для начала вспомним правило вычисления для дробных выражений с общим знаменателем:

    На первый взгляд всё легко и просто. Но это касается только выражений, не требующих преобразования.

    Как найти значение выражения где знаменатели разные

    В некоторых заданиях необходимо найти значение выражения, где знаменатели разные. Рассмотрим конкретный случай:
    3 2/7+6 1/3

    Найдём значение данного выражения, для этого найдём для двух дробей общий знаменатель.

    Для чисел 7 и 3 – это 21. Целые части оставляем прежними, а дробные – приводим к 21, для этого первую дробь умножаем на 3, вторую – на 7, получаем:
    6/21+7/21, не забываем, что целые части не подлежат преобразованию. В итоге получаем две дроби с одним знаменателям и вычисляем их сумму:
    3 6/21+6 7/21=9 15/21
    Что если в результате сложения получается неправильная дробь, которая уже имеет целую часть:
    2 1/3+3 2/3
    В данном случае складываем целые части и дробные, получаем:
    5 3/3, как известно, 3/3 – это единица, значит 2 1/3+3 2/3=5 3/3=5+1=6

    С нахождением суммы всё понятно, разберём вычитание:

    Из всего сказанного вытекает правило действий над смешанными числами, которое звучит так:

    • Если же от дробного выражения необходимо вычесть целое число, не нужно представлять второе число в виде дроби, достаточно произвести действие только над целыми частями.

    Попробуем самостоятельно вычислить значение выражений:

    Разберём подробнее пример под буквой «м»:

    4 5/11-2 8/11, числитель первой дроби меньше, чем второй. Для этого занимаем одно целое число у первой дроби, получаем,
    3 5/11+11/11=3 целых 16/11, отнимаем от первой дроби вторую:
    3 16/11-2 8/11=1 целая 8/11

    • Будьте внимательны при выполнении задания, не забывайте преобразовывать неправильные дроби в смешанные, выделяя целую часть. Для этого необходимо значение числителя разделить на значение знаменателя, то что получилось, встаёт на место целой части, остаток – будет числителем, например:

    19/4=4 ¾, проверим: 4*4+3=19, в знаменателе 4 остаётся без изменений.

    Подведём итог:

    Перед тем как приступить к выполнению задания, связанного с дробями, необходимо проанализировать, что это за выражение, какие преобразования нужно совершить над дробью, чтобы решение было правильным. Ищите более рациональные способ решения. Не идите сложными путями. Распланируйте все действия, решайте сначала в черновом варианте, затем переносите в школьную тетрадь.

    Чтобы не произошло путаницы при решении дробных выражений, необходимо руководствоваться правилом последовательности. Решайте всё внимательно, не торопясь.