Подключение rgb светодиода к ардуино. Осиливаем ШИМ в теплой компании Arduino и RGB светодиода. С помощью плат расширения


Для управления этими устройствами используется RGB-контроллер. Но, кроме него, в последние годы применяется плата Arduino.

Ардуино – принцип действия

плата Arduino

Плата Ардуино – это устройство, на котором установлен программируемый микроконтроллер. К нему подключены различные датчики, органы управления или encoder и, по заданному скетчу (программе), плата управляет моторами, светодиодами и прочими исполнительными механизмами, в том числе и другими платами Ардуино по протоколу SPI. Контроль устройства может осуществляться через дистанционный пульт, модуль Bluetooth, HC-06, Wi-Fi, ESP или internet, и кнопками. Одни из самых популярных плат – Arduino Nano и Arduino Uno, а также Arduino Pro Mini – устройство на базе микроконтроллера ATmega 328


Внешний вид Arduino Pro Mini
Внешний вид Arduino Uno
Внешний вид Arduino micro

Программирование осуществляется в среде Ардуино с открытым исходным кодом, установленным на обычном компьютере. Программы загружаются через USB.

Принцип управления нагрузкой через Ардуино


управление Arduino

На плате есть много выходов, как цифровых, имеющих два состояния – включено и выключено, так и аналоговых, управляемых через ШИМ-controller с частотой 500 Гц.

Но выходы рассчитаны на ток 20 – 40 мА с напряжением 5 В. Этого хватит для питания индикаторного RGB-светодиода или матричного светодиодного модуля 32×32 мм. Для более мощной нагрузки это недостаточно.

Для решения подобной проблемы во многих проектах нужно подключить дополнительные устройства:

  • Реле. Кроме отдельных реле с напряжением питания 5В есть целые сборки с разным количеством контактов, а также со встроенными пускателями.
  • Усилители на биполярных транзисторах. Мощность таких устройств ограничена током управления, но можно собрать схему из нескольких элементов или использовать транзисторную сборку.
  • Полевые или MOSFET-транзисторы. Они могут управлять нагрузкой с токами в несколько ампер и напряжением до 40 – 50 В. При подключении мосфета к ШИМ и электродвигателю или к другой индуктивной нагрузке, нужен защитный диод. При подключении к светодиодам или LED-лампам в этом нет необходимости.
  • Платы расширения.

Подключение светодиодной ленты к Ардуино


подключение светодиодной ленты к Arduino

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Arduino Nano могут управлять не только электродвигателями. Они используются также для светодиодных лент. Но так как выходные ток и напряжение платы недостаточны для прямого подключения к ней полосы со светодиодами, то между контроллером и светодиодной лентой необходимо устанавливать дополнительные приспособления.

Через реле


Подключение через реле

Реле подключается к устройству на цифровой выход. Полоса, управляемая с его помощью имеет только два состояния – включенная и выключенная. Для управления red-blue-green ленточкой необходимы три реле. Ток, который может контролировать такое устройство, ограничен мощностью катушки (маломощная катушка не в состоянии замыкать большие контакты). Для подсоединения большей мощности используются релейные сборки.

С помощью биполярного транзистора


Подключение с помощью транзистора

Для усиления выходного тока и напряжения можно использовать биполярный транзистор. Он выбирается по току и напряжению нагрузки. Ток управления не должен быть выше 20 мА, поэтому подается через токоограничивающее сопротивление 1 – 10 кОм.

Транзистор лучше применять n-p-n с общим эмиттером. Для большего коэффициента усиления используется схема с несколькими элементами или транзисторная сборка (микросхема-усилитель).

С помощью полевого транзистора

Кроме биполярных, для управления полосами используются полевые транзисторы. Другое название этих приборов – МОП или MOSFET-transistor.

Такой элемент, в отличие от биполярного, управляется не током, а напряжением на затворе. Это позволяет малому току затвора управлять большими токами нагрузки – до десятков ампер.

Подключается элемент через токоограничивающее сопротивление. Кроме того, он чувствителен к помехам, поэтому выход контроллера следует соединить с массой резистором в 10 кОм.

С помощью плат расширения


Подключение Arduino с помощью плат расширения

Кроме реле и транзисторов используются готовые блоки и платы расширения.

Это может быть Wi-Fi или Bluetooth, драйвер управления электродвигателем, например, модуль L298N или эквалайзер. Они предназначены для управления нагрузками разной мощности и напряжения. Такие устройства бывают одноканальными – могут управлять только монохромной лентой, и многоканальными – предназначены для устройств RGB и RGBW, а также лент со светодиодами WS 2812.

Пример программы


Arduino и светодиодная лента

Платы Ардуино способны управлять светодиодными конструкциями по заранее заданным программам. Их библиотеки можно скачать с официально сайта , найти в интернете или написать новый sketch (code) самому. Собрать такое устройство можно своими руками.

Вот некоторые варианты использования подобных систем:

  • Управление освещением. С помощью датчика освещения включается свет в комнате как сразу, так и с постепенным нарастанием яркости по мере захода солнца. Включение может также производиться через wi-fi, с интеграцией в систему «умный дом» или соединением по телефону.
  • Включение света на лестнице или в длинном коридоре. Очень красиво смотрится диодная подсветка каждой ступеньки в отдельность. При подключении к плате датчика движения, его срабатывание вызовет последовательное, с задержкой времени включение подсветки ступеней или коридора, а отключение этого элемента приведет к обратному процессу.
  • Цветомузыка. Подав на аналоговые входы звуковой сигнал через фильтры, на выходе получится цветомузыкальная установка.
  • Моддинг компьютера. С помощью соответствующих датчиков и программ цвет светодиодов может зависеть от температуры или загрузки процессора или оперативной памяти. Работает такое устройство по протоколу dmx 512.
  • Управление скоростью бегущих огней при помощи энкодера. Подобные установки собираются на микросхемах WS 2811, WS 2812 и WS 2812B.

Видеоинструкция

Широтно-импульсная модуляция (ШИМ, PWM) - веселая штука, и особенно прикольно с ее помощью управлять сервомоторами, однако сегодня мы применим ее к трехцветному светодиоду. Это позволит нам управлять его цветом и получить некое подобие красоты.

ШИМ

Гениально определение ШИМ сформулировано в Википедии , поэтому я просто скопипащу его оттуда: "ШИМ - приближение желаемого сигнала (многоуровневого или непрерывного) к действительным бинарным сигналам (с двумя уровнями - вкл / выкл ), так, что, в среднем, за некоторый отрезок времени, их значения равны. <...> ШИМ есть импульсный сигнал постоянной частоты и переменной скважности, то есть отношения периода следования импульса к его длительности. С помощью задания скважности (длительности импульсов) можно менять среднее напряжение на выходе ШИМ . "


Теперь разберемся, что это значит. Пусть есть обычный такой прямоугольный сигнал:




Он имеет фиксированную частоту и скважность 50%. Это означает, что половину периода напряжение максимально, а другую половину оно равно нулю. Проинтегрировав этот сигнал за период, мы увидим, что его энергия равна половине максимальной. Это будет эквивалентно тому, как если бы мы все время подавали половину напряжения.


Если у нас максимальное напряжение равно 5 В, то напряжение, получаемое на выходе ШИМ равно скважность умножить на 5 В (и делить на 100% чтобы формал-nazi не привязывались):


Arduino позволяет записать на ШИМ-выход значение от 0 до 255, а это значит, что мы можем получить напряжение с дискретностью примерно 20 мВ.


Трехцветный светодиод

Вот он, четырехногий красавец:


Самая длинная нога - это общий анод, а все остальные - это катоды, каждый отвечает за свой цвет: (смотрим на рисунок) самая нижняя - красный, вторая сверху - зеленый, самая верхняя - синий.

Если подать на длинную ногу +5В, а на все остальные 0В, то получится белый свет (умоляю, предохраняйтесь - ставьте ограничивающие резисторы!). Насколько он белый, можно судить по следующему видео:


Но получать белый цвет на нем как раз-таки неинтересно. Посмотрим, как заставить его переливаться разными цветами.

ШИМ на Arduino

Частота ШИМ на Arduino - примерно 490 Гц. На плате Arduino UNO выводы, которые могут быть использованы для ШИМ - 3,5,6, 9, 10 и 11. На плате к этому есть подсказка - шелкографией перед номерами ШИМ-выводов есть тильда или диез.

Нет ничего проще, чем управлять ШИМ на Arduino! Для этого используется одна единственная функция analogWrite(pin, value) , где pin - номер вывода, а value - значение от 0 до 255. При этом ничего не надо писать в void setup() !

Подробнее про это на английском языке можно почитать и .

Совсем немного работаем

Сделаем так, чтобы светодиод переливался разными цветами. Пусть один цвет плавно гаснет, в то время как другой разгорается. Поочередно будем менять пару цветов, и цвет будет переходить по кругу из красного в зеленый, из зеленого в синий, из синего в красный.

Соберем незамысловатую схему:


И напишем незамысловатый код:

//обзываем выводы соответственно цвету
int REDpin = 9;
int GREENpin = 10;
int BLUEpin = 11;

void setup (){}

void loop (){
for (int value = 0 ; value <= 255; value +=1) {
//яркость красного уменьшается
analogWrite (REDpin, value);
//яркость зеленого увеличивается
analogWrite (GREENpin, 255-value);
//синий не горит
analogWrite (BLUEpin, 255);
//пауза
delay (30);
}

for (int value = 0 ; value <= 255; value +=1) {
//красный не горит
analogWrite (REDpin, 255);
//яркость зеленого уменьшается
analogWrite (GREENpin, value);
//яркость синего увеличивается
analogWrite (BLUEpin, 255-value);
//пауза
delay (30);
}

for (int value = 0 ; value <= 255; value +=1) {
//яркость красного увеличивается
analogWrite (REDpin, 255-value);
//зеленый не горит
analogWrite (GREENpin, 255);
//яркость синего уменьшается
analogWrite (BLUEpin, value);
//пауза
delay (30);
}
}

  • 3 резистора по 220 Ом (вот отличный набор резисторов самых распространённых номиналов);
  • соединительные провода (рекомендую вот такой набор);
  • макетная плата (breadboard);
  • персональный компьютер со средой разработки Arduino IDE.
  • 1 Отличие RGB светодиодов с общим анодом и с общим катодом

    RGB светодиоды бывают двух типов: с общим анодом («плюсом») и общим катодом («минусом») . На рисунке приведены принципиальные схемы эти двух типов светодиодов. Длинная ножка светодиода - это всегда общий вывод питания. Отдельно расположен вывод красного светодиода (R ), зелёный (G ) и синий (B ) располагаются по другую сторону от общего вывода, как показано на рисунке. В данной статье мы рассмотрим подключение RGB светодиода как с общим анодом, так и с общим катодом.

    2 Подключение RGB светодиода с общим анодом к Arduino

    Схема подключения RGB светодиода с общим анодом показана на рисунке. Анод подключаем к "+5 В" на плате Arduino, три другие вывода - к произвольным цифровым пинам.


    Обратите внимание, что мы подключаем каждый из светодиодов через свой резистор, а не используем один общий. Желательно делать именно так, потому что каждый из светодиодов имеет свой КПД. И если подключить их все через один резистор, светодиоды будут светиться с разной яркостью.

    Для быстрого расчёта номинала резистора, подходящего к выбранному вами светодиоду, можно воспользоваться онлайн-калькулятором расчёта светодиодов .

    3 Управление RGB светодиодами с помощью Arduino

    Перепишем классический скетч blink . Будем включать и отключать по очереди каждый из трёх цветов. Обратите внимание, что светодиод загорается, когда мы подаём низкий уровень (LOW) на соответствующий вывод Arduino.

    // задаём номера выводов: const int pinR = 12; const int pinG = 10; const int pinB = 9; void setup() { // задаём назначение выводов: pinMode(pinR, OUTPUT); pinMode(pinG, OUTPUT); pinMode(pinB, OUTPUT); } void loop() { digitalWrite(pinR, LOW); //зажигаем канал Red delay(100); digitalWrite(pinR, HIGH); //выключаем Red delay(200); digitalWrite(pinG, LOW); //зажигаем канал Green delay(100); digitalWrite(pinG, HIGH); //выключаем Green delay(200); digitalWrite(pinB, LOW); //зажигаем канал Blue delay(100); digitalWrite(pinB, HIGH); //выключаем Blue delay(200); }

    4 Собрать схему на макетной плате

    Посмотрим в действии на мигание RGB светодиодом. Светодиод по очереди зажигается красным, зелёным и синим цветами. Каждый цвет горит 0,1 секунду, а затем гаснет на 0,2 секунды, и включается следующий. Можно зажигать каждый канал отдельно, можно все одновременно, тогда цвет свечения будет меняться.


    RGB светодиод подключён к Arduino. Схема собрана на макетной плате

    5 к Arduino

    Если вы используете RGB светодиод с общим катодом , то подключите длинный вывод светодиода к GND платы Arduino, а каналы R, G и B - к цифровым портам Arduino. При этом нужно помнить, что светодиоды загораются при подаче на каналы R, G, B высокого уровня (HIGH), в отличие от светодиода с общим анодом.


    Схема подключения RGB светодиода с общим катодом к Arduino

    Если не менять вышеприведённый скетч, то каждый цвет светодиода в этом случае будет гореть 0,2 секунды, а пауза между ними составит 0,1 секунду.

    Если вы хотите управлять яркостью светодиода, то подключайте RGB светодиод к цифровым выводам Arduino, которые имеют функцию ШИМ (PWM). Такие выводы на плате Arduino обычно помечены знаком тильда (волнистая линия), звёздочкой или обведены кружочками.

    Сегодня подключаем к Arduino трехцветный светодиод. Это одна из базовых схем, используемых в создании роботов на Arduino. В посте видео-инструкция, листинг программы и схема подключения.

    Трехцветный светодиод (rgb led) — это три светодиода разных цветов в одном корпусе. Они бывают как с небольшой печатной платой, на которой расположены резисторы, так и без встроенных резисторов. Мы рассмотрим оба варианта.

    Видео-инструкция сборки модели Arduino с трехцветным светодиодом:

    Для сборки модели с трехцветным светодиодом нам потребуется:

    • плата Arduino
    • программа Arduino IDE, которую можно скачать с сайта Arduino .

    Что потребуется для Arduino с трехцветным светодиодом со встроенными резисторами?

    Если используется светодиод без резисторов, нам также потребуется:

    • Breadboard
    • 4 провода “папа-папа”
    • 3 резистора на 220 Ом

    Что потребуется для Arduino с трехцветным светодиодом без встроенных резисторов

    При работе с трехцветным светодиодом без встроенных резисторов необходимо иметь ввиду, что назначение ножки светодиода можно определить по ее длине. Самая длинная — земля (GND), короче — зеленый (G), еще короче — голубой (B), а самая короткая — красный (R).

    Схема подключения модели Arduino с трехцветным светодиодом со встроенными резисторами:

    Схема подлючения трехцветным светодиодом со встроенными резисторами

    Схема подключения модели Arduino с трехцветным светодиодом без встроенных резисторов:

    Схема подлючения трехцветным светодиодом без встроенных резисторов

    Для управления этой моделью подойдет следующая программа (программу вы можете просто скопировать в Arduino IDE):

    //объявляем переменные с номерами пинов
    int r = 13;
    int g = 12;
    int b = 11;
    void setup() //процедура setup
    {
    //объявляем используемые порты
    pinMode(r, OUTPUT);
    pinMode(g, OUTPUT);
    pinMode(b, OUTPUT);
    }
    void loop() //процедура loop
    {
    digitalWrite(r, HIGH); //включаем красный
    delay(500); //ждем 500 Мс
    digitalWrite(r, LOW); //выключаем красный
    digitalWrite(g, HIGH); //включаем зеленый
    delay(500); //ждем 500 Мс
    digitalWrite(g, LOW); //выключаем зеленый
    digitalWrite(b, HIGH); //включаем синий
    delay(500); //ждем 500 Мс
    digitalWrite(b, LOW); //выключаем синий
    }

    Так выглядит собранная модель Arduino с трехцветным светодиодом без выстроенных резисторов:

    Собранная модель Arduino с трехцветным светодиодом без встроенных резисторов

    Продолжение следует!

    Посты по урокам:

    1. Первый урок:
    2. Второй урок:
    3. Третий урок:
    4. Четвертый урок:
    5. Пятый урок:
    6. Шестой урок:
    7. Седьмой урок:
    8. Восьмой урок:
    9. Девятый урок:

    Многоцветные светодиоды, или как их еще называют RGB, используются для индикации и создания динамически изменяющейся по цвету подсветки. Фактически ничего особенного в них нет, давайте разберемся, как они работают и что такое RGB-светодиоды.

    Внутреннее устройство

    На самом деле RGB-светодиод - это три одноцветных кристалла совмещенные в одном корпусе. Название RGB расшифровывается, как Red - красный, Green - зеленый, Blue - синий соответственно цветам, которые излучает каждый из кристаллов.

    Эти три цвета являются базовыми, и на их смешении формируется любой цвет, такая технология давно применяется в телевидении и фотографии. На картинке, что расположена выше, видно свечение каждого кристалла по отдельности.

    На этой картинке вы видите принцип смешивания цветов, для получения всех оттенков.

    Кристаллы в RGB-светодиоды могут быть соединены по схеме:

    С общим анодом;

    С общим катодом;

    Не соединены.

    В первых двух вариантах вы увидите, что у светодиода есть 4 вывода:

    Или 6-тью выводами в последнем случае:

    Вы можете видеть на фотографии под линзой четко видны три кристалла.

    Для таких светодиодов продаются специальные монтажные площадки, на них даже указывают назначение выводов.

    Нельзя оставить без внимания и RGBW - светодиоды, их отличие состоит в том, что в их корпусе есть еще один кристалл излучающий свет белого цвета.

    Естественно не обошлось и без лент с такими светодиодами.

    На этой картинке изображена лента с RGB-светодиодами , собранные по схеме с общим анодом, регулировка интенсивности свечения осуществляется путем управления «-» (минусом) источника питания.

    Для изменения цвета RGB-ленты используются специальные RGB-контроллеры - устройства для коммутации напряжения подаваемого на ленту.

    Вот цоколевка RGB SMD5050:

    И ленты, особенностей работы с RGB-лентами нет, всё остается также как и с одноцветными моделями.

    Для них есть и коннекторы для подсоединения светодиодной ленты без пайки.

    Вот распиновка 5-ти мм РГБ-светодиода:

    Как изменяется цвет свечения

    Регулировка цвета осуществляется путем регулировки яркости излучения каждым из кристаллов. Мы уже рассматривали .

    RGB-контроллер для ленты работает по такому же принципу, в нём стоит микропроцессор, который управляет минусовым выводом источника питания - подключает и отключает его от цепи соответствующего цвета. Обычно в комплекте с контроллером идёт пульт дистанционного управления. Контроллеры бывают разной мощности, от этого зависит их размер, начиная от такого миниатюрного.

    Да такого мощного устройства в корпусе размером с блок питания.

    Они подключаются к ленте по такой схеме:

    Так как сечение дорожек на ленте не позволяет подключать последовательно с ней следующий отрезок ленты, если длина первого превышает 5м, нужно подключать второй отрезок проводами напрямую от РГБ-контроллера.

    Но можно выйти из положения, и не тянуть дополнительных 4 провода на 5 метров от контроллера и использовать RGB-усилитель. Для его работы нужно протянуть всего 2 провода (плюс и минус 12В) или запитать еще один блок питания от ближайшего источника 220В, а также 4 «информационных» провода от предыдущего отрезка (R, G и B) они нужны для получения команд от контроллера, чтобы вся конструкция светилась одинаково.

    А к усилителю уже подключают следующий отрезок, т.е. он использует сигнал с предыдущего куска ленты. То есть вы можете запитать ленту от усилителя, который будет расположен непосредственно возле неё, тем самым сэкономив деньги и время на прокладку проводов от первичного RGB-контроллера.

    Регулируем RGB-led своими руками

    Итак, есть два варианта для управления RGB-светодиодами:

    Вот вариант схемы без использования ардуин и других микроконтроллеров, с помощью трёх драйверов CAT4101, способных выдавать ток до 1А.

    Однако сейчас достаточно дешево стоят контроллеры и если нужно регулировать светодиодную ленту - то лучше приобрести готовый вариант. Схемы с ардуино гораздо проще, тем более вы можете написать скетч, с которым вы будете либо вручную задавать цвет, либо перебор цветов будет автоматическим в соответствии с заданным алгоритмом.

    Заключение

    RGB-светодиоды позволяют сделать интересные световые эффекты используются в дизайне интерьеров, как подсветка для бытовой техники, для эффекта расширения экрана телевизора. Особых отличий при работе с ними от обычных светодиодов - нет.