Доказать теорему об отношении площадей подобных треугольников. "отношение площадей подобных треугольников"


Определение и свойства подобных треугольников

Числа a 1 , a 2 , a 3 , …, a n называются пропорциональными числам b 1 , b 2 , b 3 , …, b n , если выполняется равенство: a 1 /b 1 = а 2 /b 2 = a 3 /b 3 = … = a n /b n = k, где k – некоторое число, которое называют коэффициентом пропорциональности.

Пример. Числа 6; 7,5 и 15 пропорциональны числам ‑4; 5 и 10. Коэффициентом пропорциональности является число ‑1,5, поскольку

6/-4 = -7,5/5 = 15/-10 = -1,5.

Пропорциональность чисел имеет место быть, если эти числа связаны пропорцией.

Известно, что пропорцию можно составить не менее чем из четырех чисел, поэтому понятие пропорциональности применимо как минимум к четырем числам (одна пара чисел пропорциональна другой паре, или одна тройка чисел пропорциональна другой тройке, и т.д.).

Рассмотрим на рис. 1 два треугольника АВС и А 1 В 1 С 1 с равными попарно углами: A = A 1 , B = B 1 , C = C 1 .

Стороны, которые противолежат равным парам углов обоих треугольников, называются сходственными . Так, на рис. 1 стороны AB и A 1 B 1 , AC и A 1 C 1 , BC и B 1 C 1 , сходственные, поскольку лежат напротив соответственно равных углов треугольников ABC и A 1 B 1 C 1 .

Дадим определение подобных треугольников:

Два треугольника называются подобными , если их углы попарно равны, а сходственные стороны пропорциональны.

Отношение сходственных сторон подобных треугольников называется коэффициентом подобия .

Подобные треугольники обозначаются следующим образом: Δ ABC ~ Δ A 1 B 1 C 1 .

Итак, на рис. 2 имеем: Δ ABC ~ Δ A 1 B 1 C 1

углы A = A 1 , B = B 1 , C = C 1 и AB/A 1 B 1 = ВC/В 1 C 1 = АС/А 1 С 1 = k, где k – коэффициент подобия. Из рис. 2 видно, что у подобных треугольников одинаковые пропорции, и отличаются они лишь масштабом.

Замечание 1: Равные треугольники подобны с коэффициентом 1.

Замечание 2: При обозначении подобных треугольников следует упорядочить их вершины таким образом, чтобы углы при них были попарно равны. Например, для треугольников, изображенных на рисунке 2 говорить, что Δ ABC ~ Δ B 1 C 1 A 1 некорректно. Соблюдая правильный порядок вершин, удобно выписывать пропорцию, связывающую сходственные стороны треугольников, не обращаясь к чертежу: в числителе и знаменателе соответствующих отношений должны стоять пары вершин, занимающих одинаковые позиции в обозначении подобных треугольников. К примеру, из записи «Δ ABC ~ Δ KNL» следует, что углы A = K, B = N, C = L, и АВ/KN = BC/NL = AC/KL.

Замечание 3: Те требования, которые перечислены в определении подобных треугольников, являются избыточными. Признаки подобия треугольников, которые содержат меньше требований к подобным треугольникам докажем чуть позже.

Сформулируем свойства подобных треугольников:

  1. Отношение соответственных линейных элементов подобных треугольников равно коэффициенту их подобия. К таким элементам подобных треугольников относятся те, которые измеряются в единицах длины. Это, например, сторона треугольника, периметр, медиана. Угол или площадь к таким элементам не относятся.
  2. Отношение площадей подобных треугольников равно квадрату коэффициента их подобия.

Пусть треугольники ABC и A 1 B 1 C 1 подобны с коэффициентом k (рис. 2).

Докажем, что S ABC /S A1 B1 C1 = k 2 .

Поскольку углы подобных треугольников попарно равны, т.е A = A 1 , и по теореме об отношении площадей треугольников, имеющих по равному углу, имеем:

S ABC /S A1 B1 C1 = (AB · AC) / (A 1 B 1 · A 1 C 1) = AB/A 1 B 1 · AC/A 1 C 1 .

В силу подобия треугольников AB/A 1 B 1 = k и AC/A 1 C 1 = k,

поэтому S ABC /S A1 B1 C1 = AB/A 1 B 1 · AC/A 1 C 1 = k · k = k 2 .

Замечание: Сформулированные выше свойства подобных треугольников справедливы и для произвольных фигур.

Признаки подобия треугольников

Требования, которые предъявляются к подобным треугольникам определением (это равенство углов и пропорциональность сторон) являются избыточными. Устанавливать подобие треугольников можно и по меньшему количеству элементов.

Так, при решении задач чаще всего используется первый признак подобия треугольников, утверждающий, что для подобия двух треугольников достаточно равенства их углов:

Первый признак подобия треугольников (по двум углам): Если два угла одного треугольника соответственно равны двум углам второго треугольника, то эти треугольники подобны (рис. 3) .

Пусть даны треугольники Δ ABC, Δ A 1 B 1 C 1 , в которых углы A = A 1 , B = B 1 . Необходимо доказать, что Δ ABC ~ Δ A 1 B 1 C 1 .

Доказательство.

1) По теореме о сумме углов треугольника имеем:

угол C = 180 ° (угол A + угол B) = 180° (угол A 1 + угол B 1) = угол C 1 .

2) По теореме об отношении площадей треугольников, имеющих по равному углу,

S ABC /S A1 B1 C1 = (AB · AC) / (A 1 B 1 · A 1 C 1) = (AB · ВC) / (A 1 B 1 · В 1 C 1) = (AС · ВC) / (A 1 С 1 · В 1 C 1).

3) Из равенства (AB · AC) / (A 1 B 1 · A 1 C 1) = (AB · ВC) / (A 1 B 1 · В 1 C 1) следует, что AC/A 1 C 1 = BС/В 1 С 1 .

4) Из равенства (AB · ВC) / (A 1 B 1 · В 1 C 1) = (AС · ВC) / (A 1 С 1 · В 1 C 1) следует, что AВ/A 1 В 1 = АС/А 1 С 1 .

Таким образом, у треугольников ABCи A 1 B 1 C 1 DA = DA 1 , DB = DB 1 , DC = DC 1 , и AB/A 1 B 1 = АС/А 1 С 1 .

5) AB/A 1 B 1 = АС/А 1 С 1 = ВC/В 1 C 1 , то есть сходственные стороны пропорциональны. А значит, Δ ABC ~ Δ A 1 B 1 C 1 по определению.

Теорема о пропорциональных отрезках. Деление отрезка в заданном отношении

Теорема о пропорциональных отрезках является обобщением теоремы Фалеса.

Для использования теоремы Фалеса необходимо, чтобы параллельные прямые, пересекающие две данные прямые, отсекали на одной из них равные отрезки. Обобщенная же теорема Фалеса утверждает, что если параллельные прямые пересекают две данные прямые, то отрезки, отсекаемые ими на одной прямой, пропорциональны отрезкам, отсекаемым на второй прямой.

Теорема о пропорциональных отрезках доказывается аналогично теореме Фалеса (только вместо равенства треугольников здесь используется их подобие).

Теорема о пропорциональных отрезках (обобщенная теорема Фалеса): Параллельные прямые, пересекающие две данные прямые, отсекают на них пропорциональные отрезки.

Свойство медиан треугольника

Первый признак подобия треугольников позволяет доказать свойство медиан треугольника:

Свойство медиан треугольника: Медианы треугольника пересекаются в одной точке, и делятся этой точкой в отношении 2: 1, считая от вершины (рис. 4) .

Точка пересечения медиан называется центроидом треугольника.

Пусть дан Δ ABC, у которого AA 1 , BB 1 , CC 1 – медианы, кроме того, AA 1 ∩CC 1 = O. Необходимо доказать, что BB 1 ∩ CC 1 = O и АО/ОА 1 = ВО/ОВ 1 = СО/ОС 1 = 2.

Доказательство.

1) Проведем среднюю линию A 1 C 1 . По теореме о средней линии треугольника A 1 C 1 || AC, и A 1 C 1 = AC/2.

2) Треугольники AOC и A 1 OC 1 подобны по двум углам (угол AOC = углу A 1 OC 1 как вертикальные, угол OAC = углу OA 1 C 1 как внутренние накрест лежащие при A 1 C 1 || AC и секущей AA 1), следовательно, по определению подобных треугольников АО/А 1 О = ОС/ОС 1 = АС/А 1 С 1 = 2.

3) Пусть BB 1 ∩CC 1 = O 1 . Аналогично пунктам 1 и 2 можно доказать, что ВО/О 1 В 1 = СО 1 /О 1 С = 2. Но поскольку на отрезке СС 1 существует единственная точка О, делящая его в отношении СО: ОС 1 = 2: 1, то точки О и О 1 совпадают. Значит, все медианы треугольника пересекаются в одной точке, делящей каждую из них в отношении 2: 1, считая от вершины.

В курсе геометрии в теме «площади многоугольников» доказывается тот факт, что медиана разбивает произвольный треугольник на две равновеликие части. Кроме того, при пересечении трех медиан треугольника образуется шесть равновеликих треугольников.

Остались вопросы? Не знаете, как решать задачи на подобие треугольников?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пропорциональные отрезки

Для введения понятия подобия вначале нам необходимо вспомнить понятие пропорциональных отрезков. Вспомним также определение отношения двух отрезков.

Определение 1

Отношением двух отрезков называется отношение их длин.

Понятие пропорциональности отрезков имеет место и для большего числа отрезков. Пусть, к примеру, $AB=2$, $CD=4$, $A_1B_1=1$, $C_1D_1=2$, $A_2B_2=4$, $C_2D_2=8$, тогда

То есть отрезки $AB$, $A_1B_1$, $\ A_2B_2$ пропорциональны отрезкам $CD$, $C_1D_1$, $C_2D_2$.

Подобные треугольники

Вспомним для начала, что вообще представляет себе понятие подобия.

Определение 3

Фигуры называются подобными, если они имеет одинаковую форму, но разные размеры.

Разберемся теперь с понятием подобных треугольников. Рассмотрим рисунок 1.

Рисунок 1. Два треугольника

Пусть у этих треугольников $\angle A=\angle A_1,\ \angle B=\angle B_1,\ \angle C=\angle C_1$. Введем следующее определение:

Определение 4

Стороны двух треугольников называются сходственными, если они лежат напротив равных углов этих треугольников.

На рисунке 1, стороны $AB$ и $A_1B_1$, $BC$ и $B_1C_1$, $AC$ и $A_1C_1$ сходственные. Введем теперь определение подобных треугольников.

Определение 5

Два треугольника называются подобными, если углы все углы одного треугольника соответственно равны углам другого и треугольника, и все сходственные стороны этих треугольников пропорциональны, то есть

\[\angle A=\angle A_1,\ \angle B=\angle B_1,\ \angle C=\angle C_1,\] \[\frac{AB}{A_1B_1}=\frac{BC}{{B_1C}_1}=\frac{AC}{A_1C_1}\]

На рисунке 1 изображены подобные треугольники.

Обозначение: $ABC\sim A_1B_1C_1$

Для понятия подобия существует также понятие коэффициента подобия.

Определение 6

Число $k$, равное отношению сходственных сторон подобных фигур называется коэффициентом подобия этих фигур.

Площади подобных треугольников

Рассмотрим теперь теорему об отношении площадей подобных треугольников.

Теорема 1

Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, то есть

\[\frac{S_{ABC}}{S_{A_1B_1C_1}}=k^2\]

Доказательство.

Рассмотрим два подобных треугольника и обозначим их площади, соответственно $S$ и $S_1$ (рис. 2).

Рисунок 2.

Для доказательства этой теоремы вспомним следующую теорему:

Теорема 2

Если угол одного треугольника равен углу второго треугольника, то их площади относятся как произведения сторон, прилегающих к этому углу.

Так как треугольники $ABC$ и $A_1B_1C_1$ подобны, то, по определению,$\angle A=\angle A_1$. Тогда, по теореме 2, получим, что

Так как $\frac{AB}{A_1B_1}=\frac{AC}{A_1C_1}=k$, получим

Теорема доказана.

Задачи, связанные с понятием подобия треугольника

Пример 1

Даны подобные треугольники $ABC$ и $A_1B_1C_1.$ Стороны первого треугольника $AB=2,\ BC=5,\ AC=6$. Коэффициент подобия данных треугольников $k=2$. Найти стороны второго треугольника.

Решение.

Данная задача имеет два возможных решения.

    Пусть $k=\frac{A_1B_1}{AB}=\frac{{B_1C}_1}{BC}=\frac{A_1C_1}{AC}$.

    Тогда $A_1B_1=kAB,\ {B_1C}_1=kBC,\ A_1C_1=kAC$.

    Следовательно, $A_1B_1=4,\ {B_1C}_1=10,\ A_1C_1=12$

    Пусть $k=\frac{AB}{A_1B_1}=\frac{BC}{{B_1C}_1}=\frac{AC}{A_1C_1}$

    Тогда $A_1B_1=\frac{AB}{k},\ {B_1C}_1=\frac{BC}{k},\ A_1C_1=\frac{AC}{k}$.

    Следовательно, $A_1B_1=1,\ {B_1C}_1=2,5,\ \ A_1C_1=3$.

Пример 2

Даны подобные треугольники $ABC$ и $A_1B_1C_1.$ Сторона первого треугольника $AB=2$, соответствующая сторона второго треугольника $A_1B_1=6$. Высота первого треугольника $CH=4$. Найти площадь второго треугольника.

Решение.

Так как треугольники $ABC$ и $A_1B_1C_1$ подобны, то $k=\frac{AB}{A_1B_1}=\frac{1}{3}$.

Найдем площадь первого треугольника.

По теореме 1, имеем:

\[\frac{S_{ABC}}{S_{A_1B_1C_1}}=k^2\] \[\frac{4}{S_{A_1B_1C_1}}=\frac{1}{9}\] \

Урок 34. Теорема об отношении площадей подобных треугольников. ТЕОРЕМА. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия. где k – коэффициент подобия. Отношение периметров двух подобных треугольников равно коэффициенту подобия. В. А. С. Р. М. К. Решение задач: № 545, 549. Домашнее задание: п. 56-58, № 544, 548.

Слайд 6 из презентации «Геометрия «Подобные треугольники»» . Размер архива с презентацией 232 КБ.

Геометрия 8 класс

краткое содержание других презентаций

«Определение осевой симметрии» - Симметрия в природе. Подсказка. Оси симметрии. Изобразите точку. Построение точки. Построение треугольника. Построение отрезка. Народы. Симметрия в поэзии. Фигуры, не обладающие осевой симметрией. Фигуры, обладающие двумя осями симметрии. Прямоугольник. Симметрия. Прямая. Постройте точки. Осевая симметрия. Отрезок. Ось симметрии. Начертите две прямые. Точки, лежащие на одном перпендикуляре. Соразмерность.

«Нахождение площади параллелограмма» - Найдите площадь параллелограмма. Площадь параллелограмма. Высота. Найдите площадь квадрата. Площадь квадрата. Высоты параллелограмма. Найдите площадь треугольника. Признаки равенства прямоугольных треугольников. Найдите площадь прямоугольника. Определение высоты параллелограмма. Основание. Площадь треугольника. Найдите периметр квадрата. Свойства площадей. Устные упражнения.

«Задачи на нахождение площади» - Урок -объяснение нового материала, выполнен в виде презентации «Power point». Основная цель. «Площадь параллелограмма». «Площадь трапеции». ПрОВЕРКА УСВОЕННОГО МАТЕРИАЛА. Решить задачу. Рабочая тетрадь №42, повторить все изученные формулы. Вывести формулы площадей прямоугольника, параллелограмма, трапеции, треугольника. Расширить и углубить представления об измерении площадей. Сформировать у учащихся понятие площади.

«Геометрия «Подобные треугольники»» - Два треугольника называются подобными. Пропорциональность сторон угла. Значения синуса, косинуса и тангенса. Первый признак подобия треугольников. Пропорциональные отрезки в прямоугольном треугольнике. Свойство биссектрисы треугольника. Математический диктант. Найти площадь равнобедренного прямоугольного треугольника. Пропорциональные отрезки. Значения синуса, косинуса и тангенса для углов 30°, 45°, 60°.

«Прямоугольники» - Человек. Противоположные стороны. Сторона прямоугольника. Сказка о прямоугольнике. Стороны прямоугольника. Прямоугольник в жизни. Периметр прямоугольника. Прямоугольник. Диагонали. Картины. Диагональ. Определение. Площадь прямоугольника.

««Площадь прямоугольника» 8 класс» - Площадь заштрихованного квадрата. Стороны каждого из прямоугольников. АBCD и DСМK – квадраты. На стороне АВ построен параллелограмм. Единицы измерения площадей. Найдите площадь квадрата. Площадь прямоугольника. ABCD – параллелограмм. Свойства площадей. Найдите площадь четырехугольника. Площади квадратов, построенных на сторонах прямоугольника. Пол комнаты, имеющий форму прямоугольника. Площадь квадрата равна квадрату его стороны.

Цель урока: дать определение подобных треугольников, доказать теорему об отношении подобных треугольников.

Задачи урока:

  • Образовательные: учащиеся должны знать определение подобных треугольников, теорему об отношении подобных треугольников, уметь применять их при решении задач, реализовывать межпредметные связи с алгеброй и физикой.
  • Воспитательные: воспитывать трудолюбие, внимательность, прилежание, воспитывать культуру поведения учащихся.
  • Развивающие: развитие у учащихся внимания, развития умения рассуждать, логически мыслить, делать выводы, развития у учащихся грамотной математической речи и мышления, развивать навыки самоанализа и самостоятельности.
  • Здоровьесберегающие: соблюдение санитарно-гигиенических норм, смена видов деятельности на уроке.

Оборудование: компьютер, проектор, дидактический материал: самостоятельные и контрольные работы по алгебре и геометрии для 8 класса А.П. Ершова, и др.

Тип урока: изучение нового материала.

Ход урока

I. Организационный момент (приветствие, проверка готовности к уроку).

II. Сообщение темы урока.

Учитель: В повседневной жизни встречаются предметы одинаковой формы, но разных размеров.

Пример: футбольный и теннисный мячи.

В геометрии фигуры одинаковой формы называют подобными: любые два круга, любые два квадрата.

Введем понятие подобных треугольников.

Определение: Два треугольника называются подобными, если их углы соответственно равны и стороны одного треугольника пропорциональны сходственным сторонам другого.

Число k, равное отношению сходственных сторон подобных треугольников, называется коэффициентом подобия. ΔABC ~ A 1 B 1 C 1

1. Устно: Подобны ли треугольники? Почему? (заготовленный чертеж на экране).

а) Треугольник ABC и треугольник A 1 B 1 C 1 , если AB = 7, BC = 5, AC = 4, ∠A = 46˚, ∠C = 84˚, ∠A 1 = 46˚, ∠B 1 = 50˚, A 1 B 1 = 10,5 , B 1 C 1 = 7,5, A 1 C 1 = 6.

б) В одном равнобедренном треугольнике угол при вершине равен 24˚, а в другом равнобедренном треугольнике угол при основании равен 78˚.

Ребята! Вспомним теорему об отношении площадей треугольников, имеющих по равному углу.

Теорема: Если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равные углы.

2. Письменная работа по заготовленным чертежам.

На экране чертеж:

а) Дано: BN: NC = 1:2,

BM = 7 см, AM = 3 см,

S MBN = 7 см 2 .

Найти: S ABC

(Ответ: 30 см 2 .)

б) Дано: AE = 2 см,

S AEK = 8 см 2 .

Найти: S ABC

(Ответ: 56 см 2 .)

3. Докажем теорему об отношении площадей подобных треугольников (доказывает теорему ученик на доске, помогает весь класс ).

Теорема: Отношение двух подобных треугольников равно квадрату коэффициента подобия.

4. Актуализация знаний.

Решение задач:

1. Площади двух подобных треугольников равны 75 см 2 и 300 см 2 . Одна из сторон второго треугольника равна 9см. Найти сходственную ей сторону первого треугольника. (Ответ: 4,5 см.)

2. Сходственные стороны подобных треугольников равны 6см и 4см, а сумма их площадей равна 78 см 2 . Найти площади этих треугольников. (Ответ: 54 см 2 и 24 см 2 .)

При наличии времени самостоятельная работа обучающего характера.

Вариант 1

У подобных треугольников сходственные стороны равны 7 см и 35 см.

Площадь первого треугольника равна 27 см 2 .

Найти площадь второго треугольника. (Ответ: 675 см 2 .)

Вариант 2

Площади подобных треугольников равны 17 см 2 и 68 см 2 . Сторона первого треугольника равна 8см. Найти сходственную сторону второго треугольника. (Ответ: 4 см.)

5. Домашнее задание: учебник геометрии 7-9 Л.С. Атанасян и др., п. 57, 58, № 545, 547.

6. Подведение итогов урока.

Пропорциональные отрезки

Для введения понятия подобия вначале нам необходимо вспомнить понятие пропорциональных отрезков. Вспомним также определение отношения двух отрезков.

Определение 1

Отношением двух отрезков называется отношение их длин.

Понятие пропорциональности отрезков имеет место и для большего числа отрезков. Пусть, к примеру, $AB=2$, $CD=4$, $A_1B_1=1$, $C_1D_1=2$, $A_2B_2=4$, $C_2D_2=8$, тогда

То есть отрезки $AB$, $A_1B_1$, $\ A_2B_2$ пропорциональны отрезкам $CD$, $C_1D_1$, $C_2D_2$.

Подобные треугольники

Вспомним для начала, что вообще представляет себе понятие подобия.

Определение 3

Фигуры называются подобными, если они имеет одинаковую форму, но разные размеры.

Разберемся теперь с понятием подобных треугольников. Рассмотрим рисунок 1.

Рисунок 1. Два треугольника

Пусть у этих треугольников $\angle A=\angle A_1,\ \angle B=\angle B_1,\ \angle C=\angle C_1$. Введем следующее определение:

Определение 4

Стороны двух треугольников называются сходственными, если они лежат напротив равных углов этих треугольников.

На рисунке 1, стороны $AB$ и $A_1B_1$, $BC$ и $B_1C_1$, $AC$ и $A_1C_1$ сходственные. Введем теперь определение подобных треугольников.

Определение 5

Два треугольника называются подобными, если углы все углы одного треугольника соответственно равны углам другого и треугольника, и все сходственные стороны этих треугольников пропорциональны, то есть

\[\angle A=\angle A_1,\ \angle B=\angle B_1,\ \angle C=\angle C_1,\] \[\frac{AB}{A_1B_1}=\frac{BC}{{B_1C}_1}=\frac{AC}{A_1C_1}\]

На рисунке 1 изображены подобные треугольники.

Обозначение: $ABC\sim A_1B_1C_1$

Для понятия подобия существует также понятие коэффициента подобия.

Определение 6

Число $k$, равное отношению сходственных сторон подобных фигур называется коэффициентом подобия этих фигур.

Площади подобных треугольников

Рассмотрим теперь теорему об отношении площадей подобных треугольников.

Теорема 1

Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия, то есть

\[\frac{S_{ABC}}{S_{A_1B_1C_1}}=k^2\]

Доказательство.

Рассмотрим два подобных треугольника и обозначим их площади, соответственно $S$ и $S_1$ (рис. 2).

Рисунок 2.

Для доказательства этой теоремы вспомним следующую теорему:

Теорема 2

Если угол одного треугольника равен углу второго треугольника, то их площади относятся как произведения сторон, прилегающих к этому углу.

Так как треугольники $ABC$ и $A_1B_1C_1$ подобны, то, по определению,$\angle A=\angle A_1$. Тогда, по теореме 2, получим, что

Так как $\frac{AB}{A_1B_1}=\frac{AC}{A_1C_1}=k$, получим

Теорема доказана.

Задачи, связанные с понятием подобия треугольника

Пример 1

Даны подобные треугольники $ABC$ и $A_1B_1C_1.$ Стороны первого треугольника $AB=2,\ BC=5,\ AC=6$. Коэффициент подобия данных треугольников $k=2$. Найти стороны второго треугольника.

Решение.

Данная задача имеет два возможных решения.

    Пусть $k=\frac{A_1B_1}{AB}=\frac{{B_1C}_1}{BC}=\frac{A_1C_1}{AC}$.

    Тогда $A_1B_1=kAB,\ {B_1C}_1=kBC,\ A_1C_1=kAC$.

    Следовательно, $A_1B_1=4,\ {B_1C}_1=10,\ A_1C_1=12$

    Пусть $k=\frac{AB}{A_1B_1}=\frac{BC}{{B_1C}_1}=\frac{AC}{A_1C_1}$

    Тогда $A_1B_1=\frac{AB}{k},\ {B_1C}_1=\frac{BC}{k},\ A_1C_1=\frac{AC}{k}$.

    Следовательно, $A_1B_1=1,\ {B_1C}_1=2,5,\ \ A_1C_1=3$.

Пример 2

Даны подобные треугольники $ABC$ и $A_1B_1C_1.$ Сторона первого треугольника $AB=2$, соответствующая сторона второго треугольника $A_1B_1=6$. Высота первого треугольника $CH=4$. Найти площадь второго треугольника.

Решение.

Так как треугольники $ABC$ и $A_1B_1C_1$ подобны, то $k=\frac{AB}{A_1B_1}=\frac{1}{3}$.

Найдем площадь первого треугольника.

По теореме 1, имеем:

\[\frac{S_{ABC}}{S_{A_1B_1C_1}}=k^2\] \[\frac{4}{S_{A_1B_1C_1}}=\frac{1}{9}\] \