В каком году появился физика. История возникновения физики


Хотя история физики как самостоятельной науки началась только в XVII веке, ее истоки относятся к самой глубокой древности, когда люди начали систематизировать первые свои знания об окружающем их мире. До Нового времени они относились к натуральной философии и включали в себя сведения о механике, астрономии и физиологии. Настоящая же история физики началась благодаря опытам Галилея и его учеников. Также фундамент этой дисциплины был заложен Ньютоном.

В XVIII и XIX столетии появились ключевые понятия: энергия, масса, атомы, импульс и т. д. В XX веке стала ясной ограниченность классической физики (помимо нее, зародилась квантовая физика, теория относительности, теория микрочастиц и т. д.). Естественнонаучные знания дополняются и сегодня, так как перед исследователями остается множество нерешенных проблем и вопросов о природе нашего мира и всей вселенной.

Древность

Многие языческие религии Древнего мира основывались на астрологии и знаниях звездочетов. Благодаря их исследованиям ночного неба произошло становление оптики. Накопление астрономических знаний не могло не повлиять на развитие математики. Однако теоретически объяснить причины природных явлений древние не могли. Жрецы приписывали молнии и солнечные затмения божественному гневу, что не имело ничего общего с наукой.

В то же время в Древнем Египте научились измерять длину, вес и угол. Эти знания были необходимы архитекторам при строительстве монументальных пирамид и храмов. Развивалась прикладная механика. Сильны в ней были и вавилоняне. Они же, основываясь на своих астрономических знаниях, стали использовать сутки для измерения времени.

Древнекитайская история физики началась в VII веке до н. э. Накопленный опыт в ремеслах и строительстве был подвергнут научному анализу, результаты которого были изложены в философских сочинениях. Самым известным их автором считается Мо-цзы, живший в IV столетии до н. э. Он предпринял первую попытку сформулировать основополагающий закон инерции. Уже тогда китайцы первыми изобрели компас. Они открыли законы геометрической оптики и знали о существовании камеры-обскуры. В Поднебесной появились зачатки теории музыки и акустики, о которых еще долгое время не подозревали на Западе.

Античность

Античная история физики больше всего известна благодаря греческим философам. Их исследования основывались на геометрических и алгебраических познаниях. Например, пифагорейцы первыми объявили о том, что природа подчиняется универсальным законам математики. Эту закономерность греки видели в оптике, астрономии, музыке, механике и других дисциплинах.

История развития физики с трудом представляется без трудов Аристотеля, Платона, Архимеда, Лукреция Кара и Герона. Их сочинения сохранились до наших времен в достаточно целостном виде. Греческие философы отличались от современников из других стран тем, что они объясняли физические законы не мифическими понятиями, а строго с научной точки зрения. В то же время у эллинов случались и крупные ошибки. К ним можно отнести механику Аристотеля. История развития физики как науки многим обязана мыслителям Эллады уже хотя бы тем, что их натурфилософия оставалась основой международной науки до XVII столетия.

Вклад александрийских греков

Демокрит сформулировал теорию атомов, согласно которой все тела состоят из неделимых и крохотных частиц. Эмпедокл предложил закон сохранения материи. Архимед заложил основы гидростатики и механики, изложив теорию рычага и подсчитав величину выталкивающей силы жидкости. Он же стал автором термина «центр тяжести».

Александрийский грек Герон считается одним из величайших инженеров в человеческой истории. Он создал паровую турбину, обобщил знания об упругости воздуха и сжимаемости газов. История развития физики и оптики продолжилась благодаря Евклиду, исследовавшему теорию зеркал и законы перспективы.

Средневековье

После падения Римской империи настал крах античной цивилизации. Многие знания были преданы забвению. Европа почти на тысячу лет остановилась в своем научном развитии. Храмами знаний стали христианские монастыри, которым удалось сохранить некоторые сочинения прошлого. Однако прогресс тормозила сама церковь. Она подчинила философию богословской доктрине. Мыслители, пытавшиеся выйти за ее пределы объявлялись еретиками и жестоко наказывались инквизицией.

На этом фоне первенство в естественных науках перешло к мусульманам. История возникновения физики у арабов связана с переводом на их язык трудов античных греческих ученых. На их основе мыслители востока сделали несколько собственных важных открытий. К примеру, изобретатель Аль-Джазири описал первый коленчатый вал.

Европейский застой продлился вплоть до Ренессанса. За Средние века в Старом Свете изобрели очки и объяснили возникновение радуги. Немецкий философ XV века Николай Кузанский первым предположил, что Вселенная бесконечна, и тем самым далеко опередил свое время. Через несколько десятилетий Леонардо да Винчи стал первооткрывателем явления капиллярности и закона трения. Также он пытался создать вечный двигатель, но не справившись с этой задачей, начал теоретически доказывать неосуществимость подобного проекта.

Ренессанс

В 1543 году польский астроном Николай Коперник опубликовал главный труд всей своей жизни «О вращении небесных тел». В этой книге впервые в христианском Старом Свете была произведена попытка защитить гелиоцентрическую модель мира, согласно которой Земля крутится вокруг Солнца, а не наоборот, как предполагала принятая церковью геоцентрическая модель Птолемея. Многие ученые физики и их открытия претендуют на звание великих, однако именно появление книги «О вращении небесных тел» считается началом научной революции, за которой последовало возникновение не только современной физики, но и современной науки в целом.

Другой знаменитый ученый Нового времени Галилео Галилей больше всего прославился изобретением телескопа (также ему принадлежит изобретение термометра). Кроме того, он сформулировал закон инерции и принцип относительности. Благодаря открытиям Галилея зародилась совершенно новая механика. Без него история изучения физики застопорилась бы еще на долгое время. Галилею, как и многим его широко мыслившим современникам, пришлось сопротивляться давлению церкви, из последних сил пытавшейся защитить старый порядок.

XVII столетие

Набравший ход рост интереса к науке продолжился и в XVII веке. Немецкий механик и математик стал первооткрывателем в Солнечной системе Свои взгляды он изложил в книге «Новая астрономия», изданной в 1609 году. Кеплер оппонировал Птолемею, заключив, что планеты движутся по эллипсам, а не по окружностям, как считалось еще в античности. Этот же ученый внес значительный вклад в развитие оптики. Он исследовал дальнозоркость и близорукость, выяснив физиологические функции хрусталика глаза. Кеплер ввел понятия оптической оси и фокуса, сформулировал теорию линз.

Француз Рене Декарт создал новую научную дисциплину - аналитическую геометрию. Также он предложил Главным трудом Декарта стала книга «Начала философии», изданная в 1644 году.

Немногие ученые-физики и их открытия известны так, как англичанин Исаак Ньютон. В 1687 году он написал революционную книгу «Математические начала натуральной философии». В ней исследователь изложил закон всемирного тяготения и три закона механики (также ставшие известными как Этот ученый работал над теорией цвета, оптикой, интегральными и дифференциальными исчислениями. История физики, история законов механики - все это тесно связано с открытиями Ньютона.

Новые рубежи

XVIII век подарил науке множество выдающихся имен. Особенно выделяется среди них Леонард Эйлер. Этот швейцарский механик и математик написал более 800 работ по физике и таким разделам, как математический анализ, небесная механика, оптика, теория музыки, баллистика и т. д. Петербургская академия наук признала его своим академиком, из-за чего Эйлер значительную часть жизни провел в России. Именно этот исследователь положил начало аналитической механике.

Интересно что история предмета физика сложилась такой, какой мы ее знаем, благодаря не только профессиональным ученым, но и исследователям-любителям, гораздо больше известным в совершенно другом качестве. Самым ярким примером такого самоучки стал американский политик Бенджамин Франклин. Он изобрел громоотвод, внес большой вклад в изучение электричества и сделал предположение о его связи с явлением магнетизма.

В конце XVIII столетия итальянец Алессандро Вольта создал «вольтов столб». Его изобретение стало первой электрической батарей в истории человечества. Этот век также ознаменовался появлением ртутного термометра, создателем которого был Габриэль Фаренгейт. Другим важным событием изобретательства оказалось изобретение паровой машины, произошедшее в 1784 году. Оно породило новые средства производства и перестройку промышленности.

Прикладные открытия

Если история начала физики развивалась исходя из того, что наука должна была объяснить причину природных явлений, то в XIX веке ситуация значительно изменилась. Теперь у нее появилось новое призвание. От физики стали требовать управления природными силами. В связи с этим стала ускоренно развиваться не только экспериментальная, но и прикладная физика. «Ньютон электричества» Андре-Мари Ампер ввел новое понятие электрического тока. В этой же области работал Майкл Фарадей. Он открыл явление электромагнитной индукции, законы электролиза, диамагнетизм и стал автором таких терминов, как анод, катод, диэлектрик, электролит, парамагнетизм, диамагнетизм и т. д.

Сложились новые разделы науки. Термодинамика, теория упругости, статистическая механика, статистическая физика, радиофизика, теория упругости, сейсмология, метеорология - все они формировали единую современную картину мира.

В XIX столетии возникли новые научные модели и понятия. обосновал закон сохранения энергии, Джеймс Клерк Максвелл предложил собственную электромагнитную теорию. Дмитрий Менделеев стал автором значительно повлиявшей на всю физику периодической системы элементов. Во второй половине века появилась электротехника и двигатель внутреннего сгорания. Они стали плодами прикладной физики, ориентированной на решение определенных технологических задач.

Переосмысление науки

В XX веке история физики, кратко говоря, перешла к тому этапу, когда наступил кризис уже устоявшихся классических теоретических моделей. Старые научные формулы начали противоречить новым данным. К примеру, исследователи выяснили, что скорость света не зависит от, казалось бы, незыблемой системы отсчета. На рубеже столетий были открыты требовавшие подробного объяснения явления: электроны, радиоактивность, рентгеновские лучи.

Вследствие накопившихся загадок произошел пересмотр старой классической физики. Ключевым событием в этой очередной научной революции стало обоснование теории относительности. Ее автором был Альберт Эйнштейн, впервые поведывавший миру о глубинной связи пространства и времени. Возник новый раздел теоретической физики - квантовая физика. В ее становлении приняли участие сразу несколько ученых с мировым именем: Макс Планк, Макс Бон, Пауль Эренфест и другие.

Современные вызовы

Во второй половине XX века история развития физики, хронология которой продолжается и сегодня, перешла на принципиально новый этап. Этот период ознаменовался расцветом исследования космоса. Небывалый скачок сделала астрофизика. Появились космические телескопы, межпланетные зонды, детекторы внеземных излучений. Началось детальное изучение физических данных различных тел Солнечной планеты. С помощью современной техники ученые обнаружили экзопланеты и новые светила, в том числе радиогалактики, пульсары и квазары.

Космос продолжает таить в себе множество неразгаданных загадок. Изучаются гравитационные волны, темная энергия, темная материя, ускорение расширения Вселенной и ее структура. Дополняется теория Большого взрыва. Данные, которые можно получить в земных условиях, несоизмеримо малы по сравнению с тем, сколько работы у ученых есть в космосе.

Ключевые проблемы, стоящие перед физиками сегодня, включают в себя несколько фундаментальных вызовов: разработку квантового варианта гравитационной теории, обобщение квантовой механики, объединение в одну теорию всех известных сил взаимодействия, поиск «тонкой настройки Вселенной», а также точное определение явления темной энергии и темной материи.

Традиционно гвоздика встречается практически в каждом рецепте пряников и пуншей. Эта пряность улучшает вкус соусов, а также мясных и овощных блюд. Ученые обнаружили, что пряная гвоздика является прекрасным антиоксидантом и поэтому подходит для укрепления защитных сил организма.

Читать полностью

Рубрика: Здоровый образ жизни

Черемша (дикий чеснок) - своего рода предвестник весны, которого ждут с нетерпением. Это неудивительно, ведь нежные зеленые листья дикого чеснока являются не только кулинарной, но и полезной для здоровья изюминкой! Черемша выводит токсины, снижает кровяное давление и уровень холестерина. Она борется с существующим атеросклерозом и защищает организм от бактерий и грибков. В дополнение к большому количеству витаминов и питательных веществ, дикий чеснок также содержит активный ингредиент аллиин - природный антибиотик с разнообразным целебным действием.



Рубрика: Здоровый образ жизни

Зима – время гриппа. Ежегодная волна заболеваний гриппом обычно начинается в январе и длится три-четыре месяца. Можно ли предотвратить грипп? Как защитить себя от гриппа? Является ли вакцина против гриппа действительно единственной альтернативой или есть другие способы? Что конкретно можно сделать для укрепления иммунной системы и предотвращения гриппа естественными способами, вы узнаете в нашей статье.

Читать полностью

Рубрика: Здоровый образ жизни

Существует множество лекарственных растений от простудных заболеваний. В нашей статье вы познакомитесь с наиболее важными травами, которые помогут вам быстрее справиться с простудой и стать сильнее. Вы узнаете, какие растения помогают при насморке, оказывают противовоспалительное действие, облегчают боль в горле и успокаивают кашель.

Читать полностью

Как стать счастливым? Несколько шагов к счастью Рубрика: Психология отношений

Ключи к счастью находятся не так далеко, как это может показаться. Есть вещи, которые омрачают нашу действительность. От них необходимо избавляться. В нашей статье мы познакомим вас с несколькими шагами, с помощью которых ваша жизнь станет ярче, и вы почувствуете себя счастливее.

Читать полностью

Учимся извиняться правильно Рубрика: Психология отношений

Человек может быстро что-то сказать и даже не заметить, что он кого-то обидел. В мгновение ока может разгореться ссора. Одно плохое слово следует за следующим. В какой-то момент ситуация настолько накаляется, что, похоже, из нее уже нет выхода. Единственное спасение - чтобы один из участников ссоры остановился и извинился. Искренне и дружелюбно. Ведь холодное «Извините» не вызывает никаких эмоций. Правильное извинение - лучший лекарь для отношений в каждой жизненной ситуации.

Читать полностью

Рубрика: Психология отношений

Сохранять гармоничные отношения с партнером - это не просто, но бесконечно важно для нашего здоровья. Можно правильно питаться, регулярно заниматься спортом, иметь прекрасную работу и много денег. Но ничто из этого не поможет, если у нас есть проблемы в отношениях с дорогим человеком. Поэтому так важно, чтобы наши отношения были гармоничными, а как этого добиться, помогут советы в данной статье.

Читать полностью

Неприятный запах изо рта: в чем причина? Рубрика: Здоровый образ жизни

Плохой запах изо рта - довольно неприятный вопрос не только для самого виновника этого запаха, но и для его близких. Неприятный запах в исключительных случаях, например, в виде чесночной пищи, прощается всем. Хронический плохой запах изо рта, однако, может легко продвигать человека к социальному офсайду. Так не должно происходить, потому что причина неприятного запаха изо рта может быть в большинстве случаев относительно легко обнаружена и устранена.

Читать полностью

Рубрика:

Спальня всегда должна быть оазисом мира и благополучия. Очевидно поэтому многие люди хотят украсить спальню комнатными растениями. Но целесообразно ли это? И если да, то какие растения подходят для спальной комнаты?

Современные научные знания порицают древнюю теорию о том, что цветы в спальне неуместны. Раньше считалось, что зеленые и цветущие растения ночью потребляют много кислорода и могут вызвать проблемы со здоровьем. На самом деле комнатные растения имеют минимальную потребность в кислороде.

Читать полностью

Секреты ночной фотосъемки Рубрика: Фотография

Какие же настройки камеры следует использовать при длительной экспозиции, ночной фотосъемке и фотосъемке с низким уровнем освещения? В нашей статье мы собрали несколько советов и рекомендаций, которые помогут Вам сделать качественные ночные фотографии.

Физика (греч. от physis - природа) - наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира .

Физика - одна из основных областей естествознания - наука о свойствах и строении мира, о формах ее движения и изменения, об общих закономерностях явлений природы .

Основоположниками физики являются такие великие ученые как: Галио Галилей - итальянский физик, астроном, философ, математик, Блез Паскаль - французский математик, физик, религиозный философ, Исаак Ньютон - английский математик, астроном, физик. Ньютона принято считать основоположником физики.

От ранних цивилизаций, возникших на берегах Тигра, Евфрата и Нила, не осталось никаких свидетельств в области физических знаний, на тот момент не было системы физических знаний, а существовали только определенные описания и факты, не подтвержденные теоретическими обобщениями и выводами. Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание физики сохранялось до конца 17 века.

Аристотель в IV веке до нашей эры впервые употребил слово «фюзис», что означает природа. Он также употребил слова «материя» и «форма».

Так, с какого же периода истории возникла физика, которую еще нельзя было назвать наукой?

На наш взгляд наблюдение над природой началось в глубокой древности, когда у человека появилась необходимость прокормить себя и своих близких, но человек еще не перешел к земледелию и к скотоводству, а пользовался плодами леса и охотой на диких животных.

Попробуем представить абстрактную картину. Случайно в буреломе, где хаотично повалены деревья, одно из них оказалось на другом так, что корневая система, «выдранного» дерева лежала на земле, ствол его, опираясь на другое дерево, свободно свисал. Древний человек случайно вступил на ствол довольно далеко от точки опоры, своим весом приподнял всю корневую систему дерева весом, гораздо большим, чем вес самого человека.

Человек ничего не понял, но заметил эту особенность, которую и стал применять при необходимости. Так, появился рычаг. Произошло это задолго до исследований Архимеда (287 год до нашей эры). Человек, как мы полагаем, заметил и несколько рассчитал соотношение плеч рычага и действующих на него сил.

Архимед же привел в систему весь накопленный опыт. Согласно преданию Архимед произнес известную всем фразу: «Дайте мне точку опоры, и я подниму Землю»!

Конечно, он имел в виду применение рычага.

Вклад Архимеда в математику и физику, безусловно, велик. Архимед является основоположником теоретической механики и гидростатики. Он разработал методы нахождения площадей, поверхностей и объемов различных фигур и тел.

В основополагающих трудах по статике и гидростатике (закон Архимеда) Архимед дал образцы применения математики в естествознании и технике. Ему принадлежит множество технических изобретений: архимедов винт, определение состава сплавов взвешиванием в воде, системы для поднятия больших тяжестей, военные метательные машины.

В физике Архимед ввел понятие «центр тяжести». Он установил научные принципы статики и гидростатики, дал образцы применения математических методов в физических исследованиях. Основные положения статики сформулированы в сочинении «О равновесии плоских фигур». Архимед делает вывод о законе рычага. Знаменитый закон гидростатики, вошедший в науку с именем Архимеда (Архимеда закон), сформулирован в трактате «О плавающих телах» .

Появление паруса, как мы считаем, также произошло случайно. Древние люди вновь при помощи наблюдений приобрели опыт. Как мы думаем, человек заметил, что если встать и плыть на бревне с помощью примитивного весла, и при этом дует попутный ветер, то бревно начинает двигаться довольно быстро. Возможно, человек заметил, что плывущий по воде ствол дерева с торчащими ветвями движется быстрее, чем без веток. Позднее человек сознательно соорудил из веток с листьями или из звериной шкуры подобие паруса. Так, появился первый примитивный парус.

Много столетий спустя, в результате накопленного человечеством опыта, появились парусные корабли, которые уже были способны плыть и против ветра. И среди них барк, самый современный парусник. В основе этого явления лежит сложение действующих сил.

Другим величайшим изобретением древности является колесо. Мы полагаем, что это, скорее всего коллективное изобретение, так как один человек не мог придумать колесо, затем посадить его на ось, закрепить на ней платформу и получить, таким образом, телегу. Как мы считаем, древние люди заметили, что если взять толстое бревно, то его легче перемещать по земле, если под бревно подкладывать круглые обрубки дерева. В результате размышлений человека, даже не группы людей, а целых поколений, получилось колесо.

Изобретение колеса дало колоссальный толчок в развитии современной цивилизации.

Здесь хотелось бы упомянуть о цивилизации древних инков. Инки - это индейское племя, которое проживало на землях таких современных стран, как Перу, Эквадор, Боливия и другие. Древние инки не знали и не применяли колесо из-за рельефа земель, которые они занимали. Перу - страна горная, и инками не был замечен тот факт, что пресловутое бревно, можно перемещать качками.

Так, мы полагаем, что физика зародилась на основе сбора наблюдений, опыта, информации. Когда же такой информации накопилось достаточно много, величайшие ученые древности систематизировали накопленные знания, создав фундаментальную теорию механики.

Наше небольшое размышление о том, когда зародилась физика, хотелось бы закончить стихотворением:

Читай, внимай и понимай,

Почаще думай, мысли, познавай,

Ты в жанры разные «влетай»

И книги полностью «глотай»,

Но ничего не упускай!

Учти, что всяк разумный человек

Читает книги разных лет.

Он в них живет, поет и пляшет,

Он знания все там берет

И все дословно узнает,

Внимает, мыслит, познает,

Вернувшись в мир,

Он всем расскажет,

Что дарят чудны пейзажи,

Картин из тех чудеснейших долин,

Где жизнь он мысленно прожил

И мир с других сторон открыл.

За что всю жизнь благодарил

Литературный дивный свет,

Пролитый с древних лет на мир .

Литература:

1. Большой энциклопедический словарь, гл. ред. Прохоров А. М. - М.: Большая Российская энциклопедия, 2002. - 1456 с.

2. Житомирский С. В. Ученый из Сиракуз: Архимед. Историческая повесть. - М.: Молодая гвардия, 1982. - 191 с.

3. Ожегов С. И., Шведова Н. Ю. Толковый словарь русского языка: 72500 слов и выражений/Российская АН. институт русского языка.; Российский фонд культуры. - М.: Азъ Ltd., 1992. - 960 с.

4. Царева М. В. Стихотворение, «Великий чтива книг», 2015.

Введение

Рост физики не только оказывал воздействие на идеи о материальном
мире, математике и философии, но также и преобразовывал человеческое
общество, путем совершенствования его технологий, в целом. Физика - это
не только знания, но и, что даже скорее больше, практический опыт.
Научная революция, начавшаяся в XVI веке, является удобной границей
между древней мыслью и классической физикой. Год 1900 - начало более
современной физики. Появились новые вопросы, которые и сегодня ещё
очень далеки от своего завершения.

Альберт Эйнштейн



В начале XX века
физика столкнулась с серьёзными проблемами. Начали возникать
противоречия между старыми моделями и эмпирическим опытом. Так,
например, наблюдались противоречия между классической механикой и
электродинамикой при попытках измерить скорость света.
Выяснилось, что она не зависит от системы отсчёта. Физика того времени
также была неспособна описать некоторые микроэффекты, такие как атомные
спектра излучений, фотоэффект, эффект Комптона, энергетическое равновесие электромагнитного излучения и вещества. Таким образом, была необходима новая физика.

Основным ударом по старой парадигме стали две теории: это теория относительности Эйнштейна и Квантовая физика. Общая теория относительности была создана в 1916
году, и она позволила связать в одних уравнениях гравитационную и
инертную массы. Необходимость во второй физической революции появилась
в связи с открытием микромира элементарных частиц, а также многих явлений, происходящих с ними.

Ко второй половине XX века в в физике сложилось представление, что
все взаимодействия физической природы можно свести к всего лишь четырём
типам взаимодействия:

  • гравитация
  • электромагнетизм
  • сильное взаимодействие
  • слабое взаимодействие

В последнюю декаду XX века накопились астрономические данные, подтверждающие существование космологической постоянной, тёмной материи и тёмной энергии. Идут поиски общей теории поля - теории всего, которая описала бы все фундаментальные взаимодействия обобщённым физико-математическим образом. Одним из серьёзных кандидатов на эту роль является М-теория, которая, в свою очередь, - недавнее развитие теории суперструн.

Всё больше проблем связано с эволюцией Вселенной, с её ранними
этапами, с природой вакуума, и, наконец, с окончательной природой
свойств податомных частиц. Частичные теории являются в настоящее время
лучшими, что физика может предложить в настоящее время. См. также Последние достижения в физике.

Список неразрешенных проблем в физике постоянно множится; однако,

«Мы больше атома, но, кажется, уже знаем о нём все.» - Ричард Фейнман

Ранняя физика

По природе своей, человек - существо любопытное. Ещё с древних пор
его начали интересовать вещи, казавшиеся ранее обыденными, относящиеся
к окружающему миру. Тогда давно основной причиной этого любопытства,
скорее всего, был страх. И лишь немногих это интересовало из чистого
любопытства, любопытства ради любопытства.

Действительно, почему, например, происходит притяжение, почему
разные материалы имеют разные свойства? Ну почему же солнце заходит с
одной стороны, а восходит с другой?! Люди всегда интересовались миром.
Многие свойства природы приписывались богам. Неправильные теории
приобретали свойства религии. Их передавали из поколения в поколения.
Многие теории того времени были в значительной степени изложены в форме
философских строк. Мало было людей, готовых в них сомневаться. Тем
более на том этапе развития наличие любой теории или отсутствие таковой
большого влияния на жизнь не оказывало.

Античная физика

Средств для проверки теорий и выяснения вопроса, какая из них верна,
в древности было крайне мало, даже если речь шла о земных каждодневных
явлениях. Единственная физическая величина, которую умели тогда
достаточно точно измерять - длина; позже к ней добавился угол. Эталоном времени служили сутки,
которые в Древнем Египте делили не на 24 часа, а на 12 дневных и 12
ночных, так что было два разных часа, и в разные сезоны
продолжительность часа была разной. Но даже когда установили привычные
нам единицы времени, из-за отсутствия точных часов большинство
физических экспериментов были просто невозможно провести. Поэтому
естественно, что вместо научных школ возникали полурелигиозные учения.

Преобладала геоцентрическая система мира, хотя пифагорейцы развивали и пироцентрическую , в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня . Чтобы всего получилось священное число небесных сфер (десять), шестой планетой объявили Противоземлю . Впрочем, отдельные пифагорейцы (Аристарх Самосский и др.) создали гелиоцентрическую систему. У пифагорейцев возникло впервые и понятие эфира как всеобщего заполнителя пустоты.

Первую формулировку закона сохранения материи предложил Эмпедокл в V веке до н. э.:

Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться.

Позже аналогичный тезис высказывали Демокрит, Аристотель и другие..

Термин «Физика»
возник как название одного из сочинений Аристотеля. Предметом этой
науки, по мнению автора, было выяснение первопричин явлений:

Так как научное знание возникает при всех исследованиях, которые
простираются на начала, причины или элементы путём их познания (ведь мы
тогда уверены в познании всякой вещи, когда узнаём её первые причины,
первые начала и разлагаем её впредь до элементов), то ясно, что и в
науке о природе надо определить прежде всего то, что относится к
началам.

Такой подход долго (фактически до Ньютона)
отдавал приоритет метафизическим фантазиям перед опытным исследованием.
В частности, Аристотель и его последователи утверждали, что движение
тела поддерживается приложенной к нему силой, и при ее отсутствии тело
остановится (по Ньютону, тело сохраняет свою скорость, а действующая
сила меняет ее значение и/или направление).

Некоторые античные школы предложили учение об атомах как первооснове материи. Эпикур даже полагал, что свобода воли человека вызвана тем, что движение атомов подвержено случайным смещениям.

Кроме математики, эллины успешно развивали оптику. У Герона Александрийского
встречается первый вариационный принцип «наименьшего времени» для
отражения света. Тем не менее в оптике древних были и грубые ошибки.
Например, угол преломления считался пропорциональным углу падения (эту
ошибку разделял даже Кеплер). Гипотезы о природе света и цветности были многочисленны и довольны нелепы.

Индийский вклад


Таблица механики , 1728 Cyclopaedia .



В позднюю Vedic эру (c IX по VI в. до н.э), астроном Яджнаволкья
(Yajnavalkya), в своей Shatapatha Brahmana, упомянуто раннее понятие
гелиоцентр (heliocentrism), в котором Земля была круглой, и Солнце
являлось «центром сфер». Он измерил растояния от Луны и Солнца до Земли
в 108 диаметров самих объектов. Эти значения практически совпадают с
современными: для Луны - 110.6, и для Солнца - 107.6.

Индусы представляли мир состоящим из пяти основных элементов: земля, огонь, воздух, вода и эфир/пространство. Позже, с VII в. до н.э, они сформулировали теорию атома,
начиная с Kanada и Pakudha Katyayana. Поклонники теории полагали, что
атом состоит из элементов, до 9 элементов в каждом атоме, каждый
элемент имеет до 24 свойств. Они развивали следующие теории, о том как
атомы могут объединяться, реагировать, вибрировать, перемещаться и
выполнять другие действия. Также разрабатывались теории того, как атомы
могут сформировать двойные молекулы, которые объединяются далее, чтобы
сформировать ещё большие молекулы, и как частицы сначала объединяются в
пары, и затем группа в трио пар, которые являются наименьшими видимыми
единицами материи. Эти схождения с современными атомными теориями
потрясают воображение. Ещё у индусов атомы были делимыми частицами, до
чего мы догадались лишь в 30-х годах ХХ века, и что положило начало
всей ядерной энергетике.

Принцип относительности (чтобы не перепутать с теорией относительности Эйнштейна)
был доступен в зачаточной форме с VI в. до н.э в древнем индийском
философском понятии «sapekshavad», буквально «теория относительности»
на Санскрите.

Две школы, Samkhya и Vaisheshika, развивали теории света с VI-V в.
до н. э. Согласно школе Samkhya, свет - один из пяти фундаментальных
элементов, из которых позже появляются более тяжелые элементы. Школа
Vaisheshika определила движение в терминах немгновенного движения
физических атомов. Лучи света считались потоком высоких скоростных
атомов огня, которые могут проявлять различные особенности в
зависимости от скорости и мер этих частиц. Буддисты
Дигнга (V в.) и Dharmakirti (VII в.) развивали теорию света, состоящего
из частиц энергии, подобных современному понятию фотонов.

Почетный австралийский специалист по индийской культуре (indologist)
A. L. Basham заключил, что «они были блестящими образными объяснениями
физической структуры мира, и в основном, согласились с открытиями
современной физики.»

В 499 году астроном-математик Арьябхата (Aryabhata) представлял на обсуждение детальную модель
гелиоцентрической солнечной системы тяготения, где планеты вращаются
вокруг своей оси (сменяя таким образом день и ночь) и имеют
эллиптическую орбиту (приобретая таким образом зиму и лето).
Удивительно, что в такой системе луна не являлась источником света, а
только отражала солнечный свет от своей поверхности. Арьябхата также
правильно объяснил причины солнечных и лунных затмений и предсказал их
времена, дал радиусы планетарных орбит вокруг Солнца, и точно измерил
длины дня, звездного года, и диаметра Земли. Его объяснение затмений и
намёки на вращение Земли вызвало негодование правоверных индуистов, к
которым присоединился даже просвещённый Брахмагупта:

Последователи Ариабхаты говорят, что Земля движется, а небо
покоится. Но в их опровержение было сказано, что если бы это было так,
то камни и деревья упали бы с Земли…
Среди людей есть такие, которые думают, что затмения вызываются не
Головой [дракона Раху]. Это абсурдное мнение, ибо это она вызывает
затмения, и большинство жителей мира говорят, что именно она вызывает
их. В Ведах, которые есть Слово Божие, из уст Брахмы говорится, что
Голова вызывает затмения. Напротив того, Ариабхата, идя наперекор всем,
из вражды к упомянутым священным словам утверждает, что затмение
вызывается не Головой, а только Луной и тенью Земли… Эти авторы должны
подчиниться большинству, ибо всё, что есть в Ведах - священно.

Брахмагупта, в его Brahma Sputa Siddhanta в 628 году представляет гравитацию как силу притяжения и показывает закон притяжения.

Индийско-арабские цифры стали ещё одним важнейшим вкладом индусов в науку. Современная позиционная система счисления (индусско-арабская система цифр) и ноль была сначала развита в Индии, наряду с тригонометрическими функциями синуса и косинуса .
Эти математические достижения, наряду с индийскими достижения в физике,
были приняты Исламским Халифатом, после чего и начали распространяться
по Европе и другим частям света.

Китайский вклад

В XII веке до н. э., в Китае был изобретен первый редукционный механизм , the South Pointing Chariot , это было также первым использованием дифференциальной передачи .

Китаец «Мо Чинг » в III веке до н. э. стал автором ранней версии закона движения Ньютона.

«Прекращение движения происходит из-за противодействующей силы… Если
не будет никакой противостоящей силы …, то движение никогда не
закончится. Это верно настолько же, как и то, что бык не лошадь.»

Более поздние вклады Китая включают изобретения бумаги, печатного дела , пороха, и компаса. Китайцы первыми «открыли» отрицательные числа, которые оказали сильное влияние на развитие физики и математики.

Средневековая Европа

XIII век: изобретены очки, правильно объяснено явление радуги, освоен компас.

XVI век: Николай Коперник предложил гелиоцентрическую систему мира.

Симон Стевин в книгах «Десятая» (1585 ), «Начала статики» и других ввёл в обиход десятичные дроби,
сформулировал (независимо от Галилея) закон давления на наклонную
плоскость, правило параллелограмма сил, продвинул гидростатику и
навигацию. Любопытно, что формулу равновесия на наклонной плоскости он
вывел из невозможности вечного движения (которое считал аксиомой).

Иоганн Кеплер
значительно продвинул оптику, в том числе физиологическую (выяснил роль
хрусталика, верно описал причины близорукости и дальнозоркости),
существенно доработал теорию линз. В 1609 году он издал книгу «Новая астрономия» с двумя законами движения планет; третий закон он сформулировал в более поздней в книге «Мировая гармония» (1619 ).
Заодно он формулирует в ясном виде первый закон механики: всякое тело,
на которое не действуют иные тела, находится в покое или совершает
прямолинейное движение. Менее ясно формулируется закон всеобщего
притяжения: сила, действующая на планеты, проистекает от Солнца и
убывает по мере удаления от него, и то же верно для всех прочих
небесных тел. Источником этой силы, по его мнению, является магнетизм в
сочетании с вращением Солнца и планет вокруг своей оси.

В 1608 году в Голландии изобретена зрительная труба. Галилео Галилей ,
усовершенствовав её, строит первый телескоп и проводит исследование
небесных объектов. Открывает спутники Юпитера, фазы Венеры, звёзды в
составе Млечного пути и многое другое. Решительно поддерживает теорию
Коперника (но столь же решительно отвергает теорию Кеплера).
Формулирует основы теоретической механики - принцип относительности, закон инерции, квадратичный закон падения, даже принцип виртуальных перемещений , изобретает термометр.

Зарождение теоретической физики

XVII век. Метафизика Декарта и механика Ньютона.

Во второй половине XVII века интерес к науке в основных странах Европы резко возрос. Возникают первые Академии наук и первые научные журналы.

1600 : первое экспериментальное исследование электрических и магнитных явлений проводит врач английской королевы Уильям Гильберт . Он выдвигает гипотезу, что Земля является магнитом. Именно он предложил сам термин «электричество».




1637 : Рене Декарт
издал «Рассуждение о методе» с приложениями «Геометрия», «Диоптрика»,
«Метеоры». Считал пространство материальным, а причиной движения -
вихри материи, возникающие, чтобы заполнить пустоту (которую считал
невозможной и поэтому не признавал атомов), или от вращения тел. В
«Диоптрике» Декарт впервые дал правильный закон преломления света . Создаёт аналитическую геометрию и вводит почти современную математическую символику.

В 1644 году
вышла книга Декарта «Начала философии». В ней провозглашается, что
изменение состояния материи возможно только при воздействии на неё
другой материи. Это сразу исключает возможность дальнодействия
без ясного материального посредника. Приводится закон инерции. Второй
закон взаимодействия - закон сохранения количества движения - тоже
приводится, однако обесценивается тем, что чёткое определение
количества движения у Декарта отсутствует.

Декарт уже видел, что движение планеты - это ускоренное движение.
Вслед за Кеплером Декарт считал: планеты ведут себя так, как будто
существует притяжение солнца. Для того чтобы объяснить притяжение, он
сконструировал механизм Вселенной, в которой все тела приводятся в
движение толчками вездесущей, но невидимой, «тонкой материи». Лишенные
возможности двигаться прямолинейно, прозрачные потоки этой среды
образовали в пространстве системы больших и малых вихрей. Вихри,
подхватывая более крупные, видимые частицы обычного вещества, формируют
круговороты небесных тел. Они вращают их и несут по орбитам. Внутри
малого вихря находится и Земля. Круговращение стремиться растащить
прозрачный вихрь вовне. При этом частицы вихря гонят видимые тела к
Земле. По Декарту, это и есть тяготение. Система Декарта была первой
попыткой механически описать происхождение и движение планетной системы.

Исаак Ньютон



1687 : «Начала» Ньютона . Физические концепции Ньютона находились в резком противоречии с декартовскими. Ньютон верил в атомы,
считал дедукцию вторичным методом, которому должны предшествовать
эксперимент и конструирование математических моделей. Ньютон заложил
основы механики, оптики, теории тяготения, небесной механики, открыл и далеко продвинул математический анализ.
Но его теория тяготения, в которой притяжение существовала без
материального носителя и без механического объяснения, долгое время
отвергалась учёными континентальной Европы (в том числе Гюйгенсом, Эйлером и др.). Только во второй половине XVIII века, после работ Клеро по теории движения Луны и кометы Галлея, критика утихла.

XVIII век. Механика, теплород, электричество.

В XVIII веке ускоренными темпами развивались механика, небесная механика, учение о теплоте. Начинается исследование электрических и магнитных явлений. Картезианство, не подтверждаемое опытом, быстро теряет сторонников.

Создание аналитической механики (Эйлер, Лагранж) завершило превращение теоретической механики в раздел математического анализа. Утверждается общее мнение, что все физические процессы - проявления механического движения вещества. Ещё Гюйгенс решительно высказывался за необходимость такого представления о природе явлений:

Истинная философия
должна видеть в явлениях механических первопричину всех явлений; по
моему мнению, иное представление и невозможно, если мы только не желаем
потерять надежду что-либо понимать в Философии. («Трактат о свете»).



Герман фон Гельмгольц



Даже в XIX веке в первичности механики не сомневался Гельмгольц :

Конечной целью всех естественных наук является разыскание движений,
лежащих в основе всех изменений, и причин, производящих эти движения,
то есть слияние этих наук с механикой.

Представление о «тонких материях», переносящих тепло, электричество
и магнетизм, в XVIII веке сохранилось и даже расширилось. В
существования теплорода, носителя теплоты, верили многие физики, начиная с Галилея ; однако другой лагерь, в который входили Декарт, Гук, Даниил Бернулли и Ломоносов, придерживался молекулярно-кинетической гипотезы.

В начале века голландец Фаренгейт изобрёл современный термометр на ртутной или спиртовой основе, и предложил шкалу Фаренгейта. До конца века появились и другие варианты: Реомюр (1730 ), Цельсий (1742 ) и другие. С этого момента открывается возможность измерения количества тепла в опытах.

1734 : французский учёный Дюфе обнаружил, что существуют 2 вида электричества: положительное и отрицательное.

1745 : изобретена лейденская банка. Франклин развивает гипотезу об электрической природе молнии, изобретает громоотвод . Появляются электростатическая машина, электрометр Рихмана.

1784 : запатентована паровая машина Уатта. Начало широкого распространения паровых двигателей.

1780-е годы: открыт и обоснован точными опытами закон Кулона.

Наука возникла в глубокой древности как попытка осмыслить окружающие явления, взаимосвязь природы и человека. Сначала она не разделялась на отдельные направления, как сейчас, а объединялась в одну общую науку - философию. Астрономия выделилась в отдельную дисциплину раньше физики и является наряду с математикой и механикой одной из древнейших наук. Позже наука о природе так же выделилась в самостоятельную дисциплину. Древнегреческий учёный и философ Аристотель назвал физикой одно из своих сочинений.

Одна из главных задач физики - объяснить строение окружающего нас мира и происходящие в нём процессы, понять природу наблюдаемых явлений. Другая важная задача - выявить и познать законы, которым подчиняется окружающий мир. Познавая мир, люди используют законы природы. Вся современная техника основана на применении законов, открытых учёными.

С изобретением в 1780-х гг. парового двигателя началась промышленная революция. Первый паровой двигатель изобрёл английский учёный Томас Ньюкомен в 1712 г. Паровая машина пригодная для использования в прмышленности, впервые создана в 1766 г. русским изобретателем Иваном Ползуновым (1728-1766).Шотландец Джеймс Уатт усовершенствовал конструкцию. Созданный им в 1782 г. двухтактный паровой двигатель приводил в движение машины и механизмы на фабриках.

Сила пара приводила в движение насосы, поезда, пароходы, прядильные станки и множество других машин. Мощным толчком для развития техники послужило создание английским физиком «гениальным самоучкой» Майклом Фарадеем в 1821 г. первого электродвигателя. Создание в 1876г. немецким инженером Николаусом Отто четырёхтактного двигателя внутреннего сгорания открыло эру автомобилестроения, сделало возможным существование и повсеместное использование автомобилей, тепловозов, судов и других технических объектов.

То, что раньше считалось фантастикой, сейчас становится реальной жизнью, которую мы уже не представляем без аудио- и видеотехники, персонального компьютера, сотового телефона и Интернета. Их возникновение обязано открытиям сделанным в различных областях физики.

Однако и развитие техники способствует прогрессу в науке. Создание электронного микроскопа позволило заглянуть внутрь вещества. Создание точных измерительных приборов сделало возможным более точный анализ результатов экспериментов. Огромный прорыв в области изучения космоса был связан именно с появлением новых современных приборов и технических устройств.


Таким образом, физика как наука играет огромную роль в развитии цивилизации. Она перевернула самые фундаментальные представления людей - представления о пространстве, времени, устройстве Вселенной, позволив человечеству совершить качественный скачок в своём развитии. Успехи физики позволили сделать ряд фундаментальных открытий в других естественных науках, в частности, в биологии. Развитие физики в наибольшей степени обеспечивало бурный прогресс медицины.

С успехами физики связаны и надежды учёных на обеспечение человечества неиссякаемыми альтернативными источниками энергии, использование которых позволит решить многие серьёзные экологические проблемы. Современная физика призвана обеспечить понимание самых глубинных основ мироздания, появления и развития нашей Вселенной, будущего человеческой цивилизации.