Химический состав элементов литосферы. Строение и состав литосферы


Литосфера - твердая оболочка Земли.

Введение

Литосфера имеет важное значение для всех живых организмов, которое проживают на ее территории.

В первую очередь, на суше или внутри нее живут люди, животные, насекомые, птицы и т.д.

Во-вторых, данная оболочка земной поверхности обладает огромными ресурсами, которые необходимы организмам для пропитания и жизни.

В-третьих, способствует функционированию всех систем, подвижность коры, пород и почвы.

Что такое литосфера

Термин литосфера состоит из двух слов – камень и шар или сфера, что в буквальном переводе с греческого языка означает твердая оболочка земной поверхности.

Литосфера не является статической, а находится в постоянном движении, из-за чего плиты, породы, ресурсы, полезные ископаемые, а также вода обеспечивают организмы всем необходимым.

Где находится литосфера

Литосфера находится на самой поверхности планеты, уходит внутрь мантии, до так называемой астеносферы – пластичный слой Земли, состоящей из вязких пород.

Из чего состоит литосфера

Литосфера имеет три взаимосвязанных элемента, к которым относятся:

  • Кора (земная);
  • Мантия;
  • Ядро.

строение литосферы фото

В свою очередь, кора и самая верхняя часть мантии – астеносфера являются твердыми, а ядро состоит из двух частей – твердой и жидкой. Внутри ядро имеет твердые породы, а снаружи окружен жидкими веществами. В состав коры входят горные породы, возникшие после остывания и кристаллизации магмы.

Осадочные породы возникают различными способами:

  • Когда разрушается песок или глина;
  • В ходе протекания химических реакций в воде;
  • Органические породы возникли из мела, торфа, угля;
  • Из-за изменения состава пород – полностью или частично.

Ученые установили, что литосфера состоит из таких важных элементов, как кислород, кремний, алюминий, железо, кальций, минералы. По своей структуре литосфера делится на подвижные и стабильные, т.е. платформы и складчатые пояса.

Под платформой принято понимать участки земной коры, которые не двигаются, в результате наличия кристаллической основы. Она бывает либо гранитной, либо базальтовой. В середине континентов обычно располагаются древние платформы, а по краям – те, которые возникли позже, в так называемый докембрийский период.

Складчатые пояса возникли после того, как сталкивались друг с другом. В результате подобных процессов возникают горы и горные хребты. Чаще всего они располагаются по краям литосферы. Наиболее древние можно увидеть в центре материка – это Евразия, или по самим краям, что характерно для Америки (Северной) и Австралии.

Образование гор происходит постоянно. Если по тектонической плите проходит горный массив, то это означает, что некогда тут произошло сталкивание плит. В литосфере выделяют 14 плит, что составляет 90% всей оболочки. Бывают, как большие, так и малые плиты.

тектонические плиты фото

Самыми большими тектоническими плитами считаются Тихоокеанская, Евразийская, Африканская, Антарктическая. Литосфера под океанами и континентами отличается. В частности, под первыми оболочка состоит из океанической коры, где почти нет гранита. Во втором случае, литосфера состоит из осадочных пород, базальта и гранита.

Границы литосферы

Черты литосферы имеет различные очертания. Нижние границы размыты, что связано с вязкой средой, высокой проводимостью тепла и скоростью сейсмических волн. Верхняя граница – это кора и мантия, которая достаточно толстая, и способная измениться только из-за пластичности породы.

Функции литосферы

Твердая оболочка земной поверхности обладает геологическими и экологическими функциями, что определяет протекание жизни на планете. Участие в ней принимают воды, расположенные под землей, нефть, газы, поля геофизического значения, процессы, участие различных сообществ.

Среди самых важных функций выделяют:

  • Ресурсную;
  • Геодинамическую;
  • Геохимическую;
  • Геофизическую.

Функции проявляются под воздействием природных и техногенных факторов, что связано с развитием планеты, деятельностью людей и образованием различных экологических систем.

  • Литосфера возникла в процессе того, что постепенно освобождались вещества из мантии Земли. Подобные явления еще иногда наблюдаются на дне океана, в результате чего появляются газы и немного воды.
  • Мощность литосферы меняется в зависимости от климата и природных условий. Так, в холодных регионах, она достигает максимального значения, а в теплых – остается на минимальных отметках. Самый верхний слой литосферы обладает упругостью, а нижний – очень пластичный. Твердая оболочка Земли постоянно находится под влиянием воды и воздуха, что вызывает выветривание. Оно бывает физическое, когда порода распадается, а ее состав не меняется; а также химическое – появляются новые вещества.
  • Из-за того, что литосфера постоянно двигается, меняется облик планеты, ее рельеф, структура равнин, гор, низкогорья. Человек постоянно оказывает влияние на литосферу, и это участие не всегда полезное, вследствие чего происходит серьезное загрязнение оболочки. В первую очередь, это связано с накоплением мусора, применением ядов и удобрений, что меняет состав грунтов, почвы, живых существ.

Литосферой называют верхнюю твердую оболочку Земли, со­стоящую из земной коры и слоя верхней мантии, подстилающего земную кору. Нижняя граница литосферы проводится на глубинах около 100 км под континентами и около 50 км под дном океана. Верхняя часть ли­тосферы (та, где существует жизнь) - составная часть биосферы.

Земная кора сложена магматическими и осадочными породами, а также метаморфическими породами, образовавшимися за счет тех и других.

Горные породы - это естественные минеральные агрегаты оп­ределенного состава и строения, сформировавшиеся в результате геологических процессов и залегающие в земной коре в виде само­стоятельных тел. Состав, строение и условия залегания горных пород обусловлены особенностями формирующих их геологических про­цессов, которые происходят в определенной обстановке внутри зем­ной коры или на земной поверхности. В зависимости от характера главных геологических процессов различают три генетических клас­са горных пород: осадочные, магматические и метаморфические.

Магматические горные породы - это естественные мине­ральные агрегаты, возникающие при кристаллизации магм (силикат­ных, а иногда и несиликатных расплавов) в недрах Земли илина ее поверхности. По содержанию кремнезема магматические породы делятся на кислые (SiO 2 - 70-90%), средние (SiO 2 > около 60%), основные (SiO 2 около 50%) и ультра­основные (SiO 2 менее 40%). Примером магматических пород служат вулканическая основная порода и гранит.

Осадочные горные породы - это те породы, которые су­ществуют в термодинамических условиях, характерных для по­верхностной части земной коры, и образуются в результате переотло­жения продуктов выветривания и разрушения различных горных по­род, химического и механического выпадения осадка из воды, жизне­деятельности организмов или всех трех процессов одновременно. Многие осадочные породы являются важнейшими полезными иско­паемыми. Примерами осадочных пород служат песчаники, которые можно рассматривать как скопления кварца и, следовательно, концен­траторы кремнезема (SiO 2), и известняки - концентраторы СаО. К ми­нералам, наиболее распространенных осадочных пород относятся кварц (SiO 2), ортоклаз (КalSi 3 O 8) каолинит (А1 4 Si 4 O 10 (ОН) 8), кальцит (СаСО 3), доломит СаМg(СО 3) 2 и др.



Метаморфическими называют породы, основные особенности которых (минеральный состав, структура, текстура) обусловлены процессами метаморфизма, тогда как признаки первичного магмати­ческого происхождения частично или полностью утрачены. Мета­морфические породы - сланцы, гранулиты, эклогиты и др. Типичные для них минералы - слюда, полевой шпат и гранат соответственно.

Вещество земной коры сложено в основном легкими элемента­ми (по Fе включительно), а элементы, следующие в Периодической системе за железом, в сумме составляют лишь доли процента. Отме­чается также, что элементы, имеющие четное значение атомной мас­сы, значительно преобладают: они образуют 86% общей массы зем­ной коры. Следует отметить, что в метеоритах это отклонение еще выше и составляет в металлических метеоритах 92%, в каменных -98%.

Средний химический состав земной коры, по данным разных авторов, приведен в табл. 25:

Таблица 25

Химический состав земной коры, маc. % (Гусакова, 2004)

Элементы и окислы Кларк, 1924 Фугт, 1931 Гольдшмидт, 1954 Полдерваатр, 1955 Ярошевский, 1971
SiO 2 59,12 64,88 59,19 55,20 57,60
TiO 2 1,05 0,57 0,79 1,6 0,84
Al 2 O 3 15,34 15,56 15,82 15,30 15,30
Fe 2 O 3 3,08 2,15 6,99 2,80 2,53
FeO 3,80 2,48 6,99 5,80 4,27
MnO 0,12 - - 0,20 0,16
MgO 3,49 2,45 3,30 5,20 3,88
CaO 5,08 4,31 3,07 8,80 6,99
Na 2 O 3,84 3,47 2,05 2,90 2,88
K 2 O 3,13 3,65 3,93 1,90 2,34
P 2 O 5 0,30 0,17 0,22 0,30 0,22
H 2 O 1,15 - 3,02 - 1,37
CO 2 0,10 - - - 1,40
S 0,05 - - - 0,04
Cl - - - - 0,05
C - - - - 0,14

Ее анализ позволяет сделать следующие важные выводы:

1) земная кора сложена в основном из восьми элементов: О, Si, А1, Fе, Са, Мg, Nа, К; 2) на долю остальных 84 элементов приходится менее одного процента массы коры; 3) среди главнейших по распро­страненности элементов особая роль в земной коре принадлежит ки­слороду.

Особая роль кислорода состоит в том, что его атомы со­ставляют 47% массы коры и почта 90% объема важнейших породо­образующих минералов.

Имеется ряд геохимических классификаций элементов. В на­стоящее время получает распространение геохимическая клас­сификация, согласно которой все элементы земной коры делятся на пять групп (табл. 26).

Таблица 26

Вариант геохимической классификации элементов (Гусакова, 2004)

Литофильные - это элементы горных пород. На внешней обо­лочке их ионов находится 2 или 8 электронов. Литофильные элемен­ты трудно восстанавливаются до элементарного состояния. Обычно они связаны с кислородом и составляют основную массу силикатов и алюмосиликатов. Встречаются также в виде суль­фатов, фосфатов, боратов, карбонатов и гадогенидов.

Халькофильные элементы - это элементы сульфидных руд. На внешней оболочкеих ионов располагается 8 (S,Sе,Те) иди 18 (у ос­тальных) электронов. В природе встречаются в виде сульфидов, селенидов, теллуридов, а также в самородном состоянии (Сu,Нg,Аg,Рb,Zn,As,Sb,Вi,S, Sе,Те,Sn).

Сидерофильные элементы - это элементы с достраивающимися электронными d- и f-оболочками. Они обнаруживают специфическое сродство к мышьяку и сере (PtAs 2 , FеАs 2 , NiAs 2 , FeS, NiS, МоS 2 и др.), а также к фосфору, углероду, азоту. Почти все сидерофильные элементы встречаются также и в самородном состоянии.

Атмофильные элементы - это элементы атмосферы. Боль­шинство изних имеет атомы с заполненными электронными оболоч­ками (инертные газы). К атмофильным относят также азот и водород. Вследствие вы­соких потенциалов ионизации атмофильные элементы с трудом вступают в соединения с другими элементами и потому в природе находятся (кроме Н) главным образом в элементарном (самородном) состоянии.

Биофильные элементы - это элементы, входящие в состав орга­нических компонентов биосферы (С,Н,N,О,Р,S). Из этих (в ос­новном) и других элементов образуются сложные молекулы угле­водов, белков, жиров и нуклеиновых кислот. Средний химический состав белков, жиров и углеводов приведен в табл. 27.

Таблица 27

Средний химический состав белков, жиров и углеводов, мас. % (Гусакова, 2004)

В настоящее время в различных организмах установлено более 60 элементов. Элементы и их соединения, требующиеся организмам в сравнительно больших количествах, часто называют макробиогенными элементами. Элементы же и их соединения, которые хотя и не­обходимы для жизнедеятельности биосистем, но требуются в крайне малых количествах, называют микробиогенными элементами. Для растений, например, важны 10 микроэлементов: Fе, Мn, Сu, Zn, В, Si, Мо, С1, W, Со.

Все эти элементы, кроме бора, требуются и животным. Кроме того, животным могут требоваться селен, хром, никель, фтор, йод, олово. Между макро- и микроэлементами нельзя провести четкую и одинаковую для всех групп организмов границу.

Процессы выветривания

Поверхность земной коры подвержена действию атмосферы, что делает ее восприимчивой к физическим и химическим процессам. Физическое выветривание является механическим процессом, в ре­зультате которого порода размельчается до частиц меньшего размера без существенных изменений в химическом составе. Когда сдержи­вающее давление коры устраняется поднятием и эрозией, устраняют­ся и внутренние напряжения в пределах подстилающих пород, по­зволяя расширившимся трещинам открыться. Эти трещины могут потом раздвинуться за счет термического расширения (вызванного суточными флуктуациями температуры), расширения воды в процес­се замерзания, а также воздействия корней растений. Другие физиче­ские процессы, например ледниковая деятельность, оползни и исти­рание песком, производят дальнейшее ослабление и разрушение твердой породы. Эти процессы важны, поскольку они значительно увеличивают поверхностные участки породы, подверженные дейст­вию агентов химического выветривания, например воздуха и воды.

Химическое выветривание вызывается водой - особенно ки­слой водой - и газами, например кислородом, который разрушает ми­нералы. Некоторые ионы и соединения исходного минерала удаляют­ся с раствором, просачивающимся через обломки минералов и пи­тающим грунтовые воды и реки. Тонкозернистые твердые вещества могут вымываться из выветриваемого участка, оставляя химически измененные остатки, которые формируют основу почв. Из­вестны различные механизмы химического выветривания:

1. Растворение. Простейшая реакция выветривания - это раство­рение минералов. Молекула воды эффективна при разрыве ионных связей, например таких, которые соединяют ионы натрия (Na +) и хлора (Cl -) в галите (каменная соль). Мы можем выразить растворе­ние галита упрощенно, т.е.

NaCl (тв) Na + (водн) + Cl - (водн)

2. Окисление. Свободный кислород играет большую роль при разложении веществ в восстановленной форме. Например, окисление восстановленного железа (Fe 2+) и сера (S) в обычном сульфиде, пи­рите (FeS 2) приводит к образованию сильной серной кислоты (H 2 SO 4):

2FeS 2(тв) + 7,5 О 2(г) + 7Н 2 О (ж) 2Fe(OH) 3(тв) + Н 2 SO 4(водн).

Сульфиды часто встречаются в алеврито-глииистых породах, рудных жилах и угольных отложениях. При разработке рудных и угольных месторождений сульфид остается в отработанной породе, которая накапливается в отвалах. Такие отвалы пустой породы име­ют большие поверхности, подверженные влиянию атмосферы, где окисление сульфидов происходит быстро и в больших масштабах. Кроме того, заброшенные рудные выработки быстро затопляются грунтовыми водами. Образование серной кислоты делает дренажные воды с заброшенных рудников сильно кислыми (рН до 1 или 2). Та­кая кислотность может увеличить растворимость алюминия и стать причиной токсичности для водных, экосистем. В окисление сульфи­дов вовлечены микроорганизмы, что можно моделировать рядом ре­акций:

2FeS 2(тв) + 7О 2(г) + 2Н 2 О (ж) 2Fe 2+ + 4Н + (водн) + 4SO 4 2- (водн) (окисление пирита), затем следует окисление железа в :

2Fe 2+ + О 2(г) + 10Н 2 О (ж) 4Fe(OH) 3(тв) + 8Н + (водн)

Окисление - происходит очень медленно при низких значе­ниях рН кислых рудниковых вод. Однако ниже рН 4,5 окисление железа катализируют Thiobacillus ferrooxidans и Leptospirillum. Окисное железо может далее взаимодействовать с пиритом:

FeS 2(тв) + 14 Fe 3+ (водн) + 8Н 2 О (ж) 15 Fe 2+ (водн) + 2SO 4 2- (водн) + 16Н + (водн)

При значениях рН намного выше 3 железо (III) осаждается как обычный оксид железа (III), гетит (FеООН):

Fe 3+ (водн) + 2Н 2 О (ж) FеООН + 3Н + (водн)

Осажденный гетит покрывает дно ручьев и кирпичную кладку в виде характерного желто-оранжевого налета.

Восстановленные железосодержащие силикаты, например некоторые оливины, пироксены и амфиболы, также могут пре­терпевать окисление:

Fe 2 SiO 4(тв) + 1/2O 2(г) + 5H 2 O (ж) 2Fe(OH) 3(тв) + H 4 SiO 4(водн)

Продуктами являются кремниевая кислота (H 4 SiO 4) и коллоид­ный гидроксид железа , слабое основание, которое при де­гидратации дает ряд оксидов железа, например Fе 2 O 3 (гематит - темно-красного цвета), FеООН (гетит и лепидокрокит - желтого цвета или цвета ржавчины). Частая встречаемость этих оксидов же­леза говорит об их нерастворимости в окислительных условиях зем­ной поверхности.

Присутствие воды ускоряет окислительные реакции, о чем сви­детельствует ежедневно наблюдаемое явление окисления металличе­ского железа (ржавчина). Вода действует как катализатор, окисли­тельный-потенциал зависит от парциального давления газообразного кислорода и кислотности раствора. При рН 7 вода в контакте с воз­духом имеет Еh порядка 810 мВ - окислительный потенциал, на­много больший того, который необходим для окисления закисного железа.

Окисление органического вещества. Окисление восстановлен­ного органического вещества в почвах катализируется микроор­ганизмами. Опосредованное бактериями окисление мертвого органи­ческого вещества до СО 2 важно с точки зрения образования кислот­ности. В биологически активных почвах концентрация СО 2 может в 10-100 раз превышать ожидаемую при равновесии с атмосферным СО 2 приводя к образованию угольной кислоты (Н 2 СО 3) и Н + при ее диссоциации. Чтобы упростить уравнения, орга­ническое вещество представлено обобщенной формулой для углево­да, СН 2 О:

СН 2 О (тв) + О 2(г) СО 2(г) + Н 2 О (ж)

СО 2(г) + Н 2 О (ж) Н 2 СО 3(водн)

Н 2 СО 3(водн) Н + (водн) + НСО 3 - (водн)

Эти реакции могут понизить водный рН почв от 5,6(значение, которое устанавливается при равновесии с атмосферным СО 2) до 4- 5. Это является упрощением, поскольку органическое вещество почв (гумус) не всегда полностью разлагается до СО 2 . Однако продукты частичного разрушения обладают карбоксильными (СООН) и фенольными группами, которые при диссоциации дают ионы Н + :

RCOOH (водн) RCOO - (водн) + Н + (водн)

где R означает большую органическую структурную единицу. Кислотность, накапливаемая при разложении органического вещества, используется при разрушении большинства силикатов в процессе кислотного гидролиза.

3. Кислотный гидролиз. Природные воды содержат растворимые вещества, которые придают им кислотность - это и диссоциации атмосферного СО 2 в дождевой воде, и частично диссоциация почвен­ного СО 2 с образованием Н 2 СО 3 , диссоциация природного и антропогенного диоксида серы (SO 2) с образованием Н 2 SO 3 и Н 2 SО 4 . Реак­цию между минералом и кислыми агентами выветривания обычно называют кислотным гидролизом. Выветривание СаСО 3 демонстри­рует следующая реакция:

СаСО 3(тв) + Н 2 СО 3(водн) Са 2+ (водн) + 2НСО 3 - (водн)

Кислотный гидролиз простого силиката, например богатого магнием оливина, форстерита, можно обобщить следующим образом:

Mg 2 SiO 4 (тв) + 4H 2 CO 3(водн) 2Mg 2+(водн) + 4НСО 3 - (водн) + H 4 SiO 4(водн)

Отметим, что при диссоциации Н 2 СО 3 образуется ионизирован­ный НСО 3 - , немного более сильная кислота, чем нейтральная моле­кула (Н 4 SiO 4), образующаяся при разложении силиката.

4. Выветривание сложных силикатов. До сих пор мы рассматри­вали выветривание мономерных силикатов (например, оливина), кото­рые полностью растворяются (конгруэнтное растворение). Это упро­щало химические реакции. Однако присутствие измененных в процессе выветривания минеральных остатков предполагает, что более распро­странено неполное растворение. Упрощенная реакция выветривания на примере богатого кальцием анортита:

CaAl 2 Si 2 O 8(тв) +2H 2 CO 3(водн) +H 2 O (ж) Ca 2+ (водн) +2HCO 3 - (водн) + Аl 2 Si 2 O 5 (OH) 4(тв)

Твердым продуктом реакции является каолинит Аl 2 Si 2 O 5 (OH) 4 , важный представитель глинистых минералов.

Сейсмические исследования свидетельствуют о том, что при землетрясениях возникают различные сейсмические волны, распространяющиеся в породах Земли с разными скоростями. Наиболее быстрые из них - первичные, или Р-волны, - распространяются подобно звуковым, с колебаниями, совпадающими с направлением распространения (продольные волны). Наиболее медленные сейсмические волны, так называемые S-волны, или вторичные , по характеру колебаний подобны световым. Они имеют колебания, перпендикулярные к направлению распространения. В 1926 г. югославский геолог А. Мохоровичич обнаружил резкое увеличение скоростей Р и S волн на глубине около 50 км. Эту границу раздела стали называть поверхностью Мохоровичича, или, сокращенно, Мохо. литосфера выветривание загрязнение почва

Оболочку твердой литосферы, лежащую выше поверхности Мохо, принято называть земной корой, а лежащую ниже мощную оболочку - мантией. Мощность коры под континентами значительно больше, нежели под океаном.

Земная кора сложена магматическими и осадочными породами, а также метаморфическими породами, образовавшимися за счет тех и других.

Горные породы - это естественные минеральные агрегаты определенного состава и строения, сформировавшиеся в результате геологических процессов и залегающие в земной коре в виде самостоятельных тел. Состав, строение и условия залегания горных пород обусловлены особенностями формирующих их геологических процессов, которые происходят в определенной обстановке внутри земной коры или на земной поверхности. В зависимости от характера главных геологических процессов различают три генетических класса горных пород: осадочные, магматические и метаморфические.

Магматические горные породы - это естественные минеральные агрегаты, возникающие при кристаллизации магм (силикатных, а иногда и несиликатных расплавов) в недрах Земли или на ее поверхности. Классификация магматических пород отражает существование двух главных групп, различающихся по условиям образования и залегания: плутонических (глубинных) и вулканических, сформировавшихся на поверхности Земли или вблизи нее. По содержанию кремнезема магматические породы делятся на кислые (SiО 2 - 70_90%), средние (SiO 2 около 60%), основные (SiO 2 около 50%) и ультраосновные (SiO 2 менее 40%). Примером магматических пород служат вулканическая основная порода и гранит (кислая плутоническая порода).

Осадочные горные породы - это те породы, которые существуют в термодинамических условиях, характерных для поверхностной части земной коры, и образуются в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трех процессов одновременно. Многие осадочные породы являются важнейшими полезными ископаемыми. Примерами осадочных пород служат песчаники, которые можно рассматривать как скопления кварца и, следовательно, концентраторы кремнезема (SiO 2), и известняки - концентраторы СаО. К минералам наиболее распространенных осадочных пород относятся кварц (SiО 2), ортоклаз (KAlSi 3 O 8) каолинит (Al 4 Si 4 O 10 (OH) 8), кальцит (СаСО 3), доломит СаМg(СО 3) 2 и др.

Ил, пыль и песчаные отложения образуются главным образом за счет выветривания - разрушения и изменения твердой породы. Эти отложения обычно переносятся реками в океаны. В морской воде они погружаются на дно, где в результате физических процессов и химических реакций превращаются в осадочные породы, которые со временем вновь становятся сушей, обычно в процессе образования гор.

Метаморфическими называют породы, основные особенности которых (минеральный состав, структура, текстура) обусловлены процессами метаморфизма, тогда как признаки первичного магматического происхождения частично или полностью утрачены. Метаморфические породы - сланцы, гранулиты, эклогиты и др. Типичные для них минералы - слюда, полевой шпат и гранат соответственно. Породы, испытывающие метаморфизм, преобразуются, стремясь к химическому или физическому равновесию с новыми для них температурными и бароическими условиями. Происходящие при этом химические реакции управляются законами термодинамики. Так, реакции с отрицательными значениями изобарно-изотермического потенциала (G) сопровождаются выделением водяного пара из-за его большой энтропии. Закономерное строение метаморфических комплексов и соответствие в целом состава многих метаморфических пород принципам термодинамики служат подтверждением того, что для метаморфических пород достигается (хотя и не всегда) почти полное химическое равновесие. Для большинства из них типична крупнозернистая структура (исключение составляют сланцы, роговики и др.).

Вещество земной коры сложено в основном легкими элементами (по Fe включительно), а элементы, следующие в Периодической системе за железом, в сумме составляют лишь доли процента. Отмечается также, что элементы, имеющие четное значение атомной массы, значительно преобладают: они образуют 86% общей массы земной коры. Следует отметить, что в метеоритах это отклонение еще выше и составляет в металлических метеоритах 92%, в каменных - 98%.

Средний химический состав земной коры, по данным разных авторов, приведен в таблице 1:

Таблица 1

Химический состав земной коры, мас. %

Элементы и окислы

Кларк, 1924

Гольдшмидт, 1954

Полдерваатр, 1955

Ярошевский. 1971

Ее анализ позволяет сделать следующие важные выводы:

1) земная кора сложена в основном из восьми элементов: О, Si, Al, Fe, Ca, Mg, Na, К; 2) на долю остальных 84 элементов приходится менее одного процента массы коры; 3) среди главнейших по распространенности элементов особая роль в земной коре принадлежит кислороду.

Особая роль кислорода состоит в том, что его атомы составляют 47% массы коры и почти 90% объема важнейших породообразующих минералов.

Имеется ряд геохимических классификаций элементов. В настоящее время получает распространение геохимическая классификация, согласно которой все элементы земной коры делятся на пять групп: литофильные, халькофильные, сидерофильныe, атмофильные и биофильные (табл. 2).

Таблица 2

Вариант геохимической классификации элементов

Литофильные - это элементы горных пород. На внешней оболочке их ионов находится 2 или 8 электронов. Литофильные элементы трудно восстанавливаются до элементарного состояния.

Обычно они связаны с кислородом и составляют основную массу силикатов и алюмосиликатов. Встречаются также в виде сульфатов, фосфатов, боратов, карбонатов и галогенидов.

Халькофильные элементы - это элементы сульфидных руд. На внешней оболочке их ионов располагается 8 (S, Se, Те) или 18 (у остальных) электронов.

В природе встречаются в виде сульфидов, селенидов, теллуридов, а также в самородном состоянии (Сu, Hg, Ag, Pb, Zn, As, Sb, Bi, S, Se, Те, Sn).

Сидерофильные элементы - это элементы с достраивающимися электронными d- и f-оболочками. Они обнаруживают специфическое сродство к мышьяку и сере (PtAs 2 , FeAs 2 , NiAs 2 , FeS, NiS, MoS 2 и др.), а также к фосфору, углероду, азоту. Почти все cидерофильные элементы встречаются также и в самородном состоянии.

Атмофильные элементы - это элементы атмосферы. Большинство из них имеет атомы с заполненными электронными оболочками (инертные газы).

К атмофильным относят также азот и водород. Вследствие высоких потенциалов ионизации атмофильные элементы с трудом вступают в соединения с другими элементами и потому в природе находятся (кроме H) главным образом в элементарном (самородном) состоянии.

Биофильные элементы - это элементы, входящие в состав органических компонентов биосферы (C, Н, N, O, P, S). Из этих (в основном) и других элементов образуются сложные молекулы углеводов, белков, жиров и нуклеиновых кислот. Средний химический состав белков, жиров и углеводов приведен в табл. 3.

Таблица 8

Средний химический состав белков, жиров и углеводов, маc. %

В настоящее время в различных организмах установлено более 60 элементов. Элементы и их соединения, требующиеся организмам в сравнительно больших количествах, часто называют макробиогенными элементами. Элементы же и их соединения, которые хотя и необходимы для жизнедеятельности биосистем, но требуются в крайне малых количествах, называют микробиогенными элементами. Для растений, например, важны 10 микроэлементов: Fe, Mn, Cu, Zn, B, Si, Mo, Cl, W, Co. По функциям эти элементы можно разделить на три группы:

  • 1. Mn, Fe, Cl, Zn, V - необходимы для фотосинтеза;
  • 2. Mo, B, Fe - необходимы для азотного обмена;
  • 3. Mn, B, Co, Cu, Si - необходимы для других метаболических функций.

Все эти элементы, кроме бора, требуются и животным. Кроме того, животным могут требоваться селен, хром, никель, фтор, йод, олово. Между макро- и микроэлементами нельзя провести четкую и одинаковую для всех групп организмов границу. В.И.Вернадский показал, что элементы, постоянно присутствующие в живых организмах, выполняют вполне определенные жизненные функции. Содержание же их в организмах зависит от химизма среды обитания, биологической специфики, экологических особенностей организма и др.

Важным компонентом литосферы являются подземные воды, они вносят существенный вклад в общий водный баланс биосферы в целом. Не случайно подземные воды относят еще и к гидросфере, называя их «подземной гидросферой». Поскольку речь идет о подземных водах, то естественно, что их присутствие, свойства, распределение во многом определяются свойствами пород, такими, как пористость, водопроницаемость, влагоемкость, водоносность. Формально все породы по отношению к воде можно разделить на водопроницаемые и водоупорные. Однако в геологическом масштабе пространства и времени водоупорных пород в природе не существует. Даже такие жесткие породы, как базальт и гранит, дают микротрещины уже при ничтожных подвижках сейсмического порядка.

Вода в породах может находиться в свободном и связанном состоянии. В свободном состоянии в пространстве между частицами пород она подчиняется силам земного притяжения (гравитации) либо частично удерживается в капиллярах пород менисковыми силами. Образно это можно сравнить с водой, пропитывающей губку.

В связанном состоянии вода в породах может быть либо в пленочном, либо в адсорбированном виде, удерживаясь между зернами пород адсорбционными силами. Говоря о связанной воде, следует иметь в виду две формы ее связи: физически связанную и химически связанную. Химически связанная вода - это так называемая кристаллизационная вода. Она прочно связана с кристаллами минералов химическими силами и входит в состав минерала. Примером может служить медный купорос CuSO 4 *5H 2 O. Физически связанная вода, в свою очередь, может быть как прочносвязанной с породами, так и рыхлосвязанной.

Прочносвязанная вода удерживается физическими законами - громадными давлениями в недрах. Рыхлосвязанная вода обволакивает частицы породы. Она обладает повышенной вязкостью, может очень медленно передвигаться по поверхности частиц породы, как жидкость. На эту воду не оказывает влияния гравитация, и замерзает она не при нуле, а при минус 1,5°С. Количество физически и химически связанных вод в составе минерала может быть подчас весьма значительным, достигая 60 - 65 вес.%.

Важными характеристиками, связанными с отношением пород к воде, являются влагоемкость и водоотдача.

Влагоемкостью называют способность горных пород вмещать и удерживать определенное количество воды. Высокой влагоемкостью обладают глины, средней - мелкие пески, слабой - галечники. Влагоемкость зависит от размера частиц: чем меньше их размер, тем больше влагоемкость.

Водоотдача - это отношение количества воды, которое может отдать порода, к общему содержанию воды в ней. Здесь зависимость обратная: процент водоотдачи тем больше, чем крупнее частицы породы. Вода, заполняющая поры, трещины и пустоты пород, может находиться в них во всех трех фазах - твердой, жидкой и газообразной, из которых первая наиболее характерна для зон вечной мерзлоты. В парообразном отношении подземная вода может конденсироваться до жидкости и переходить из жидкости в пар. Она передвигается из областей с повышенными давлением и температурой в области с более низкими их значениями.

Передвижение гравитационных подземных вод происходит главным образом тремя путями: флюацией, диффузией и фильтрацией.

Флюацией называется «вливание» воды в какую-либо емкость в породах. Например, в известняках в результате выщелачивания в земной поверхности образуются воронки, которые продолжаются вглубь многочисленной системой трубок, каналов, каверн и пустот, иногда даже пещер. Стекающая с поверхности дождевая и талая вода через эти воронки будет проникать в породы. Флюация происходит преимущественно под влиянием силы тяжести.

Диффузия сводится к перемещению подземных водных растворов с мест с большей концентрацией в места с меньшей. Скорость этого процесса, хотя и невелика, но все же реально ощутима в геологическом масштабе времени. Сюда же следует отнести и осмос - медленное проникновение одной жидкости в другую через полупроницаемые перегородки.

Фильтрация - это просачивание воды по мелким порам породы. Именно таким образом дождевая вода проникает в песок. Фильтрация протекает под влиянием гравитации, а также может происходить в сторону снижения давления и температуры. Под влиянием давления пород и газов она может протекать и снизу вверх. Что касается скорости фильтрации, то она значительно выше скорости диффузии и зависит от многих факторов (пористости пород, вязкости водного раствора, градиента давления и т. д.).

Химический состав подземных вод

Подземные воды представляют собой природные растворы различных минеральных солей и некоторых органических соединений. Интегрированным показателем содержания минеральных веществ служит общая минерализация вод -- сумма растворимых веществ, выраженная в миллиграммах на литр (мг/л) или граммах на литр (г/л). Среди растворенных веществ преобладают соли распространенных кислот натрия, кальция, магния. Эти соли определяют главные показатели химизма вод: жесткость, соленость и щелочность.

Жесткость вод определяется главным образом присутствием бикарбонатов кальция СаНСО 3 , сульфатов и хлоридов. Мягкие воды содержат до 0,25 г/л солей, жесткие воды -- более 0,25 г/л.

Соленость вод связана с содержанием сульфатов и хлоридов кальция, магния, натрия -- CaSO 4 , MgSO 4 , Na 2 SO 4 , CaCl 2 , MgCl 2 , NaCl. Щелочность вод зависит главным образом от бикарбоната натрия NaHCCX, а иногда даже Na,CO. -- соды. В химической класси-фикации подземных вод типы выделяются по преобладающим катионам, которые затем делятся на классы по содержанию катионов.

Химический состав и температура пластовых подземных вод закономерно меняются по мере возрастания глубины их залегания.

Пресные воды содержат солей менее 0,5 г/л, соленые от 1 до 3 г/л, рассолы -- более 50 г/л.

Особую группу подземных вод составляют так называемые минеральные воды. Они имеют различную минерализацию, но их главное свойство -- целебное действие. Среди них наиболее распространены бикарбонатно-кальциево-натриевые с большим количеством растворенного углекислого газа (нарзаны Минеральных Вод и Закавказья), сероводородные воды (источники Мацесты), воды со специфическими растворимыми органическими соединениями (источники Предкарпатья -- Трускавец и др.). Все эти воды различаются температурной характеристикой и бывают холодные с температурой около и ниже 20°С, теплые -- от 20 до 37°С, горячие -- от 37 до 42°С и очень горячие -- выше 42°С.

Контрольные вопросы

  • 1. Виды сейсмических волн.
  • 2. Различие земной коры и мантии. Где граница?
  • 3. Что такое горные породы?
  • 4. Чем отличаются кислые, средние, основные магматические породы?
  • 5. Анализ элементов земной коры. Геохимические классификации элементов.
  • 6. В результате каких процессов образуются осадочные горные породы?
  • 7. В чем разница между прочносвязанной и рыхлосвязанной водой?
  • 8. От чего зависит влагоемкость и влагоотдача?

Литосфера – это внешняя особо прочная оболочка планеты Земля, преимущественно из твердого вещества. Впервые понятие «литосфера» было определено ученым Дж. Баррелом. До 60-х годов прошлого столетия синонимом литосферы являлся термин «земная кора», считалось, что это одно и тоже понятие. Но, впоследствии учеными было доказано, что в состав литосферы входит еще и верхний слой мантии, который имеет мощность несколько десятков километров. Характеризуется он снижением вязкости почвы и повышением электропроводности минералов. Это обстоятельство позволило считать, что литосфера достаточно сложная по своему составу и строению оболочка Земли.

В строении литосферы можно выделить как относительно подвижные платформы, так и стабильные области. Взаимодействие живой и минеральной материи осуществляется на поверхности, т.е. в почве. После того, как происходит разложение организмов, остатки переходят в состояние гумуса (чернозема). В состав почвы входят в основном минералы, живые существа, газы, вода и вещества органической природы. Из минералов, входящих в состав литосферы, образованы горные породы, такие как:

  • Магматические;
  • Осадочные;
  • Метаморфические породы.

Около 96% структуры литосферы составляют горные породы. В свою очередь, в составе горных пород можно выделить следующие минералы: гранит, диарит и диффузивы составляют 20,8% от всего состава, в то время как, базальты габбро составляют 50,34%. На долю кристаллических сланцев приходится 16,9%, все остальное, это осадочные породы, такие как глинистые сланцы и пески.

В химическом составе литосферы можно выделить следующие элементы:

  • Кислород, его массовая доля в составе твердой оболочки Земли составила 49,13 %;
  • на долю Алюминия и Кремния пришлось по 26 %;
  • железо составило 4,2 %;
  • доля Кальция в литосфере всего 3,25 %;
  • натрий, Магний, Калий составили примерно по 2,4 %;
  • незначительную долю в структуре составили такие элементы как Углерод, Титан, Хлор и Водород, их показатели составили от 1 до 0,2 %.

Земная кора состоит по большей части из различных минералов, которые были образованы посредством изверженных горных пород различных форм. На сегодняшний день в понятие «земная кора» вкладывается отверделый слой земной поверхности, находящийся выше сейсмической границы. Как правила, граница находится на разных уровнях, где отмечаются резкие колебания показаний сейсмических волн. Эти волны возникают в ходе различного рода землетрясений. Ученые выделают два типа земной коры: континентальная и океаническая.

Континентальная кора занимает примерно 45% земной поверхности, при этом имеет более высокую мощность, чем океаническая. Под толщей гор ее протяженность составляет 60-70 км. Кора состоит из базальтового, гранитового и осадочного слоя.

Океаническая земная кора более тонкая по сравнению с континентальной. Состоит она из базальтового и осадочного слоя, ниже базальтового слоя начинается мантия. Как правило, рельеф океанического дна имеет сложную структуру. Кроме обычных форм рельефа, выделяют океанические хребты. Как раз на этих местах происходит формирование базальтовых слоев из мантии. В местах разлома, проходящих по центральной части хребта, образуются лавовые потоки, что и служит образованию базальта. В основном, хребты возвышаются над дном океана на несколько тысяч километров, за счет этого, рифовые зоны считаются самыми не спокойными с точки зрения сейсмических показателей.

В твердой оболочке Земли постоянно наблюдаются химические процессы, в ходе которых, происходит разрушение горных пород. Данные процессы протекают под воздействием резких колебаний температуры, воды, кислорода и осадков. Из этого, можно сделать вывод, что химическое изменение земной коры неразрывно связано с другими не менее важными оболочками Земли. Как правило, химические реакции в литосфере происходят под воздействием компонентов других оболочек. Большинство процессов происходит с участием воды, минералов, которые могут выступать как компоненты окисления либо восстановления в химических реакциях.

Химические реакции в почве

Почва является верхним слоем литосферы, играет важнейшую роль во взаимодействии всех оболочек Земли. Она является средой обитания многих живых существ, что позволяет считать, литосферу неразрывно связанной с биосферой. Благодаря почве происходит газовый обмен атмосферы и земной коры, а так же атмосферы и гидросферы. Особенностью химических реакций в почве является возможность одновременного протекания биологических, физических и химических процессов.
Основу всех химических реакций в почве составляет кислород и вода. В структуру гумуса входят такие минералы как: кварц, глина и известняк. Характерной особенностью почвы как части литосферы является то, что в её состав входит 92 химических элемента.

Земля состоит из множества химических элементов - кислорода, азота, кремния, железа и т. д. Соединяясь между собой, химические элементы образуют минералы. Всего в природе насчитывается около 2650 минералов, которые образуют 3780 минеральных разновидностей (табл. 4). Для их определения и изучения большое значение имеют физические свойства, к которым относят облик кристаллов, блеск, цвет минерала, цвет черты минерала, прозрачность, твердость, спайность, излом и удельный вес.

Таблица 4

Кристаллохимические кларки (средние содержания) распределения минералов в природе

Классификационная группа минерала

Процент

минералов

данной

группы

Основные

составы

минералов

С приближенным учетом

химических

разновидностей

минералов

1. Самородные

2. Сульфиды

3. Хроматы (хромшпинелиды)

4. Вольфраматы и молибдаты

6. Силикаты

7. Фосфаты

8. Нитраты

9. Сульфаты

10. Галогениды

11. Йодаты

12. Бораты

13. Карбонаты

14. Органические соединения

По облику выделяют кристаллы с изометричными формами, вытянутыми в одном или в двух направлениях.

Блеск минералов подразделяют на стеклянный, алмазный, полуме-таллический, металлический, жирный, восковой, матовый. У минера-

лов с параллельно-волокнистым строением наблюдается шелковистый отлив (асбест, селенит, тигровый глаз), прозрачных минералов со слоистой кристаллической структурой - перламутровый отлив (мусковит, гипс, тальк и др.).

Цвет минералов - один из важнейших признаков, по которым диагностируют минералы. Под термином «цвет черты» подразумевается цвет тонкого порошка минерала, если проводить им по матовой поверхности фарфоровой пластины.

Прозрачность - свойство вещества пропускать через себя свет. По нему различают прозрачные, полупрозрачные и непрозрачные минералы.

Для оценки твердости принята шкала Мооса, представленная десятью минералами, из которых каждый последующий своим острым концом царапает все предыдущие: тальк - гипс - кальцит - флюорит -апатит - ортоклаз - кварц - топаз - корунд - алмаз.

Спайностью называется способность кристаллов раскалываться или расщепляться по определенным кристаллографическим плоскостям, параллельным действительным или возможным граням. Здесь принята пятиступенчатая шкала спайности: весьма совершенная, совершенная, средняя, несовершенная, весьма несовершенная, переходящая в раковистый излом, как у толстого стекла.

Удельный вес минералов изменяется от небольших значений (2,1- 2,5 т/м 3 у галита) до очень высоких (23 т/м 3 у осмистого иридия).

Например, у кварца (8102) форма кристаллов призматическая, блеск стеклянный, спайность отсутствует, излом раковистый, твердость 7 баллов, удельный вес 2,65 г/см 3 , из-за высокой твердости черты не имеет; у галита (№С1) форма кристалла кубическая, твердость 2 балла, удельный вес 2,1 г/см 3 , блеск стеклянный, цвет белый, цвет черты также белый, спайность совершенная, вкус соленый и т. д.

Большинство минералов имеют кристаллическое строение. Форма кристалла для данного минерала всегда постоянна. Например, кристаллы кварца имеют форму призмы, галита - форму куба и т. д. Размеры минералов колеблются от микроскопических до гигантских. Так, на острове Мадагаскар найден кристалл берилла длиной 8 м и в поперечном сечении 3 м. Вес его составляет почти 400 т.

Объемное разделение минералов Земли. Минералы по происхождению подразделяют на магматические, осадочные, метаморфические, метасоматические, контактово-пневматолитовые и пневматолитовые, гидротермальные, экзогенного выветривания, органогенного происхождения. Распределение породообразующих минералов в земной коре соответствует соотношению основных групп горных пород (табл. 5). В земной коре наиболее распространены порядка 40-50 минералов, которые называются породообразующими.

Существуют различные классификации минералов: по происхождению, форме кристаллов и т. д. Но наибольшее значение для исполь-

зования минералов в промышленных целях имеет их химическая классификация. Большая часть минералов состоит из двух или нескольких химических элементов. Некоторые минералы образованы одним химическим элементом. О содержании химических элементов в минерале можно узнать по его химической формуле.

Таблица 5

Распределение породообразующих минералов в земной коре