Как направлены силовые линии электростатического поля. Электростатическое поле и его характеристики


ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ

электростатическое поле пробный заряд q 0

напряженностью

, (4)

, . (5)

силовых линий

РАБОТА СИЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ. ПОТЕНЦИАЛ

Электрическое поле, подобно гравитационному, является потенциальным. Т.е. работа, выполняемая электростатическими силами, не зависит от того, по какому маршруту заряд q перемещен в электрическом поле из точки 1 в точку 2. Эта работа равна разности потенциальных энергий, которыми обладает перемещаемый заряд в начальной и конечной точках поля:

А 1,2 = W 1 – W 2 . (7)

Можно показать, что потенциальная энергия заряда q прямо пропорциональна величине этого заряда. Поэтому в качестве энергетической характеристики электростатического поля используется отношение потенциальной энергии пробного заряда q 0 , помещенного в какую-либо точку поля, к величине этого заряда:

Эта величина представляет собой количество потенциальной энергии на единицу положительного заряда и называется потенциалом поля в заданной точке. [φ] = Дж / Кл = В (Вольт).

Если принять, что при удалении заряда q 0 в бесконечность (r→ ∞) его потенциальная энергия в поле заряда q обращается в нуль, то потенциал поля точечного заряда q на расстоянии r от него:

. (9)

Если поле создаётся системой точечных зарядов, то потенциал результирующего поля равен алгебраической (с учётом знаков) сумме потенциалов каждого из них:

. (10)

Из определения потенциала (8) и выражения (7) работа, совершаемая силами электростатического поля по перемещению заряда из

точки 1 в точку 2, может быть представлена как:

ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ

НЕСАМОСТОЯТЕЛЬНЫЙ ГАЗОВЫЙ РАЗРЯД

Газы при не слишком высоких температу­рах и при давлениях, близких к атмосфер­ному, являются хорошими изоляторами. Если поместить в сухой атмосферный воздух, заряженный электрометр, то его заряд долго остается неизменным. Это объясняется тем, что га­зы при обычных условиях состоят из ней­тральных атомов и молекул и не содержат свободных зарядов (электронов и ионов). Газ становится проводником электричест­ва только, когда некоторая часть его молекул ионизуется. Для ионизации газ надо подвергнуть воздействию какого-либо ионизатора: например, электрический разряд, рентгеновское излучение, радиации или УФ-излучение, пламя свечи и т.д. (в последнем случае электро­проводность газа вызвана нагреванием).

При ионизации газов происходит вырывание из внешней электронной оболочки атома или молекулы одного или нескольких электронов, что приводит к об­разованию свободных электронов и поло­жительных ионов. Электроны могут при­соединяться к нейтральным молекулам и атомам, превращая их в отрицательные ионы. Следовательно, в ионизованном газе имеются положительно и отрицательно заряженные ионы и свободные электроны. Электрический ток в газах на­зывается газовым разрядом. Т.о., ток в газах создается ионами обоих знаков и электронами. Газовый разряд при таком механизме будет сопровождаться переносом вещества, т.е. ионизированные газы относятся к проводникам второго рода.

Для того чтобы оторвать от молекулы или атома один электрон, необходимо совершить оп­ределенную работу А и, т.е. затратить оп­ределенную энергию. Эту энер­гию называют энергией ионизации , значения которой для атомов различных веществ лежат в преде­лах 4÷25 эВ. Количественно процесс ионизации принято характеризовать величиной, которая называется потенциал ионизации :

Одновременно с процессом ионизации в газе всегда идет и обратный процесс – процесс рекомбинации: положительные и отрицательные ионы или положительные ионы и электроны, встречаясь, воссоединя­ются между собой с образованием ней­тральных атомов и молекул. Чем больше ионов возникает под действием ионизато­ра, тем интенсивнее идет и процесс ре­комбинации.

Строго говоря, электропроводность га­за никогда не равна нулю, так как в нем всегда имеются свободные заряды, обра­зующиеся в результате действия излучения радиоактивных веществ, имею­щихся на поверхности Земли, а также космического излучения. Интен­сивность ионизации под действием указан­ных факторов невелика. Эта незначитель­ная электропроводность воздуха является причиной утечки зарядов наэлектризованных тел да­же при хорошей их изоляции.

Характер газового разряда определяется составом газа, его температурой и давлением, размерами, конфигурацией и материалом электродов, а так же приложенным напряжением и плотностью тока.

Рассмотрим цепь, содержащую газо­вый промежуток (рис.), подвергаю­щийся непрерывному, постоянному по ин­тенсивности воздействию ионизатора. В результате действия ионизатора газ приобретает некоторую электропровод­ность и в цепи потечет ток. На рис приведены вольт-амперные характеристики (зависимость тока от приложенного напряжения) для двух ионизаторов. Производительность
(число пар ионов произведенных ионизатором в газовом промежутке за 1 секунду) второго ионизатора больше чем первого. Будем считать, что производительность ионизатора величина постоянная и равная n 0 . При не очень низком давлении практически все отщепившиеся электроны захватываются нейтральными молекулами, образуя отрицательно заряженные ионы. С учетом рекомбинации, примем, что концентрации ионов обоих знаков одинаковы и равны n. Средние скорости дрейфа ионов разных знаков в электрическом поле разные: , . b - и b + – подвижности ионов газа. Теперь для области I, c учетом (5), можно записать:

Как видно, в области I с увеличением напряжения ток возрастает, так как растет скорость дрейфа. Число пар рекомбинирующих ионов с ростом их скорости, при этом будет уменьшаться.

Область II – область тока насыщения – все созданные ионизатором ионы достигают электродов, не успевая рекомбинировать. Плотность тока насыщения

j н = q n 0 d, (28)

где d – ширина газового промежутка (расстояние между электродами). Как видно из (28) ток насыщения является мерой ионизирующего действия ионизато­ра.

При напряжении больше U п p (область III) скорость электронов достигает такой величины, что при столкновении с нейтральными молекулами они способны вызвать ударную ионизацию. В результате образуется дополнительно Аn 0 пар ионов. Величина А называется коэффициентом газового усиления . В области III этот коэффициент не зависит от n 0 , но зависит от U. Т.о. заряд, достигающий электродов при постоянном U прямо пропорционален производительности ионизатора – n 0 и напряжению U. По этой причине область III называется областью пропорциональности. U пр – порог пропорциональности. Коэффициент газового усиления А имеет значения от 1 до 10 4 .

В области IV, области частичной пропорциональности, коэффициент газового усиления начинает зависеть от n 0. Эта зависимость растет с ростом U. Ток резко увеличивается.

В диапазоне напряжений 0 ÷ U г, ток в газе существует только при действующем ионизаторе. Если дейст­вие ионизатора прекратить, то прекращается и раз­ряд. Разряды, существующие только под действием внешних ионизаторов, называ­ются несамостоятельными.

Напряжение U г – порог области, области Гейгера, которая соответствует состоянию, когда процесс в газовом промежутке не исчезает и после выключения ионизатора, т.е. разряд приобретает характер самостоятельного разряда. Первичные ионы только дают толчок для возникновения газового разряда. В этой области способность ионизировать приобретаю уже и массивные ионы обоих знаков. Величина тока не зависит от n 0 .

В области VI напряжение настолько велико, что разряд, однажды возникнув, больше не прекращается – область непрерывного разряда.

САМОСТОЯТЕЛЬНЫЙ ГАЗОВЫЙ РАЗРЯД И ЕГО ТИПЫ

Разряд в газе, сохраняющийся после прекращения действия внешнего иониза­тора, называется самостоятельным.

Рассмотрим условия возникновения са­мостоятельного разряда. При боль­ших напряжениях (области V–VI), возникающие под дей­ствием внешнего ионизатора электроны сильно ускоренные электрическим полем, сталкиваясь с нейтральными молекулами газа, ионизируют их. В результате чего образуются вторичные электроны и поло­жительные ионы (процесс 1 на рис. 158). Положительные ионы движутся к катоду, а электроны – к аноду. Вторичные элек­троны вновь ионизируют молекулы газа, и, следовательно, общее количество электро­нов и ионов будет возрастать по мере продвижения электронов к аноду лавино­образно. Это является причиной увеличения электрического тока (см. рис. область V). Описанный процесс назы­вается ударной ионизацией.

Однако ударной ионизации под дей­ствием электронов недостаточно для под­держания разряда при удалении внешнего ионизатора. Для этого необходимо, чтобы электронные лавины «воспроизводились», т. е. чтобы в газе под действием каких-то процессов возникали новые электроны. Та­кие процессы схематически показаны на рис. 158: Ускоренные полем положи­тельные ионы, ударяясь о катод, выбивают из него электроны(процесс 2); Поло­жительные ионы, сталкиваясь с молекула­ми газа, переводят их в возбужденное состояние, переход таких молекул в нор­мальное состояние сопровождается ис­пусканием фотона (процесс 3); Фотон, поглощенный нейтральной молекулой, ионизирует ее, происходит так называе­мый процесс фотонной ионизации молекул (процесс 4); Выбивание электронов из катода под действием фотонов (про­цесс 5).

Наконец, при значительных напряже­ниях между электродами газового проме­жутка наступает момент, когда положи­тельные ионы, обладающие меньшей дли­ной свободного пробега, чем электроны, приобретают энергию, достаточную для ионизации молекул газа (процесс 6), и к отрицательной пластине устремляются ионные лавины. Когда возникают кроме электронных лавин еще и ионные, сила тока растет уже практически без увеличе­ния напряжения (область VI на рис.).

В результате описанных процессов число ионов и электронов в объеме газа лавинообразно возрастает, и разряд становится самостоятельным, т. е. сохра­няется и после прекращения действия внеш­него ионизатора. Напряжение, при кото­ром возникает самостоятельный разряд, называется напряжением пробоя. Для воздуха это составляет около 30 000 В на каждый сантиметр расстояния.

В зависимости от давления газа, кон­фигурации электродов, параметров внеш­ней цепи можно говорить о четырех типах самостоятельного разряда: тлеющем, искровом, дуговом и коронном.

1. Тлеющий разряд. Возникает при ни­зких давлениях. Если к электродам, впаянным в стеклянную трубку длиной 30÷50 см, приложить постоянное напряжение в несколько сотен вольт, постепенно отка­чивая из трубки воздух, то при давлении ≈ 5,3÷6,7 кПа возникает разряд в виде светящегося извилистого шнура краснова­того цвета, идущего от катода к аноду. При дальнейшем понижении давления шнур утолщается, и при давлении ≈ 13 Па разряд имеет вид, схематически изобра­женный на рис..

Непосредственно к катоду прилегает тонкий светящийся слой 1 – первое катод­ное свечение, или катодная пленка, затем следует темный слой 2 – катодное темное пространство, переходящее далее в светящийся слой 3 – тлеющее свечение, имеющее резкую границу со стороны като­да, постепенно исчезающую со стороны анода. Оно возникает из-за рекомбинации электронов с положительными ионами. С тлеющим свечением граничит темный промежуток 4 – фарадеево темное про­странство, за которым следует столб иони­зированного светящегося газа 5 – поло­жительный столб. Положительный столб существенной роли в поддержании разря­да не имеет. Например, при уменьшении расстояния между электродами трубки его длина сокращается, в то время как катод­ные части разряда по форме и величине остаются неизменными. В тлеющем разря­де особое значение для его поддержания имеют только две его части: катодное тём­ное пространство и тлеющее свечение. В катодном тёмном пространстве происхо­дит сильное ускорение электронов и поло­жительных ионов, выбивающих электроны с катода (вторичная эмиссия). В области тлеющего свечения же происходит удар­ная ионизация электронами молекул газа. Образующиеся при этом положительные ионы устремляются к катоду и выбивают из него новые электроны, которые, в свою очередь, опять ионизируют газ и т. д. Таким образом непрерывно поддерживается тлеющий разряд.

При дальнейшем откачивании трубки при давлении ≈ 1,3 Па свечение газа ос­лабевает и начинают светиться стенки трубки. Электроны, выбиваемые из катода положительными ионами, при таких разре­жениях редко сталкиваются с молекулами газа и поэтому, ускоренные полем, ударя­ясь о стекло, вызывают его свечение, так называемую катодолюминесценцию. По­ток этих электронов исторически получил название катодных лучей.

Тлеющий разряд широко используется в технике. Так как свечение положитель­ного столба имеет характерный для каж­дого газа цвет, то его используют в газо­светных трубках для светящихся надписей и реклам (например, неоновые газораз­рядные трубки дают красное свечение, аргоновые – синевато-зеленое). В лампах дневного света, более экономичных, чем лампы накаливания, излучение тлеющего разряда, происходящее в парах ртути, по­глощается нанесенным на внутреннюю по­верхность трубки флуоресцирующим ве­ществом (люминофором), начинающим под воздействием поглощенного излучения светиться. Спектр свечения при соответ­ствующем подборе люминофоров близок к спектру солнечного излучения. Тлеющий разряд используется для катодного напы­ления металлов. Вещество катода в тлею­щем разряде вследствие бомбардировки положительными ионами, сильно нагрева­ясь, переходит в парообразное состояние. Помещая вблизи катода различные пред­меты, их можно покрыть равномерным слоем металла.

2. Искровой разряд. Возникает при больших напряженностях электрического поля.(≈ 3·10 6 В/м) в газе, находящемся под давлением порядка атмосферного. Искра имеет вид ярко светящегося тонкого канала, сложным образом изогнутого и разветвленного.

Объяснение искрового разряда дается на основе стримерной теории, согласно которой возникновению ярко светящегося канала искры предшествует появление слабосветящихся скоплений ионизованно­го газа. Эти скопления называются стримерами. Стримеры возника­ют не только в результате образования электронных лавин посредством ударной ионизации, но и в результате фотонной ионизации газа. Лавины, догоняя друг друга, образуют проводящие мостики из стримеров, по которым в следующие мо­менты времени и устремляются мощные потоки электронов, образующие каналы искрового разряда. Из-за выделения при рассмотренных процессах большого коли­чества энергии газ в искровом промежутке нагревается до очень высокой температу­ры (примерно 10 4 К), что приводит к его свечению. Быстрый нагрев газа ведет к по­вышению давления и возникновению удар­ных волн, объясняющих звуковые эффек­ты при искровом разряде – характерное потрескивание в слабых разрядах и мощ­ные раскаты грома в случае молнии, явля­ющейся примером мощного искрового раз­ряда между грозовым облаком и Землей или между двумя грозовыми облаками.

Искровой разряд используется для воспламенения горючей смеси в двигате­лях внутреннего сгорания и предохране­ния электрических линий передачи от пе­ренапряжений (искровые разрядники). При малой длине разрядного промежутка искровой разряд вызывает разрушение (эрозию) поверхности металла, поэтому он применяется для электроискровой точ­ной обработки металлов (резание, сверле­ние). Его используют в спектральном ана­лизе для регистрации заряженных частиц (искровые счетчики).

3. Дуговой разряд. Если после зажи­гания искрового разряда от мощного источника постепенно уменьшать расстоя­ние между электродами, то разряд стано­вится непрерывным – возникает дуговой разряд. При этом сила тока резко воз­растает, достигая сотен ампер, а напряже­ние на разрядном промежутке падает до нескольких десятков вольт. Дуговой разряд можно получить от источника низкого напряжения минуя стадию искры. Для этого электроды (например, угольные) сближают до соприкосновения, они сильно раскаляются электрическим током, потом их разводят и получают электрическую дугу (именно так она была открыта русским учёным В. В. Петровым). При атмосферном дав­лении температура катода приблизительно равна 3900 К. По мере горения дуги угольный катод заостряется, а на аноде образуется углубление – кратер, являю­щийся наиболее горячим местом дуги.

По современным представлениям, ду­говой разряд поддерживается за счет вы­сокой температуры катода из-за интенсив­ной термоэлектронной эмиссии, а также термической ионизации молекул, обуслов­ленной высокой температурой газа.

Дуговой разряд находит широкое при­менение в народном хозяйстве для сварки и резки металлов, получения высококаче­ственных сталей (дуговая печь), освеще­ния (прожекторы, проекционная аппара­тура). Широко применяются также дуго­вые лампы с ртутными электродами в кварцевых баллонах, где дуговой разряд возникает в ртутном паре при откачанном воздухе. Дуга, возникающая в ртутном паре, является мощным источником уль­трафиолетового излучения и используется в медицине (например, кварцевые лампы). Дуговой разряд при низких давлениях в парах ртути используется в ртутных выпрямителях для выпрямления перемен­ного тока.

4. Коронный разряд – высоковольт­ный электрический разряд, который возникает при высоком (например, атмосферном) давлении в неоднородном поле (напри­мер, вблизи электродов с большой кривизной поверхности, остриё игольчатого электрода). Когда напряженность поля вблизи острия достигает 30 кВ/см, то во­круг него возникает свечение, имеющее вид короны, чем и вызвано название этого вида разряда.

В зависимости от знака коронирующего электрода различают отрицательную или положительную корону. В случае от­рицательной короны рождение электронов, вызывающих ударную ионизацию молекул газа, происходит за счет эмиссии их из катода под действием положительных ионов, в случае положительной – вслед­ствие ионизации газа вблизи анода. В естественных условиях корона возника­ет под влиянием атмосферного электриче­ства у вершин мачт кораблей или деревьев (на этом основано действие молниеотводов). Это явление получило в древности на­звание огней святого Эльма. Вредное действие короны вокруг проводов высоковольтных линий электропередач состоит в возникновении токов утеч­ки. Для их снижения провода высоковоль­тных линий делаются толстыми. Коронный разряд, являясь прерывистым, становится также источником радиопомех.

Используется коронный разряд в элек­трофильтрах, применяемых для очистки промышленных газов от примесей. Газ, подвергаемый очистке, движется снизу вверх в вертикальном цилиндре, по оси которого расположена коронирующая проволока. Ионы, имеющиеся в большом количестве во внешней части короны, осе­дают на частицах примеси и увлекаются полем к внешнему некоронирующему элек­троду и на нем оседают. Коронный разряд применяется также при нанесении порош­ковых и лакокрасочных покрытий.

ЭЛЕКТРОСТАТИЧЕСКОЕ ПОЛЕ

СИЛОВЫЕ ЛИНИИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ

Согласно представлениям современной физики воздействие одного заряда на другой передается через электростатическое поле – особую бесконечно простирающуюся материальную среду, которую создает вокруг себя каждое заряженное тело. Электростатические поля не могут быть обнаружены органами чувств человека. Однако, на заряд, помещённый в поле, действует сила прямо пропорциональная величине этого заряда. Т.к. направление силы зависит от знака заряда, то условились использовать для исследования полей, так называемый, пробный заряд q 0 . Это положительный, точечный заряд, который помещают в интересующую нас точку электрического поля. Соответственно в качестве силовой характеристики поля целесообразно использовать отношение силы к величине пробного заряда q 0:

Эта постоянная для каждой точки поля векторная величина равная силе, действующей на единичный, положительный заряд называется напряженностью . Для поля точечного заряда q на расстоянии r от него:

, (4)

Направление вектора совпадает с направлением силы, действующей на пробный заряд. [E] = Н / Кл или В/м.

В диэлектрической среде сила взаимодействия между зарядами, а значит и напряженность поля, уменьшается в ε раз:

, . (5)

При наложении друг на друга нескольких электростатических полей, результирующая напряженность определяется как векторная сумма напряженностей каждого из полей (принцип суперпозиции):

Графически распределение электрического поля в пространстве изображается с помощью силовых линий . Эти линии проводятся так, чтобы касательные к ним в любой точке совпадали с . Это означает, что вектор силы, действующей на заряд, а значит и вектор его ускорения, тоже лежат на касательных к силовым линиям, которые нигде и никогда не пересекаются. Силовые линии электростатического поля не могут быть замкнутыми. Они начинаются на положительном и заканчиваются на отрицательном зарядах или уходят в бесконечность.

· Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.

· Силовые линии электрического поля всегда перпендикулярны поверхности проводника.

· Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).


20)
Напоминаю, что это энергетические характеристики электрического поля.

Потенциал электрического поля в любой его точке определяется как

.

и равен потенциальной энергии единичного заряда, внесенного в данную точку поля.

Если заряд переместить в поле из точки 1 в точку 2, то между этими точками возникает разность потенциалов

.

Смысл разности потенциалов: это работа электрического поля по перемещению заряда из одной точки в другую.

Потенциал поля также можно интерпретировать через работую Если т.2 находится в бесконечности, где поля нет (), то - это работа поля по перемещению заряда из данной точки в бесконечность. Потенциал поля, созданного одиночным зарядом рассчитывается как .

Поверхности, в каждой точке которой потенциалы поля одинаковы, называются эквипотенциальными поверхностями. В поле диполя потенциальные поверхности распределены следующим образом:

Потенциал поля, образованного несколькими зарядами, рассчитывается по принципу суперпозиции: .

а) Расчет потенциала в т. А, расположенной не на оси диполя:

Найдем из треугольника (). Очевидно, . Поэтому и .

.

б) Между точками А и В, равноотстоящими от диполя на расстоянии

() разность потенциалов определяется как (примем без доказательства, которое Вы найдете в учебнике Ремизова)

.

в) Можно показать, что если диполь находится в центре равностороннего треугольника, то разность потенциалов между вершинами треугольника соотносятся как проекции вектора на стороны этого треугольника ().


21)
- рассчитывается работа электрического поля вдоль силовых линий.

1. Работа в электрическом поле не зависит от формы пути.

2. Работа перпендикулярная силовым линиям не совершается.

3. По замкнутому контуру работа в электрическом поле не совершается.

Энергетическая характеристика электрического поля (потанцеал).

1) Физический смысл:

Если Кл, то (численно), при условии что заряд помещён в данную точку электрического поля.

Единица измерения:

2) Физический смысл:

Если в данную точку поместить единичный положительный точечный заряд, то (численно), при перемещении из данной точки в бесконечность.


Δφ - разность потанцеала двух точек электрического поля.

U – напряжение – «у» - это разность потанцеалов двух точек электрического поля.

[U]=В (Вольт)

Физический смысл:

Если , то (численно) при перемещении из одной точки поля в другую.

Связь между напряжением и напряженностью:


22)
В электростатическом поле все точки проводника имеют один и тот же потенциал, который пропорционален заряду проводника, т.е. отношения заряда q к потенциалу φ не зависит от заряда q. (Электростатическим называется поле, окружающее неподвижные заряды). Поэтому оказалось возможным ввести понятие электрической ёмкости C уединённого проводника:

Электроёмкость - это величина, численно равная заряду, который нужно сообщить проводнику, чтобы его потенциал изменился на единицу.

Ёмкость определяется геометрическими размерами проводника, его формой и свойствами окружающей среды и не зависит от материала проводника.

Единицы измерения для величин, входящих в определении ёмкости:

Ёмкость - обозначение C, единица измерения - Фарад (Ф, F);

Электрический заряд - обозначение q, единица измерения - кулон (Кл, С);

φ - потенциал поля - вольт (В, V).

Можно создать систему проводников, которая будет обладать ёмкостью гораздо большей, чем отдельный проводник, не зависящей от окружающих тел. Такую систему называют конденсатором. Простейший конденсатор состоит из двух проводящих пластин, расположенных на малом расстоянии друг от друга (Рис.1.9). Электрическое поле конденсатора сосредоточено между обкладками конденсатора, то есть внутри его. Ёмкость конденсатора:

С = q / (φ1 - φ2) = q / U

(φ1 - φ2) - разность потенциалов между обкладками конденсатора, т.е. напряжение.

Ёмкость конденсатора зависит от его размеров, формы и диэлектрической проницаемости ε диэлектрика, находящегося между обкладками.

C = ε∙εo∙S / d, где

S - площадь обкладки;

d - расстояние между обкладками;

ε - диэлектрическая проницаемость диэлектрика между обкладками;

εo - электрическая постоянная 8,85∙10-12Ф/м.

При необходимости увеличить ёмкость конденсаторы соединяют между собой параллельно.

Рис.1.10. Параллельное соединение конденсаторов.

Cобщ = C1 + C2 + C3

При параллельном соединении все конденсаторы находятся под одним напряжением, а общий их заряд Q. При этом каждый конденсатор получит заряд Q1, Q2, Q3, ...

Q = Q1 + Q2 + Q3

Q1 = C1∙U; Q2 = C2∙U; Q3 = C3∙U. Подставим в вышестоящее уравнение:

C∙U = C1∙U + C2∙U + C3∙U, откуда C = C1 + C2 + C3 (и так для любого количества конденсаторов).

При последовательном соединении:

Рис.1.11. Последовательное соединение конденсаторов.

1/Cобщ = 1/C1 + 1/C2 + ∙∙∙∙∙ + 1/ Cn

Вывод формулы:

Напряжение на отдельных конденсаторах U1, U2, U3,..., Un. Общее напряжение всех конденсаторов:

U = U1 + U2 + ∙∙∙∙∙ + Un,

учитывая, что U1 = Q/ C1; U2 = Q/ C2; Un = Q/ Cn, подставив и разделив на Q, получимсоотношение для расчета емкости цепи с последовательныи соединением конденсаторов

Единицы измерения ёмкости:

Ф - фарад. Это очень большая величина, поэтому используют меньшие величины:

1 мкФ = 1 μF = 10-6Ф (микрофарада);

1 нФ = 1 nF = 10-9 Ф (нанофарада);

1 пФ = 1pF = 10-12Ф (пикофарада).

23) Если проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила . В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 43). Однако в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током. За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо выполнение двух условий:

1) наличие свободных зарядов в проводнике – носителей тока;

2) наличие электрического поля в проводнике.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δq, переносимого через поперечное сечение проводника (рис. 11.1) за интервал времени Δt, к этому интервалу времени:

Упорядоченное движение свободных носителей тока в проводнике характеризуется скоростью упорядоченного движения носителей. Эта скорость называется скоростью дрейфа носителей тока. Пусть цилиндрический проводник (рис. 11.1) имеет поперечное сечение площадью S . В объеме проводника, ограниченном поперечными сечениями 1 и 2 с расстоянием ∆х между ними содержится число носителей тока ∆N = nS х , где n – концентрация носителей тока. Их общий заряд ∆q = q 0 ∆N = q 0 nS х . Если под действием электрического поля носители тока движутся слева направо со скоростью дрейфа v др , то за время ∆t= x/v др все носители, заключенные в этом объеме, пройдут через поперечное сечение 2 и создадут электрический ток. Сила тока равна:

. (11.2)

Плотностью тока называется величина электрического тока, протекающего через единицу площади поперечного сечения проводника:

. (11.3)

В металлическом проводнике носителями тока являются свободные электроны металла. Найдем скорость дрейфа свободных электронов. При силе тока I = 1А, площади поперечного сечения проводника S = 1мм 2 , концентрации свободных электронов (например, в меди) n = 8,5·10 28 м --3 и q 0 = e = 1,6·10 –19 Кл получим:

v др = .

Видим, что скорость направленного движения электронов очень мала, гораздо меньше скорости хаотичного теплового движения свободных электронов.

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным.

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током.

Постоянный электрический ток может быть создан в замкнутой цепи, в которой свободные носители заряда циркулируют по замкнутым траекториям. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю. Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения. Такие устройства называются источниками постоянного тока. Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами.

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

ε . (11.2)

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

В пространстве, окружающем заряд, который является источником, прямо пропорционально количеству этого заряда и обратно квадрату расстояние от этого заряда. Направление электрического поля согласно принятым правилам всегда от положительного заряда в сторону отрицательного заряда. Это можно представить как если поместить пробный заряд в область пространства электрического поля источника и этот пробный заряд будет либо отталкиваться, либо притягиваться (в зависимости от знака заряда). Электрическое поле характеризуется напряженностью , которое являясь векторной величиной может быть представлено графически в виде стрелки имеющей длину и направление. В любом месте направление стрелки указывает направление напряженности электрического поля E , или просто - направление поля, а длина стрелки пропорциональна численной величине напряженности электрического поля в этом месте. Чем дальше область пространства от источника поля (заряда Q ), тем меньше длина вектора напряженности. Причем длина вектора уменьшается при удалении в n раз от некоего места в n 2 раз, то есть обратно пропорционально квадрату.

Более полезным средством визуального представления векторного характера электрического поля является использование такого понятия как , или просто - силовые линии. Вместо того, чтобы изображать бесчисленные векторных стрелки в пространстве, окружающие заряд-источник, оказалось полезным объединить их в линии, где сами вектора являются касательными к точкам на таких линиях.

В итоге с успехом для представления векторной картины электрического поля применяют силовые линии электрического поля , которые выходят из зарядов положительного знака и заходят в заряды отрицательного знака, а также простираются до бесконечности в пространстве. Такое представление позволяет увидеть умом невидимое человеческому глазу электрическое поле . Впрочем, такое представление удобно также и для гравитационных сил и любых других бесконтактных дальнодействующих взаимодействий.

Модель электрических силовых линий включает в себя бесконечное их количество, но слишком высокая плотность изображения силовых линий снижает возможность чтения узоров поля, поэтому их число ограничивается удобочитаемостью.

Правила рисования силовых линий электрического поля

Есть множество правил составления таких моделей электрических силовых линий. Все эти правила созданы для того, чтобы сообщить наибольшую информативность при визуализации (рисовании) электрического поля . Один из способов - это изображение силовых линий. Один из самых распространенных способов - это окружить более заряженные объекты большим количеством линий, то есть большей плотностью линий. Объекты с большим зарядом создают более сильные электрические поля и потому плотность (густота) линий вокруг них больше. Чем ближе к заряду источнику, тем выше плотность силовых линий, и чем больше величина заряда, тем гуще вокруг него линии.

Второе правило для рисования линий электрического поля включает в себя изображение линий другого типа, таких, которые пересекают первые силовые линии перпендикулярно . Такой тип линий именуется эквипотенциальными линиями , а при объемном представлении следует говорить об эквипотенциальных поверхностях. Этот тип линий образует замкнутые контуры и каждая точка на такой эквипотенциальной линии имеет одинаковое значение потенциала поля. Когда какая либо заряженная частица пересекает такие перпендикулярные силовым линиям линии (поверхности), то говорят о совершении зарядом работы. Если же заряд будет двигаться по эквипотенциальным линиям (поверхностям), то хотя он и движется, но работы при этом никакой не совершается. Заряженная частица, оказавшись в электрическом поле другого заряда начинает двигаться, но в статическом электричестве рассматриваются только неподвижные заряды. Движение зарядов называется электрическим током, при этом носителем заряда может совершатся работа.

Важно помнить, что силовые линии электрического поля не пересекаются, а линии другого типа - эквипотенциальные, образуют замкнутые контуры. В том месте, где имеет место пересечение линий двух типов, касательные к этим линиям взаимно перпендикулярны. Таким образом получается нечто вроде искривленной координатной сетки, или решетки, ячейки которой, а также точки пересечения линий разных типов характеризуют электрическое поле .

Пунктирные линии - эквипотенциальные. Линии со стрелками - силовые линии электрического поля

Электрическое поле состоящее из двух и более зарядов

Для уединенных отдельно взятых зарядов силовые линии электрического поля представляют собой радиальные лучи выходящие из зарядов и идущие в бесконечность. Какова будет конфигурация силовых линий для двух и более зарядов? Для выполнения такого узора необходимо помнить, что мы имеем дело с векторным полем, то есть с векторами напряженности электрического поля . Чтобы изобразить рисунок поля, нам необходимо выполнить сложение векторов напряженности от двух и более зарядов. Результирующие векторы будут представлять собой суммарное поле нескольких зарядов. Как в этом случае можно построить силовые линии? Важно помнить, что каждая точка на силовой линии - это единственная точка соприкосновения с вектором напряженности электрического поля. Это следует из определения касательной в геометрии. Если от начала каждого вектора построить перпендикуляр в виде длинных линий, тогда взаимное пересечение многих таких линий изобразит ту самую искомую силовую линию.

Для более точного математического алгебраического изображения силовых линий необходимо составить уравнения силовых линий, а вектора в этом случае будут представлять первые производные, линии первого порядка, которые и есть касательные. Такая задача порой является чрезвычайно сложной и требует компьютерных вычислений.

В первую очередь важно помнить, что электрическое поле от многих зарядов представлено суммой векторов напряженности от каждого источника заряда. Это основа для выполнения построения силовых линий для того чтобы визуализировать электрическое поле.

Каждый внесенный в электрическое поле заряд приводит к изменению, пусть даже незначительному, узора силовых линий. Такие изображения бывают порой очень привлекательными.

Силовые линии электрического поля как способ помочь уму увидеть реальность

Понятие электрического поля возникло когда ученые пытались объяснить дальнодействие, которое происходит между заряженными объектами. Представление об электрическом поле было впервые введено физиком 19-го века Майклом Фарадеем . Это был результат восприятия Майклом Фарадеем невидимой реальности в виде картины силовых линий характеризующих дальнодействие. Фарадей не стал размышлять в рамках одного заряда, а пошел дальше и расширил границы ума. Он предположил, что заряженный объект (или масса в случае с гравитацией) влияют на пространство и ввел понятие поля такого влияния. Рассматривая такие поля он смог объяснить поведение зарядов и тем самым раскрыл многие секреты электричества.

Для наглядного графического представления поля удобно использовать силовые линии − направленные линии, касательные к которым в каждой точке совпадают с направлением вектора напряженности электрического поля (рис. 233).

Рис. 233
 Согласно, определению силовые линии электрического поля обладают рядом общих свойств (сравните со свойствами линий тока жидкости):
 1. Силовые линии не пересекаются (в противном случае, в точке пересечения можно построить две касательных, то есть в одной точке, напряженность поля имеет два значения, что абсурдно).
 2. Силовые линии не имеют изломов (в точке излома опять можно построить две касательных).
 3. Силовые линии электростатического поля начинаются и заканчиваются на зарядах.
 Так напряженность поля определена в каждой пространственной точке, то силовую линию можно провести через любую пространственную точку. Поэтому число силовых линий бесконечно велико. Число линий, которые используются для изображения поля, чаще всего определяется художественным вкусом физика-художника. В некоторых учебных пособиях рекомендуется строить картину силовых линий так, чтобы их густота была больше там, где напряженность поля больше. Это требование не является строгим, и не всегда выполнимым, поэтому силовые линии рисуют, удовлетворяя сформулированным свойствам 1 − 3 .
 Очень просто построить силовые линии поля создаваемого точечным зарядом. В этом случае силовые линии представляют собой набор прямых, выходящих (для положительного), или входящих (для отрицательных) в точку расположения заряда (рис. 234).

рис. 234
 Такие семейства силовых линий полей точечных зарядов демонстрируют, что заряды являются источниками поля, по аналогии с источниками и стоками поля скоростей жидкости. Доказательство того, что силовые линии не могут начинаться или заканчиваться в тех точках, где заряды отсутствуют, мы проведем позднее.
 Картину силовых линий реальных полей можно воспроизвести экспериментально.
 В невысокий сосуд следует влить небольшой слой касторового масла и всыпать в него небольшую порцию манной крупы. Если масло с крупой поместить в электростатическое поле, то крупинки манной крупы (они имеют слега вытянутую форму) поворачиваются по направлению напряженности электрического поля и выстраиваются приблизительно вдоль силовых линий, по прошествии нескольких десятков секунд в чашке вырисовывается картина силовых линий электрического поля. Некоторые такие «картинки» представлены на фотографиях.
 Также можно провести теоретический расчет и построение силовых линий. Правда, эти расчеты требуют громадного числа вычислений, поэтому реально (и без особого труда) проводятся с использованием компьютера, чаще всего такие построения выполняются в некоторой плоскости.
 При разработке алгоритмов расчета картины силовых линий встречается ряд проблем, требующих своего разрешения. Первая такая проблема − расчет вектора поля. В случае электростатических полей, создаваемых заданным распределением зарядов, эта проблема решается с помощью закона Кулона и принципа суперпозиции. Вторая проблема − метод построения отдельной линии. Идея простейшего алгоритма, решающего данную задачу, достаточна очевидна. На малом участке каждая линия практически совпадает со своей касательной, поэтому следует построить множество отрезков касательных к силовым линиям, то есть отрезков малой длины l , направление которых совпадает с направлением поля в данной точке. Для этого необходимо, прежде всего, рассчитать компоненты вектора напряженности в заданной точке E x , E y и модуль этого вектора E = √{E x 2 + E y 2 } . Затем можно построить отрезок малой длины, направление которого совпадает с направлением вектора напряженности поля. его проекции на оси координат вычисляются по формулам, которые следуют из рис. 235:

рис. 235

 Затем следует повторить процедуру, начиная с конца построенного отрезка. Конечно, при реализации такого алгоритма встречаются и другие проблемы, носящие скорее технический характер.
На рисунках 236 показаны силовые линии полей создаваемых двумя точечными зарядами.


рис. 236
 Знаки зарядов указаны, на рисунках а) и б) заряды по модулю одинаковы, на рис. в), г) различны − какой из них больше предлагаем определить самостоятельно. Направления силовых линий в каждом случае также определите самостоятельно.
 Интересно, отметить, что М.Фарадей рассматривал силовые линии электрического поля как реальные упругие трубки, связывающие между собой электрические заряды, такие представления очень помогали ему предсказывать и объяснять многие физические явления.
 Согласитесь, что прав был великий М. Фарадей − если мысленно заменить линии упругими резиновыми жгутами, характер взаимодействия очень нагляден.

Электри́ческий заря́д - это физическая скалярная величина, определяющая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии.

В замкнутой системе алгебраическая сумма зарядов всех частиц остается неизменной.

(... но, не числа заряженных частиц, т.к. существуют превращения элементарных частиц).

Замкнутая система

- система частиц, в которую не входят извне и не выходят наружу заряженные частицы.

Закон Кулона

- основной закон электростатики.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна

произведению модулей заряда и обратно пропорциональна квадрату расстояния между ними.

Когда тела считаются точечными? - если расстояние между ними во много раз больше размеров тел.

Если у двух тел есть электрические заряды, то они взаимодействуют по закону Кулона.

    Напряженность электрического поля. Принцип суперпозиции. Расчёт электростатического поля системы точеных зарядов на основе принципа суперпозиции.

Напряжённость электри́ческого по́ля - векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы действующей на неподвижный[ пробный заряд, помещенный в данную точку поля, к величине этого заряда :

При́нцип суперпози́ции - один из самых общих законов во многих разделах физики. В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.

Наиболее известен принцип суперпозиции в электростатике, в которой он утверждает, что напряженность электростатического поля, создаваемого в данной точке системой зарядов, есть сумма напряженностей полей отдельных зарядов.

4. Линии напряжонности (силовые линии) электрического поля. Поток вектора напряжонности. Густота силовых линий.

Электрическое поле изображают с помощью силовых линий.

Силовые линии указывают направление силы, действующей на положительный заряд в данной точке поля.

Свойства силовых линий электрического поля

    Силовые линии электрического поля имеют начало и конец. Они начинаются на положительных зарядах и заканчиваются на отрицательных.

    Силовые линии электрического поля всегда перпендикулярны поверхности проводника.

    Распределение силовых линий электрического поля определяет характер поля. Поле может быть радиальным (если силовые линии выходят из одной точки или сходятся в одной точке), однородным (если силовые линии параллельны) и неоднородным (если силовые линии не параллельны).

9.5. Поток вектора напряженности электрического поля. Теорема Гаусса

Как и для любого векторного поля важно рассмотреть свойства потока электрического поля. Поток электрического поля определяется традиционно.

Выделим малую площадку площадью ΔS , ориентация которой задается единичным вектором нормали (рис. 157).

В пределах малой площадки электрическое поле можно считать однородным , тогда поток вектора напряженности ΔФ E определяется как произведение площади площадки на нормальную составляющую вектора напряженности

где - скалярное произведение векторов и ; E n - нормальная к площадке компонента вектора напряженности.

В произвольном электростатическом поле поток вектора напряженности через произвольную поверхность, определяется следующим образом (рис. 158):

Поверхность разбивается на малые площадки ΔS (которые можно считать плоскими);

Определяется вектор напряженности на этой площадке (который в пределах площадки можно считать постоянным);

Вычисляется сумма потоков через все площадки, на которые разбита поверхность

Эта сумма называется потоком вектора напряженности электриче-ского поля через заданную поверхность .

Непрерывные линии, касательные к которым в каждой точке, через которую они проходят, совпадают с вектором напряженности, называются силовыми линиями электрического поля или линиями напряженности.

Густота линий больше там, где напряженность поля больше. Силовые линии электрического поля, созданного неподвижными зарядами не замкнуты: они начинаются на положительных зарядах и заканчиваются на отрицательных. Электрическое поле, напряженность которого одинакова во всех точках пространства, называется однородным. Густота линий больше вблизи заряженных тел, где напряженность больше. Силовые линии одного и того же поля не пересекаются.На любой заряд в электрическом поле действует сила. Если заряд под действием этой силы перемещается, то электрическое поле совершает работу. Работа сил по перемещению заряда в электростатическом поле не зависит от траектории движения заряда и определяется только положением начальной и конечной точек.Рассмотрим однородное электрическое поле, образованное плоскими пластинами, заряженными разноименно. Напряженность поля во всех точках одинакова. Пусть точечный заряд q перемещается из точки А в точку B вдоль кривой L. При перемещении заряда на небольшую величину D L работа равна произведению модуля силы на величину перемещения и на косинус угла между ними, или, что то же самое, произведению величины точечного заряда на напряженность поля и на проекцию вектора перемещения на направление вектора напряженности. Если подсчитать полную работу по перемещению заряда из точки А в точку B, то она независимо от формы кривой L, окажется равной работе по перемещению заряда q вдоль силовой линии в точку B 1 . Работа по перемещению из точки B 1 в точку B равна нулю, так как вектор силы и вектор перемещения перпендикулярны.

5. Теорема Гаусса для электрического поля в вакууме

Общая формулировка : Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду .

СГС

СИ

Данное выражение представляет собой теорему Гаусса в интегральной форме.

    Замечание : поток вектора напряжённости через поверхность не зависит от распределения заряда (расположения зарядов) внутри поверхности.

В дифференциальной форме теорема Гаусса выражается следующим образом:

СГС

СИ

Здесь - объёмная плотность заряда (в случае присутствия среды - суммарная плотность свободных и связанных зарядов), а - оператор набла .

    Теорема Гаусса может быть доказана как теорема в электростатике исходя из закона Кулона (см. ниже ). Формула однако также верна в электродинамике, хотя в ней она чаще всего не выступает в качестве доказываемой теоремы, а выступает в качестве постулируемого уравнения (в этом смысле и контексте ее логичнее называть законом Гаусса .

6. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной длинной нити (цилиндра)

Поле равномерно заряженного бесконечного цилиндра (нити) . Бесконечный цилиндр радиуса R (рис. 6) равномерно заряжен слинейной плотностью τ (τ = –dQ/dt заряд, который приходится на единицу длины). Из соображений симметрии мы видим, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. Мысленно построим в качестве замкнутой поверхности коаксиальный цилиндр радиуса r и высотой l . Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы и линии напряженности параллельны), а сквозь боковую поверхность равен 2πrl Е. Используя теорему Гаусса, при r>R 2πrl Е = τl /ε 0 , откуда (5) Если r

7. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной плоскости

Поле равномерно заряженной бесконечной плоскости . Бесконечная плоскость (рис. 1) заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS - заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Е n совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε 0 , откуда (1) Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно .

8. Применение теоремы Гаусса к расчету электростатического поля равномерно заряженной сферы и объемно заряженного шара.

Поле равномерно заряженной сферической поверхности . Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Т.к. заряд распределен равномернопо поверхности то поле, которое создавается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr 2 E = Q/ε 0 , откуда (3) При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r"

Поле объемно заряженного шара . Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью ρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r"

9. Работа сил электрического поля при перемещении заряда. Теорема о циркуляции напряженности электрического поля.

Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда из одной точки электростатического поля в другую на отрезке пути , по определению равна

где - угол между вектором силы F и направлением движения . Если работа совершается внешними силами, то dA0. Интегрируя последнее выражение, получим, что работа против сил поля при перемещении пробного заряда из точки “а” в точку “b” будет равна

где - кулоновская сила, действующая на пробный заряд в каждой точке поля с напряженностью Е. Тогда работа

Пусть заряд перемещается в поле заряда q из точки “а”, удалённой от q на расстоянии в точку “b”, удаленную от q на расстоянии (рис 1.12).

Как видно из рисунка тогда получим

Как было сказано выше, работа сил электростатического поля, совершаемая против внешних сил, равна по величине и противоположна по знаку работе внешних сил, следовательно

Теорема о циркуляции электрического поля.

Напряженность и потенциал – это две характеристики одного и того же объекта – электрического поля, поэтому между ними должна существовать функциональная связь. Действительно, работа сил поля по перемещению заряда q из одной точки пространства в другую может быть представлена двояким образом:

Откуда следует, что

Это и есть искомая связь между напряженностью и потенциалом электрического поля в дифференциальном виде.

- вектор, направленный из точки с меньшим потенциалом в точку с большим потенциалом (рис.2.11).

, .

Рис.2.11 . Векторы и gradφ . .

Из свойства потенциальности электростатического поля следует, что работа сил поля по замкнутому контуру (φ 1 = φ 2) равна нулю:

поэтому можем написать

Последнее равенство отражает суть второй основной теоремы электростатики – теоремы о циркуляцииэлектрического поля , согласно которой циркуляция поля вдоль произвольного замкнутого контура равна нулю. Эта теорема является прямым следствием потенциальности электростатического поля.

10. Потенциал электрического поля. Связь между потенциалом и напряжонностью.

Электростатический потенциа́л (см. также кулоновский потенциал ) - скалярная энергетическая характеристикаэлектростатического поля , характеризующая потенциальную энергию поля, которой обладает единичный заряд , помещённый в данную точку поля. Единицей измерения потенциала является, таким образом, единица измерения работы , деленная на единицу измерения заряда (для любой системы единиц; подробнее о единицах измерения - см. ниже ).

Электростатический потенциал - специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики - его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

Напряжённость электростатического поля и потенциал связаны соотношением

или обратно :

Здесь - оператор набла , то есть в правой части равенства стоит минус градиент потенциала - вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.

Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля , легко увидеть, что электростатический потенциал удовлетворяетуравнению Пуассона . В единицах системы СИ :

где - электростатический потенциал (в вольтах ), - объёмная плотность заряда кулонах на кубический метр), а - вакуума (в фарадах на метр).

11. Энергия системы неподвижных точечных электрических зарядов.

Энергия системы неподвижных точечных зарядов . Как мы уже знаем, электростатические силы взаимодействия консервативны; значит, система зарядов обладает потенциальной энергией. Будем искать потенциальную энергию системы двух неподвижных точечных зарядов Q 1 и Q 2 , которые находятся на расстоянии r друг от друга. Каждый из этих зарядов в поле другого обладает потенциальной энергией (используем формулу потенциала уединенного заряда): где φ 12 и φ 21 - соответственно потенциалы, которые создаются зарядом Q 2 в точке нахождения заряда Q 1 и зарядом Q 1 в точке нахождения заряда Q 2 . Согласно, и поэтому W 1 = W 2 = W и Добавляя к нашей системе из двух зарядов последовательно заряды Q 3 , Q 4 , ... , можно доказать, что в случае n неподвижных зарядов энергия взаимодействия системы точечных зарядов равна (1) где φ i - потенциал, который создается в точке, где находится заряд Q i , всеми зарядами, кроме i-го.

12. Диполь в электрическом поле. Полярные и неполярные молекулы. Поляризация диэлектриков. Поляризованность. Сегнетоэлектрики.

Если поместить диэлектрик во внешнее электрическое поле, то он поляризуется, т. е. получит неравный нулю дипольный момент pV=∑piгдеpi- дипольный момент одной молекулы. Чтобы произвести количественное описание поляризации диэлектрика вводят векторную величину - поляризованность, которая определяется как дипольный момент единицы объема диэлектрика:

Из опыта известно, что для большого класса диэлектриков (за исключением сегнетоэлектриков, см. далее) поляризованность Р зависит от напряженности поля Е линейно. Если диэлектрик изотропный и Е численно не слишком велико, то

Сегнетоэлектрики - диэлектрики, которые обладают в определенном интервале температур спонтанной (самопроизвольной) поляризованностью, т. е. поляризованностью в условиях отсутствия внешнего электрического поля. К сегнетоэлектрикам относятся, например, подробно изученные И. В. Курчатовым (1903-1960) и П. П. Кобеко (1897-1954) сегнетова соль NaKC 4 H 4 O 6 4Н 2 O (от нее и было получено данное название) и титанат бария ВаТiO 3 .

Поляризация диэлектриков - явление, связанное с ограниченным смещением связанных зарядов в диэлектрике или поворотом электрических диполей , обычно под воздействием внешнего электрического поля , иногда под действием других внешних сил или спонтанно.

Поляризацию диэлектриков характеризует вектор электрической поляризации . Физический смысл вектора электрической поляризации - это дипольный момент , отнесенный к единице объема диэлектрика. Иногда вектор поляризации коротко называют просто поляризацией.

Электрический диполь - идеализированная электронейтральная система, состоящая из точечных и равных по абсолютной величине положительного и отрицательного электрических зарядов .

Другими словами, электрический диполь представляет собой совокупность двух равных по абсолютной величине разноимённых точечных зарядов, находящихся на некотором расстоянии друг от друга

Произведение вектора проведённого от отрицательного заряда к положительному, на абсолютную величину зарядов называется дипольным моментом:

Во внешнем электрическом поле на электрический диполь действует момент сил который стремится повернуть его так, чтобы дипольный момент развернулся вдоль направления поля.

Потенциальная энергия электрического диполя в (постоянном) электрическом поле равна (В случае неоднородного поля это означает зависимость не только от момента диполя - его величины и направления, но и от места, точки нахождения диполя).

Вдали от электрического диполя напряжённость его электрического поля убывает с расстоянием как то есть быстрее, чем у точечного заряда ().

Любая в целом электронейтральная система, содержащая электрические заряды, в некотором приближении (то есть собственно в дипольном приближении ) может рассматриваться как электрический диполь с моментом где - заряд -го элемента, - его радиус-вектор. При этом дипольное приближение будет корректным, если расстояние, на котором изучается электрическое поле системы, велико по сравнению с её характерными размерами.

Поля́рные вещества́ в химии - вещества , молекулы которых обладают электрическим дипольным моментом . Для полярных веществ, в сравнении с неполярными, характерны высокая диэлектрическая проницаемость (более 10 в жидкой фазе), повышенные температура кипения и температура плавления .

Дипольный момент обычно возникает вследствие разной электроотрицательности составляющих молекулу атомов , из-за чегосвязи в молекуле приобретают полярность . Однако, для приобретения дипольного момента требуется не только полярность связей, но и соответственное их расположение в пространстве . Молекулы, имеющие форму, подобную молекулам метана либо двуокиси углерода , являются неполярными.

Полярные растворители наиболее охотно растворяют полярные вещества, а также обладают способностью сольватировать ионы. Примерами полярного растворителя являются вода , спирты и другие вещества.

13. Напряженность электрического поля в диэлектрики. Электрическое смещение. Теорема Гаусса для поля в диэлектрики.

Напряженность электростатического поля, согласно (88.5), зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна . Вектор напряженности Е , переходя через границу диэлектриков, претерпевает скачко­образное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризо­вать поле ещевектором электрического смещения, который для электрически изотроп­ной среды, по определению, равен

Используя формулы (88.6) и (88.2), вектор электрического смещения можно выразить как

Единица электрического смещения - кулон на метр в квадрате (Кл/м 2).

Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле свя­занных зарядов.Результирующее поле в диэлектрике описывается вектором напряжен­ности Е , и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, воз­никающие в диэлектрике, могут вызвать, однако, перераспределение свободных заря­дов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е , поле D изображается с помощьюлиний электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности (см. §79).

Линии вектора Е могут начинаться и заканчиваться на любых зарядах - свободных и связанных, в то время как линии вектора D - только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверх­ность

где D n - проекция вектора D на нормаль n к площадке dS .

Теорема Гаусса дляэлектростатического поля в диэлектрике:

(89.3)

т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произ­вольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума D n = 0 E n ( =1), тогда поток вектора напряженности Е сквозь произ­вольную замкнутую поверхность (ср. с (81.2)) равен

Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как

где - соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S . Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.

. Напряженность электрического поля в диэлектрике.

В соответствии с принципом суперпозиции электрическое поле в диэлектрике векторно складывается из внешнего поля и поля поляризационных зарядов (рис.3.11).

или по абсолютной величине

Мы видим, что величина напряженности поля в диэлектрике меньше, чем вакууме. Другими словами, любой диэлектрик ослабляет внешнее электрическое поле.

Рис.3.11 . Электрическое поле в диэлектрике.

Индукция электрического поля , где , , то есть . С другой стороны, , откуда находим, что ε 0 Е 0 = ε 0 εЕ и, следовательно, напряженность электрического поля в изотропном диэлектрике есть:

Эта формула раскрывает физический смысл диэлектрической проницаемости и показывает, что напряженность электрического поля в диэлектрике в раз меньше , чем в вакууме. Отсюда следует простое правило: чтобы написать формулы электростатики в диэлектрике, надо в соответствующих формулах электростатики вакуума рядом с приписать .

В частности, закон Кулона в скалярной форме запишется в виде:

14. Электрическая емкость. Конденсаторы (плоский, сферический, цилиндрический), их емкости.

Конденсатор состоит из двух проводников (обкладок), которые разделены диэлектриком. На емкость конденсатора не должны влиять окружающие тела, поэтому проводникам придают такую форму, чтобы поле, которое создавается накапливаемыми зарядами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) две концентрические сферы; 3) два коаксиальных цилиндра. Поэтому в зависимости от формы обкладок конденсаторы делятся на плоские, сферические и цилиндрические .

Так как поле сосредоточено внутри конденсатора, то линии напряженности начинаются на одной обкладке и кончаются на другой, поэтому свободные заряды, которые возникают на разных обкладках, равны по модулю и противоположны по знаку. Под емкостью конденсатора понимается физическая величина, равная отношению заряда Q, накопленного в конденсаторе, к разности потенциалов (φ 1 - φ 2) между его обкладками: (1) Найдем емкость плоского конденсатора, который состоит из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если считать, что расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами на пластинах можно пренебречь и поле между обкладками считать однородным. Его можно найти используя формулу потенциала поля двух бесконечных параллельных разноименно заряженных плоскостей φ 1 -φ 2 =σd/ε 0 . Учитывая наличие диэлектрика между обкладками: (2) где ε - диэлектрическая проницаемость. Тогда из формулы (1), заменяя Q=σS, с учетом (2) найдем выражение для емкости плоского конденсатора: (3) Для определения емкости цилиндрического конденсатора, который состоит из двух полых коаксиальных цилиндров с радиусами r 1 и r 2 (r 2 > r 1), один вставлен в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и действующим только между цилиндрическими обкладками. Разность потенциалов между обкладками считаем по формуле для разности потенциалов поля равномерно заряженного бесконечного цилиндра с линейной плотностью τ =Q/l (l -длина обкладок). При наличии диэлектрика между обкладками разность потенциалов (4) Подставив (4) в (1), найдем выражение для емкости цилиндрического конденсатора: (5) Чтобы найти емкость сферического конденсатора, который состоит из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу для разности потенциалов между двумя точками, лежащими на расстояниях r 1 и r 2 (r 2 > r 1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов (6) Подставив (6) в (1), получим

Электрическая ёмкость - характеристика проводника, мера его способности накапливать электрический заряд . В теории электрических цепей ёмкостью называют взаимную ёмкость между двумя проводниками; параметр ёмкостного элемента электрической схемы, представленного в виде двухполюсника. Такая ёмкость определяется как отношение величины электрического заряда к разности потенциалов между этими проводниками.

В системе СИ ёмкость измеряется в фарадах . В системе СГС в сантиметрах .

Для одиночного проводника ёмкость равна отношению заряда проводника к его потенциалу в предположении, что все другие проводники бесконечно удалены и что потенциал бесконечно удалённой точки принят равным нулю. В математической форме данное определение имеет вид

Где - заряд , - потенциал проводника.

Ёмкость определяется геометрическими размерами и формой проводника и электрическими свойствами окружающей среды (её диэлектрической проницаемостью) и не зависит от материала проводника. К примеру, ёмкость проводящего шара радиуса R равна (в системе СИ):

где ε 0 - электрическая постоянная , ε - .

Понятие ёмкости также относится к системе проводников, в частности, к системе двух проводников, разделённых диэлектриком иливакуумом , - к конденсатору . В этом случае взаимная ёмкость этих проводников (обкладок конденсатора) будет равна отношению заряда, накопленного конденсатором, к разности потенциалов между обкладками. Для плоского конденсатора ёмкость равна:

где S - площадь одной обкладки (подразумевается, что они равны), d - расстояние между обкладками, ε - относительная диэлектрическая проницаемость среды между обкладками, ε 0 = 8.854·10 −12 Ф/м - электрическая постоянная .

Конденса́тор (от лат. condensare - «уплотнять», «сгущать») - двухполюсник с определённым значением ёмкости и малой омической проводимостью ; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками ), разделённых диэлектриком , толщина которого мала по сравнению с размерами обкладок.

15. Соединение конденсаторов (параллельное и последовательное)

Помимо показанного на рис. 60 и 61, а также на рис. 62, а параллельного соединения конденсаторов, при котором соединены между собой все положительные и все отрицательные обкладки, иногда соединяют конденсаторы последовательно, т. е. так, чтобы отрицательная обкладка Рис. 62. Соединение конденсаторов: а) параллельное; б) последовательное первого конденсатора была соединена с положительной обкладкой второго, отрицательная обкладка второго - с положительной обкладкой третьего и т. д. (рис. 62, б). В случае параллельного соединения все конденсаторы заряжаются до одной и той же разности потенциалов U, но заряды на них могут быть различными. Если емкости их равны С1, С2,..., Сn, то соответствующие заряды будут Общий заряд на всех конденсаторах и, следовательно, емкость всей системы конденсаторов (35.1) Итак, емкость группы параллельно соединенных конденсаторов равна сумме емкостей отдельных конденсаторов. В случае последовательно соединенных конденсаторов (рис. 62, б) одинаковы заряды на всех конденсаторах. Действительно, если мы поместим, например, заряд +q на левую обкладку первого конденсатора, то вследствие индукции на правой его обкладке возникнет заряд -q, а на левой обкладке второго конденсатора - заряд +q. Наличие этого заряда на левой обкладке второго конденсатора опять-таки вследствие индукции создает на правой его обкладке заряд -q, а на левой обкладке третьего конденсатора - заряд +q и т. д. Таким образом, заряд каждого из последовательно соединенных конденсаторов равен q. Напряжение же на каждом из этих конденсаторов определяется емкостью соответствующего конденсатора: где Сi - емкость одного конденсатора. Суммарное напряжение между крайними (свободными) обкладками всей группы конденсаторов Следовательно, емкость всей системы конденсаторов определяется выражением (35.2) Из этой формулы видно, что емкость группы последовательно соединенных конденсаторов всегда меньше емкости каждого из этих конденсаторов в отдельности.

16. Энергия электрического поля и её объёмная плотность.

Энергия электрического поля. Энергию заряженного конденсатора можно выразить через величины, характеризующие электрическое поле в зазоре между обкладками. Сделаем это на примере плоского конденсатора. Подстановка выражения для емкости в формулу для энергии конденсатора дает

Частное U / d равно напряженности поля в зазоре; произведение S ·d представляет собой объем V , занимаемый полем. Следовательно,

Если поле однородно (что имеет место в плоском конденсаторе при расстоянии d много меньшем, чем линейные размеры обкладок), то заключенная в нем энергия распределяется в пространстве с постоянной плотностью w . Тогда объемная плотность энергии электрического поля равна

C учетом соотношения можно записать

В изотропном диэлектрике направления векторов D и E совпадают и Подставим выражение , получим

Первое слагаемое в этом выражении совпадает с плотностью энергии поля в вакууме. Второе слагаемое представляет собой энергию, затрачиваемую на поляризацию диэлектрика. Покажем это на примере неполярного диэлектрика. Поляризация неполярного диэлектрика заключается в том, что заряды, входящие в состав молекул, смещаются из своих положений под действием электрического поляЕ . В расчете на единицу объема диэлектрика работа, затрачиваемая на смещение зарядов q i на величину dr i , составляет

Выражение в скобках есть дипольный момент единицы объема или поляризованность диэлектрика Р . Следовательно, . Вектор P связан с вектором E соотношением . Подставив это выражение в формулу для работы, получим

Проведя интегрирование, определим работу, затрачиваемую на поляризацию единицы объема диэлектрика

Зная плотность энергии поля в каждой точке, можно найти энергию поля, заключенного в любом объеме V . Для этого нужно вычислить интеграл:

17. Постоянный электрический ток, его характеристики и условия существования. Закон Ома для однородного участка цепи (интегральная и дифференциальная формы)

Для существования постоянного электрического тока необходимо наличие свободных заряженных частиц и наличие источника тока. в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля.

Источник тока - устройство, в котором осуществляется преобразование какого-либо вида энергии в энергию электрического поля. В источнике тока на заряженные частицы в замкнутой цепи действуют сторонние силы. Причины возникновения сторонних сил в различных источниках тока различны. Например в аккумуляторах и гальванических элементах сторонние силы возникают благодаря протеканию химических реакций, в генераторах электростанций они возникают при движении проводника в магнитном поле, в фотоэлементах - при действия света на электроны в металлах и полупроводниках.

Электродвижущей силой источника тока называют отношение работы сторонних сил к величине положительного заряда, переносимого от отрицательного полюса источника тока к положительному.