В чем состоит закон фарадея для электролиза. Первый и второй закон фарадея


Как уже известно, при электролизе на электродах происходит выделение вещества. Попробуем выяснить, от чего будет зависеть масса это вещества. Масса выделившегося вещества m будет равна произведению массы одного иона m0i на число ионов Ni, которые достигли электрода за промежуток времени равный ∆t: m = m0i*Ni. Масса иона m0i будет вычисляться по следующей формуле:

  • m0i = M/Na,

где М - молярная масса вещества, а Na - постоянная Авогадро.

Число ионов, которые достигнут электрода, вычисляется по следующей формуле:

  • Ni = ∆q/q0i,

где ∆q = I*∆t - заряд, прошедший через электролит за время, равное ∆t, q0i - заряд иона.

Для того, чтобы определить заряд иона, используется следующая формула:

  • q0i = n*e,

где n - валентность, e - элементарный заряд.

Собирая воедино все представленные формулы, получаем формулу для вычисления массы выделившегося на электроде вещества:

  • m = (M*I*∆t)/(n*e*Na).

Теперь обозначим через k коэффициент пропорциональности между массой вещества и зарядом ∆q.

  • k = M/(e*n*Na).

Этот коэффициент k будет зависеть от природы вещества. Тогда формулу массы вещества можно переписать в следующем виде:

  • m = k*I*∆t.

Второй закон Фарадея

Масса вещества, выделившегося на электроде за время, равное ∆t, при прохождении электрического тока пропорциональна силе тока и времени. Коэффициент k называют электрохимическим эквивалентом данного вещества. Единицей измерения служит кг/Кл. Разберемся с физическим смыслом электрохимического эквивалента. Так как:

  • M/Na = m0i,
  • e*n = qi,

то формулу электрохимического эквивалента можно переписать в следующем виде:

  • k = m0i/q0i.

Таким образом, k - отношение массы иона к заряду этого иона.

Для того, чтобы удостовериться в справедливости закона Фарадея, можно провести опыт. Лабораторная установка, необходимая для него, показана на следующем рисунке.

Все три емкости заполнены одинаковым электролитическим раствором. Через них будут протекать различные электрические токи, причем I1 = I2+I3. После включения установки в цепь подождем некоторое время. Потом отключим её и измерим массы веществ, выделившихся на электродах в каждом из сосудов m1, m2, m3. Можно будет убедиться, что массы веществ будут пропорциональны силам тока, которые проходили через соответствующий сосуд.

Из формулы

  • m = (M*I*∆t)/(n*e*Na)

можно выразить значение заряда электрона

  • e = (M*I*∆t)/(n*m*Na).

Законыэлектролиза (законыФарадея)

Поскольку прохождение электрического тока через электрохимические системы связано с химическими превращениями, между количеством протекающего электричества и количеством прореагировавших веществ должна существовать определенная зависимость. Она была открыта Фарадеем и получила свое выражение в первых количественных законах электрохимии, названных впоследствии законами Фарадея.

Первый закон Фарадея . Количества веществ, превращённых при электролизе, пропорциональны количеству электричества, прошедшего через электролит :

D m =k э q =k э It ,

D m – количество прореагировавшего вещества; k э – некоторый коэффициент пропорциональности; q – количество электричества, равное произведению силы тока I на время t . Еслиq = It = 1, то D m = k э, то есть коэффициент k э представляет собой количество вещества, прореагировавшего в результате протекания единицы количества электричества. Коэффициент k э называется электрохимическим эквивалентом .

Второй закон Фарадея отражает связь, существующую между количеством прореагировавшего вещества и его природой: при постоянном количестве прошедшего электричества массы различных веществ, испытывающие превращение у электродов (выделение из раствора, изменение валентности), пропорциональны химическим эквивалентам этих веществ :

D m i /A i = const .

Можно объединить оба закона Фарадея в виде одного общего закона : для выделения или превращения с помощью тока 1 г-экв любого вещества (1/z моля вещества) необходимо всегда одно и то же количество электричества, называемое числом Фарадея (или фарадеем ):

D m =It = It .

Точно измеренное значение числа Фарадея

F = 96484,52 ± 0,038Кл/г-экв.

Таков заряд, несомый одним грамм-эквивалентом ионов любого вида. Умножив это число на z (число элементарных зарядов иона), получим количество электричества, которое несёт 1 г-ион . Разделив число Фарадея на число Авогадро, получим заряд одного одновалентного иона, равный заряду электрона:

e = 96484,52 / (6,022035 × 10 23) = 1,6021913 × 10 –19 Кл.

Законы, открытые Фарадеем в 1833 г., строго выполняются для проводников второго рода. Наблюдаемые отклонения от законов Фарадея являются кажущимися . Они часто связаны с наличием неучтённых параллельных электрохимических реакций. Отклонения от закона Фарадея в промышленных установках связаны с утечками тока, потерями вещества при разбрызгивании раствора и т.д. В технических установках отношение количества продукта, полученного при электролизе, к количеству, вычисленному на основе закона Фарадея, меньше единицы и называется выходом по току :

В Т = = .

При тщательных лабораторных измерениях для однозначно протекающих электрохимических реакций выход по току равен единице (в пределах ошибок опыта). Закон Фарадея точно соблюдается, поэтому он лежит в основе самого точного метода измерения количества электричества, прошедшего через цепь, по количеству выделенного на электроде вещества. Для таких измерений используюткулонометры . В качестве кулонометров используют электрохимические системы, в которых нет параллельных электрохимических и побочных химических реакций. По методам определения количества образующихся веществ кулонометры подразделяют на электрогравиметрические, газовые и титрационные . Примером электрогравиметрических кулонометров являются серебряный и медный кулонометры. Действие серебряного кулонометра Ричардсона, представляющего собой электролизер

(–) Ag ï AgNO 3 × aq ï Ag (+) ,

основано на взвешивании массы серебра, осевшей на катоде во время электролиза. При пропускании 96500 Кл (1 фарадея) электричества на катоде выделится 1 г-экв серебра (107 г). При пропускании n F электричества на катоде выделяется экспериментально определенная масса (D m к ). Число пропущенных фарадеев электричества определяется из соотношения

n = D m /107 .

Аналогичен принцип действия медного кулонометра.

В газовых кулонометрах продуктами электролиза являются газы, и количества выделяющихся на электродах веществ определяют измерением их объемов. Примером прибора такого типа является газовый кулонометр, основанный на реакции электролиза воды. При электролизе на катоде выделяется водород:

2Н 2 О+2е – =2ОН – +Н 2 ,

а на аноде – кислород:

Н 2 О=2Н + +½ О 2 +2е V – суммарный объем выделенного газа, м 3 .

В титрационных кулонометрах количество вещества, образовавшегося в процессе электролиза, определяют титриметрически. К этому типу кулонометров относится титрационный кулонометр Кистяковского, представляющий собой электрохимическую систему

(–) Pt ï KNO 3 , HNO 3 ï Ag (+) .

В процессе электролиза серебряный анод растворяется, образуя ионы серебра, которые оттитровывают. Число фарадеев электричества определяют по формуле

n = mVc ,

где m – масса раствора, г;V – объем титранта, пошедший на титрование 1 г анодной жидкости;c –концентрация титранта, г-экв/см 3 .

Для описания процессов в физике и химии есть целый ряд законов и соотношений, полученных экспериментальным и расчетным путем. Ни единого исследования нельзя провести без предварительной оценки процессов по теоретическим соотношениям. Законы Фарадея применяются и в физике, и в химии, а в этой статье мы постараемся кратко и понятно рассказать о всех знаменитых открытиях этого великого ученого.

История открытия

Закон Фарадея в электродинамике был открыт двумя ученными: Майклом Фарадеем и Джозефом Генри, но Фарадей опубликовал результаты своих работ раньше – в 1831 году.

В своих демонстрационных экспериментах в августе 1831 г. он использовал железный тор, на противоположные концы которого был намотан провод (по одному проводу на стороны). На концы одного первого провода он подал питание от гальванической батареи, а на выводы второго подключил гальванометр. Конструкция была похожа на современный трансформатор. Периодически включая и выключая напряжение на первом проводе, он наблюдал всплески на гальванометре.

Гальванометр — это высокочувствительный прибор для измерения силы токов малой величины.

Таким образом было изображено влияние магнитного поля, образовавшегося в результате протекания тока в первом проводе, на состояние второго проводника. Это воздействие передавалось от первого ко второму через сердечник – металлический тор. В результате исследований было обнаружено и влияние постоянного магнита, который двигается в катушке, на её обмотку.

Тогда Фарадей объяснял явление электромагнитной индукции с точки зрения силовых линий. Еще одной была установка для генерирования постоянного тока: медный диск вращался вблизи магнита, а скользящий по нему провод был токосъёмником. Это изобретение так и называется — диск Фарадея.

Ученные того периода не признали идеи Фарадея, но Максвелл взял исследования для основы своей магнитной теории. В 1836 г. Майкл Фарадей установил соотношения для электрохимических процессов, которые назвали Законами электролиза Фарадея. Первый описывает соотношения выделенной на электроде массы вещества и протекающего тока, а второй соотношения массы вещества в растворе и выделенного на электроде, для определенного количества электричества.

Электродинамика

Первые работы применяются в физике, конкретно в описании работы электрических машин и аппаратов (трансформаторов, двигателей и пр.). Закон Фарадея гласит:

Для контура индуцированная ЭДС прямо пропорциональна величине скорости магнитного потока, который перемещается через этот контур со знаком минус.

Это можно сказать простыми словами: чем быстрее магнитный поток движется через контур, тем больше на его выводах генерируется ЭДС.

Формула выглядит следующим образом:

Здесь dФ – магнитный поток, а dt – единица времени. Известно, что первая производная по времени – это скорость. Т.е скорость перемещения магнитного потока в данном конкретном случае. Кстати перемещаться может, как и источник магнитного поля (катушка с током – электромагнит, или постоянный магнит), так и контур.

Здесь же поток можно выразить по такой формуле:

B – магнитное поле, а dS – площадь поверхности.

Если рассматривать катушку с плотнонамотанными витками, при этом в количестве витков N, то закон Фарадея выглядит следующим образом:

Магнитный поток в формуле на один виток, измеряется в Веберах. Ток, протекающий в контуре, называется индукционным.

Электромагнитная индукция – явление протекания тока в замкнутом контуре под воздействием внешнего магнитного поля.

В формулах выше вы могли заметить знаки модуля, без них она имеет слегка иной вид, такой как было сказано в первой формулировке, со знаком минус.

Знак минус объясняет правило Ленца. Ток, возникающий в контуре, создает магнитное поле, оно направлено противоположно. Это является следствием закона сохранения энергии.

Направление индукционного тока можно определить по правилу правой руки или , мы его рассматривали на нашем сайте подробно.

Как уже было сказано, благодаря явлению электромагнитной индукции работают электрические машины трансформаторы, генераторы и двигатели. На иллюстрации показано протекание тока в обмотке якоря под воздействием магнитного поля статора. В случае с генератором, при вращении его ротора внешними силами в обмотках ротора возникает ЭДС, ток порождает магнитное поле направленное противоположно (тот самый знак минус в формуле). Чем больше ток, потребляемый нагрузкой генератора, тем больше это магнитное поле, и тем больше затрудняется его вращение.

И наоборот — при протекании тока в роторе возникает поле, которое взаимодействует с полем статора и ротор начинает вращаться. При нагрузке на вал ток в статоре и в роторе повышается, при этом нужно обеспечить переключение обмоток, но это уже другая тема, связанная с устройством электрических машин.

В основе работы трансформатора источником движущегося магнитного потока является переменное магнитное поле, возникающее в следствие протекания в первичной обмотке переменного тока.

Если вы желаете более подробно изучить вопрос, рекомендуем просмотреть видео, на котором легко и доступно рассказывается Закон Фарадея для электромагнитной индукции:

Электролиз

Кроме исследований ЭДС и электромагнитной индукции ученный сделал большие открытия и в других дисциплинах, в том числе химии.

При протекании тока через электролит ионы (положительные и отрицательные) начинают устремляться к электродам. Отрицательные движутся к аноду, положительные к катоду. При этом на одном из электродов выделяется определенная масса вещества, которое содержится в электролите.

Фарадей проводил эксперименты, пропуская разный ток через электролит и измеряя массу вещества отложившегося на электродах, вывел закономерности.

m – масса вещества, q – заряд, а k – зависит от состава электролита.

А заряд можно выразить через ток за промежуток времени:

I=q/t , тогда q = i*t

Теперь можно определить массу вещества, которое выделится, зная ток и время, которое он протекал. Это называется Первый закон электролиза Фарадея.

Второй закон:

Масса химического элемента, который осядет на электроде, прямо пропорциональна эквивалентной массе элемента (молярной массе разделенной на число, которое зависит от химической реакции, в которой участвует вещество).

С учетом вышесказанного эти законы объединяются в формулу:

m – масса вещества, которое выделилось в граммах, n – количество переносимых электронов в электродном процессе, F=986485 Кл/моль – число Фарадея, t – время в секундах, M молярная масса вещества г/моль.

В реальности же из-за разных причин, масса выделяемого вещества меньше чем расчетная (при расчетах с учетом протекающего тока). Отношение теоретической и реальной масс называют выходом по току:

B т = 100% * m расч /m теор

Законы Фарадея внесли существенный вклад в развитие современной науки, благодаря его работам мы имеем электродвигатели и генераторы электроэнергии (а также работам его последователей). Работа ЭДС и явления электромагнитной индукции подарили нам большую часть современного электрооборудования, в том числе и громкоговорители и микрофоны, без которых невозможно прослушивание записей и голосовая связь. Процессы электролиза применяются в гальваническом методе покрытия материалов, что несет как декоративную ценность, так и практическую.

Похожие материалы:

Нравится(0 ) Не нравится(0 )

Электролиз - это физико-химический процесс, осуществляемый в растворах различных веществ при помощи электродов (катода и анода). Существует множество веществ, которые химически разлагаются на составляющие при прохождении через их раствор или расплав электрического тока. Они называются электролитами. К ним относятся многие кислоты, соли и основания. Различают сильные и слабые электролиты, но это деление условно. В некоторых случаях слабые электролиты проявляют свойства сильных и наоборот.

При пропускании тока через раствор или расплав электролита на электродах оседают различные металлы (в случае кислот просто выделяется водород). Используя это свойство, можно подсчитать массу выделившегося вещества. Для подобных экспериментов используют раствор медного купороса. На угольном катоде при пропускании тока можно легко увидеть красный медный осадок. Разница между значениями его масс до и после эксперимента и будет массой осевшей меди. Она зависит от количества электричества, прошедшего через раствор.

Первый закон Фарадея можно сформулировать так: масса вещества m, выделившегося на катоде прямо пропорциональна количеству электричества (электрическому заряду q), прошедшему через раствор или расплав электролита. Этот закон выражается формулой: m=KI=Kqt, где K - коэффициент пропорциональности. Его называют электрохимическим эквивалентом вещества. Для каждого вещества он принимает различные значения. Он численно равен массе вещества, выделившегося на электроде за 1 секунду при силе тока 1 ампер.

Второй закон Фарадея

В специальных таблицах можно посмотреть значения электрохимического для различных веществ. Вы заметите, что эти значения существенно отличаются. Объяснение такому различию дал Фарадей. Оказалось, что электрохимический эквивалент вещества прямо пропорционален его химическому эквиваленту. Это утверждение носит название второго закона Фарадея. Его истинность была подтверждена экспериментально.

Формула, выражающая второй закон Фарадея, выглядит так: K=M/F*n, где M - молярная масса, n - валентность. Отношение молярной массы к валентности называется химическим эквивалентом.

Величина 1/F имеет одно и то же значение для всех веществ. F называется постоянной Фарадея. Она равна 96,484 Кл/моль. Эта величина показывает количество электричества, которое нужно пропустить через раствор или расплав электролита, чтобы на катоде осел один моль вещества. 1/F показывает сколько моль вещества осядет на катоде при прохождении заряда в 1 Кл.

Электролит всегда имеет определённое количество ионов со знаками "плюс" и "минус", получившихся в результате взаимодействия молекул растворённого вещества с растворителем. Когда в нем возникает электрическое поле, ионы начинают двигаться к электродам, положительные устремляются к катоду, отрицательные - к аноду. Дойдя до электродов, ионы отдают им свои заряды, превращаются в нейтральные атомы и отлагаются на электродах. Чем больше ионов подойдёт к электродам, тем больше будет отложено на них вещества.

К этому заключению мы можем прийти и опытным путём. Пропустим ток через водный раствор и будем наблюдать за выделением меди на угольном катоде. Мы обнаружим, что вначале он покроется едва заметным слоем меди, затем по мере пропускания тока он будет увеличиваться, а при долговременном пропускании тока можно получить на значительной толщины слой меди, к которому легко припаять, например, медный провод.

Явление выделения вещества на электродах во время прохождения тока сквозь электролит называется электролизом.

Пропуская через разные электролизы различные токи и тщательно измеряя массу вещества, выделяющегося на электродах из каждого электролита, английский в 1833 - 1834 гг. открыл два закона для электролиза.

Первый закон Фарадея устанавливает зависимость между массой выделившегося вещества при электролизе и величиной заряда, который прошел через электролит.

Закон этот формулируется следующим образом: масса вещества, которая выделилась при электролизе, на каждом электроде прямо пропорциональна величине заряда, который прошел сквозь электролит:

где m - масса вещества, которое выделилось, q - заряд.

Величина k - электрохимическимй эквивалент вещества. Она характерна для каждого вещества, выделяющегося при электролите.

Если в формуле принять q = 1 кулону, тогда k = m, т.е. электрохимический эквивалент вещества будет численно равняться массе вещества, выделенного из электролита при прохождении заряда в один кулон.

Выражая в формуле заряд через ток I и время t, получим:

Первый закон Фарадея проверяется на опыте следующим образом. Пропустим ток через электролиты А, В и С. Если все они одинаковые, то массы выделенного вещества в А, В и С будут относиться как токи I, I1, I2. При этом количество вещества, выделенного в А, будет равно сумме объемов, выделенных в В и С, так как ток I= I1+ I2.

Второй закон Фарадея устанавливает зависимость электрохимического эквивалента от атомного веса вещества и его валентности и формулируется следующим образом: электрохимический эквивалент вещества будет пропорционален их атомному весу, а также обратно пропорционален его валентности.

Отношение атомного веса вещества к его валентности называется химическим эквивалентом вещества. Введя эту величину, второй закон Фарадея сформулировать можно иначе: электрохимические эквиваленты вещества пропорциональны их собственным химическим эквивалентам.

Пусть электрохимические эквиваленты разных веществ соответственно равны k1 и k2, k3, …, kn, химические же эквиваленты тех же веществ x1 и x2, x23, …, xn, тогда k1 /k2 = x1 /x2, или k1/x1 = k2/x2 = k3/ x3 = … = kn/ xn.

Иначе говоря, отношение величины электрохимического эквивалента вещества к величине того же вещества есть величина постоянная, имеющая для всех веществ одно и то же значение:

Отсюда следует, что отношение k/x является постоянным для всех веществ:

k/x=c = 0, 01036 (мг-экв)/к.

Величина с показывает, сколько миллиграмм-эквивалентов вещества выделяется на электродах во время прохождения через электролит равно 1 кулону. Второй закон Фарадея представлен формулой:

Подставляя полученное выражение для k в первый закон Фарадея, оба можно объединить в одном выражении:

где с - универсальная постоянная, равная 0, 00001036 (г-экв)/к.

Эта формула показывает, что, пропуская одинаковые токи в течение одного и того же промежутка времени через два различных электролита, мы выделим из обоих электролитов количества веществ, относящихся как химические эквиваленты таковых.

Так как x=A/n, то можно написать:

т.е., масса вещества, выделенного на электродах при электролизе, будет прямо пропорциональна его току, времени и обратно пропорциональна валентности.

Второй закон Фарадея для электролиза, так же, как и первый, непосредственно вытекает из ионного характера тока в растворе.

Закон Фарадея, Ленца, а также многих других выдающихся физиков сыграл огромную роль в истории становления и развития физики.