Что такое перекрестная реакция антигенов. Перекрестно-реагирующие антигены. Русско-английский перевод перекрестно-реагирующие антигены


Русско-английский перевод ПЕРЕКРЕСТНО-РЕАГИРУЮЩИЕ АНТИГЕНЫ

cross-reacting antigens

Чибисова О.И., Смирнов Н.Н.. Новый Русско-Английский биологический словарь. New Russian-English biological dictionary . 2003


Russian-English dictionaries → New Russian-English biological dictionary

Еще значения слова и перевод ПЕРЕКРЕСТНО-РЕАГИРУЮЩИЕ АНТИГЕНЫ с английского на русский язык в англо-русских словарях и с русского на английский язык в русско-английских словарях.

More meanings of this word and English-Russian, Russian-English translations for the word «ПЕРЕКРЕСТНО-РЕАГИРУЮЩИЕ АНТИГЕНЫ» in dictionaries.

  • ПЕРЕКРЕСТНО РЕАГИРУЮЩИЕ АНТИГЕНЫ — 1) interfering antigens 2) shared antigens
  • АНТИГЕНЫ — Antigens
    Русско-Американский Английский словарь
  • ПЕРЕКРЕСТНО — (напр. закрутить гайки, винты) in crisscross manner
    Русско-Английский словарь по строительству и новым строительным технологиям
  • SHARED ANTIGENS
  • INTERFERING ANTIGENS — близкородственные антигены, перекрёстно реагирующие антигены
    Новый Англо-Русский словарь по биологии
  • CROSS-REACTING HAPTENS
    Новый Англо-Русский словарь по биологии
  • CROSS-REACTING ANTIGENS
    Новый Англо-Русский словарь по биологии
  • SHARED ANTIGENS — близкородственные антигены, перекрёстно реагирующие антигены
  • INTERFERING ANTIGENS — близкородственные антигены, перекрёстно реагирующие антигены
    Новый Англо-Русский биологический словарь
  • CROSS-REACTING HAPTENS — перекрёстно реагирующие гаптены, перекрёстно родственные гаптены
    Новый Англо-Русский биологический словарь
  • CROSS-REACTING ANTIGENS — близкородственные антигены, перекрёстно-реагирующие антигены
    Новый Англо-Русский биологический словарь
  • ЭВОЛЮЦИОННО ДАЛЕКИЕ АНТИГЕНЫ — - далекие антигены
    Новый Русско-Английский биологический словарь
  • ЧУЖЕРОДНЫЕ АНТИГЕНЫ
    Новый Русско-Английский биологический словарь
  • ПЕРЕКРЕСТНО РЕАГИРУЮЩИЕ ГАПТЕНЫ — cross-reacting haptens
    Новый Русско-Английский биологический словарь
  • НЕРОДСТВЕННЫЕ АНТИГЕНЫ — (антигены, не имеющие общих детерминант) "nonshared" antigens
    Новый Русско-Английский биологический словарь
  • ДАЛЕКИЕ АНТИГЕНЫ — - эволюционно далёкие антигены distantly related antigens
    Новый Русско-Английский биологический словарь
  • COMMON ANTIGENS — гетерогенные антигены, гетерофильные антигены, перекрестно реагирующие антигены
    Новый Англо-Русский медицинский словарь
  • КРОВЬ — КРОВЬ У человека и высших животных на поверхности клеток крови, особенно эритроцитов, имеются генетически обусловленные факторы - т.н. вещества групп …
    Русский словарь Colier
  • STICKY ANTICIPATIONS — медленно меняющиеся или реагирующие на обстановку антиципации, неэластичные ожидания
  • INTERCROSS — гл. 1) взаимно пересекаться 2) скрещивать(ся) (о разных породах) 3) перекрестно опылять, переопылять перекрестное опыление, переопыление межпородное скрещивание (взаимно) пересекаться …
    Большой Англо-Русский словарь
  • HETEROGENETIC ANTIGENS — иммунологичегкие сходные антигены, находящиеся в неродственных организмах
    Большой Англо-Русский словарь
  • CROSSING SYMMETRIC — мат. перекрестно симметричный
    Большой Англо-Русский словарь
  • — мат. перекрестно симметричное представление
    Большой Англо-Русский словарь
  • CROSSING-ODD VARIABLE — мат. перекрестно нечетная переменная
    Большой Англо-Русский словарь
  • CROSSING-EVEN VARIABLE — мат. перекрестно четная переменная
    Большой Англо-Русский словарь
  • CROSSBAR — 1. поперечина; траверса; поперечная балка, перекладина; распорка; раскос 2. перемычка 3. горн. верхняк 4. горизонтальная колонка (бурильного молотка) 5. ребро …
    Большой Англо-Русский словарь
  • CROSS-PLY LAMINATE — перекрестно-армированный слоистый пластик
    Большой Англо-Русский словарь
  • CROSS-INTERLEAVED — cross-interleaved вчт. перекрестно- перемежаемый
    Большой Англо-Русский словарь
  • CROSS-FERTILIZE — гл. перекрестно опылять (растения) (ботаника) перекрестно опылять (зоология) перекрестно оплодотворять cross-fertilize перекрестно опылять (растения)
    Большой Англо-Русский словарь
  • CROSS-FERTILIZE — Перекрестно опылять
    Американский Англо-Русский словарь
  • INTERCROSS — 1. ʹıntəkrɒs n 1> перекрёстное опыление, переопыление 2> межпородное скрещивание 2. ͵ıntəʹkrɒs v 1. (взаимно) пересекаться (о линиях и …
  • CROSS-FERTILIZE — v 1> бот. перекрёстно опылять 2>
    Англо-Русско-Английский словарь общей лексики - Сборник из лучших словарей
  • CROSS-PLY LAMINATE
    Большой Англо-Русский политехнический словарь
  • CROSS-PLY LAMINATE — перекрёстно-армированный слоистый пластик
    Большой Англо-Русский политехнический словарь - РУССО
  • SYMMETRIC — 1) симметрирующий 2) симметрический 3) симметричный. absolutely symmetric function — абсолютно симметрическая функция almost symmetric channel — почти симметричный канал axially symmetric field — …
  • CROSSING-SYMMETRIC REPRESENTATION — матем. перекрёстно симметричное представление
    Англо-Русский научно-технический словарь
  • CROSSING-ODD VARIABLE — матем. перекрёстно нечётная переменная
    Англо-Русский научно-технический словарь
  • CROSSING-EVEN VARIABLE — матем. перекрёстно чётная переменная
    Англо-Русский научно-технический словарь
  • CROSSING SYMMETRIC EXPRESSION — матем. перекрестно симметричное выражение
    Англо-Русский научно-технический словарь
  • CROSSING SYMMETRIC — матем. перекрёстно симметричный
    Англо-Русский научно-технический словарь
  • INTERCROSS — гл.1) взаимно пересекаться 2) скрещивать(ся) (о разных породах) 3) перекрестно опылять, переопылять
    Англо-Русский словарь Tiger
  • CROSS FERTILIZE — (n) перекрестно оплодотворить; перекрестно оплодотворять; перекрестно опылить; перекрестно опылять
    English-Russian Lingvistica"98 dictionary
  • CROSS-FERTILIZE — v 1) бот. перекрёстно опылять 2) зоол. перекрёстно оплодотворять
    Новый большой Англо-Русский словарь - Апресян, Медникова
  • CROSS-FERTILIZE — v 1> бот. перекрёстно опылять 2> зоол. перекрёстно оплодотворять
    Большой новый Англо-Русский словарь
  • CROSS FERTILIZE
  • CROSS FERTILIZE — перекрестно опылять, перекрестно оплодотворять, помогать друг другу советами
    English-Russian-dictionary - Bed release
  • NONSHARED ANTIGENS — чужеродные антигены (антигены, не имеющие общих детерминант), неродственные антигены (антигены, не имеющие общих детерминант)
    Новый Англо-Русский словарь по биологии
  • MAIN HISTOCOMPATIBILITY ANTIGENS — MHC-антигены, антигены главного комплекса гистосовместимости
    Новый Англо-Русский словарь по биологии
  • HISTOCOMPATIBILITY ANTIGENS — H-антигены, антигены гистосовместимости
    Новый Англо-Русский словарь по биологии
  • HETEROGENETIC ANTIGENS — - heterophil antigens гетерогенетические антигены, гетерофильные антигены
    Новый Англо-Русский словарь по биологии

Антигенами называются вещества или тела, несущие на себе отпечаток чужеродной генетической информации. Это те самые вещества, то "чужое", против которого "работает" иммунная система. Любые клетки (ткани, органы) не собственного организма (не свои) являются для его иммунной системы комплексом антигенов. Даже некоторые собственные ткани (хрусталик глаза) являются антигенами. Это так называемые "забарьерные ткани". В норме они не контактируют с внутренней средой организма.

Химическая природа антигенов различна. Это могут быть белки:

    полипептиды,

    нуклеопротеиды,

    липопротеиды,

    гликопротеиды,

    полисахариды,

    липиды высокой плотности,

    нуклеиновые кислоты.

Антигены делят на сильные, которые вызывают выраженный иммунный ответ, и слабые, при введении которых интенсивность иммунного ответа невелика.

Сильные антигены, как правило, имеют белковую структуру. Антигены обладают двумя свойствами:

    во-первых, они способны индуцировать развитие иммунного ответа, это свойство называют антигенностью, или антигенным действием;

    во-вторых, они способны взаимодействовать с продуктами иммунного ответа, индуцированного аналогичным антигеном, это свойство называют специфичностью, или антигенной функцией.

Некоторые (обычно небелковые) антигены не способны индуцировать развитие иммунного ответа (не обладают антигенностью), но могут вступать во взаимодействие с продуктами иммунного ответа. Их называют неполноценными антигенами, или гаптенами. Многие простые вещества и лекарственные средства являются гаптенами, при попадании в организм они могут коньюгировать с белками организма-хозяина или другими носителями и приобретать свойства полноценных антигенов.

Для того чтобы какое-либо вещество проявляло свойства антигена, кроме главного — чужеродности, оно должно обладать еще целым рядом признаков:

    макромолекулярностью (молекулярная масса более 10 тысяч дальтон),

    сложностью строения,

    жесткостью структуры,

    растворимостью,

    способность переходить в коллоидное состояние.

Молекула любого антигена состоит из двух функционально различных частей:

    первая часть — детерминантная группа, на долю которой приходится 2-3 % поверхности молекулы антигена. Она определяет чужеродность антигена, делая его именно этим антигеном, отличающимся от других;

    вторая часть молекулы антигена называется проводниковой, при ее отделении от детерминантной группы она не проявляет антигенного действия, но сохраняет способность реагировать с гомологичными антителами, т.е. превращается в гаптен. С проводниковой частью связаны все остальные признаки антигенности, кроме чужеродности.

Любой микроорганизм (бактерии, грибы, вирусы) представляет собой комплекс антигенов.

По специфичности микробные антигены делятся на:

    перекрестно-реагирующие (гетероантигены) — это антигены общие с антигенами тканей и органов человека. Они имеются у многих микроорганизмов и рассматриваются как важный фактор вирулентности и пусковой механизм развития аутоиммунных процессов;

    группоспецифические — общие у микроорганизмов одного рода или семейства;

    видоспецифические — общие у разных штаммов одного вида микроорганизмов;

    варинтспецифические (типоспецифические) — встречаются у отдельных штаммов внутри вида микроорганизмов. По наличию тех или иных вариантспецифических антигенов микроорганизмы внутри вида делят на варианты по антигенному строению — серовары.

По локализации антигены бактерий делятся на:

    целлюлярные (связанные с клеткой),

    экстрацеллюлярные (не связанные с клеткой).

Среди целлюлярных антигенов основными являются: соматический — О-антиген (глюцидо-липоидо-полипепдидный комплекс), жгутиковый — Н-антиген (белок), поверхностные — капсульные — К-антиген, fi-антиген, Vi-антиген.

Экстрацеллюлярные антигены — это продукты, секретируемые бактериями во внешнюю среду, в том числе антигены экзотоксинов, ферментов агрессии и защиты, и другие.

Бактериальные антигены:

    Группоспецифические (имеются у разных видов одного рода или семейства)

    Видоспецифические (у представителей одного вида)

    Типоспецифические (определяют серологический вариант внутри одного вида)

    Штаммоспецифические

    Стадиоспецифические

    Перекрестнореагирующие антигены (сходные, одинаковые у человека и микроба)

По локализации:

      О-Аг – соматический (ЛПС клеточной стенки)

      Н-Аг – жгутиковый (белковой природы)

      К-Аг – капсульный (ПС, белки, полипептиды)

      Аг пилей (фимбриальные)

      Цитоплазматические Аг (мембрана, ЦП)

      Экзотоксины (белки)

      Эктоферменты

О-АГ - липополисахарид клеточной стенки грамотрицательных бактерий. Состоит из полисахаридной цепочки и липида А. Полисахарид термостабилен, химически устойчив, слабая иммуногенность. Липид А - содержит глюкозамин и ЖК, онобладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью. В целом ЛПС является эндотоксином. Уже в небольших дозах вызывает лихорадку из-за активации макрофагов и выделения ими ИЛ1, ФНО и других цитокинов, дегрануляцию гранулоцитов, агрегацию тромбоцитов.

Н-АГ входит в состав бактериальных жгутиков, основа его - белок флагеллин. Термолабилен.

К-АГ - это гетерогенная группа поверхностных, капсульных АГ бактерий. Они находится в капсуле. Содержат главным образом кислые полисахариды, в состав которых входят галактуроновая, глюкуроновая кислоты.

Протективные ангтигены – эпитопы экзогенных антигенов (микробов), антитела против которых обладают наиболее выраженными защитными свойствами, что предохраняет организм от повторной инфекции, используются для получения вакцин. Очищенные протективные антигены могут быть "идеальными" вакцинными препаратами.

Перекрестно-реагируюшие антигенные детерминанты встречающиеся у МО и человека/животных. У микробов различных видов и у человека встречаются общие, сходные по строению АГ. Эти явления называются антигенной мимикрией. Часто перекрестнореагируюшие антигены отражают филогенетическую общность данных представителей, иногда являются результатом случайного сходства конформации и зарядов - молекул АГ. Например, АГ Форсмана содержится в эритроцитах барана, сальмонеллах и у морских свинок. Гемолитические стрептококки группы А содержат перекрестно реагирующие АГ (в частности, М-протеин), общие с АГ эндокарда и клубочков почек человека. Такие бактериальные антигены вызывают образование антител, перекрестно реагирующих с клетками человека, что приводит к развитию ревматизма и постстрептококкового гломерулонефрита. У возбудителя сифилиса есть фосфолипиды, сходные по строению с теми, которые имеются в сердце животных и человека. Поэтому кардиолипиновый антиген сердца животных используется для выявления антител к спирохете у больных людей (реакция Вассермана).

54. В-лимфоциты: развитие, маркёры, антигенспецифический В-клеточный рецептор. Методы определения количества и функциональной активности В-лимфоцитов.

В-лимфоциты называются так потому, что они впервые выявлены у птиц в специальном центральном органе иммунитета, который называется "сумка Фабрициуса" (bursa of Fabricius) и в котором они проходят стадию созревания. У животных данный орган отсутствует, и ранние стадии созревания В-лимфоциты проходят в ККМ.

Они имеют антигенспецифический В-клеточкый рецептор (ВКР) в виде мембраносвязанных мо­лекул антител, а также ряд поверхностных CD АГ и рецепторов. В-лимфоциты могут узнавать нативный АГ в свободном состоянии.

Особенности:

    составляют 10-15% лимфоцитов крови и 20-25% клеток лимфоузлов.

    экспрессируют на поверхности IgD(IgM), HLA II, CD19,20,21,22,40,80/86,др.

Основная функция :

    ГИО, продукция антител определенной специфичности (Ig G,A,M)

    представление антигена Т-лимфоцитам

Развитие:

    полипотентная стволовая клетка (СD34 и CD117)

    про-В-клетки (экспрессируют АГ и стволовых клеток (СD34 и CD117), и В-лимфоцитов - СD19 и СD22))

    пре-В-­клетки (начинается синтез IgM в цитоплазме)

    незрелые В-клетки (экспрессируют IgM на поверхности)

2. Уничтожаются клетки, несущие рецепторы к аутоАГ.

3. Т – клеточные зоны периферич.лимфоидных органов:

    уничтожаются клетки, не получившие от Т-­клеток сигнала на выживание

4. Лимфатические фолликулы:

    Зрелые В-клетки (экспрессируют IgM и IgD, а также антигены СD21, СD22).

5. До встречи с АГ зрелые В-лимфоциты постоянно циркулируют в крови между ККМ и вторичными лимфоидными органами. После встречи с АГ они превращаются в плазматические клетки , продуцирующие АТ(1 млн. молекул/час), и клетки памяти.

Антигенраспознающий В-клеточный рецептор В-линфоцитов построен из молекулы мембранного иммуноглобулина (мономерные IgМ или IgD) и двух молекул CD79 (a и в). BcR имеет трансмембранные и внутрицитоплазматические сегменты, передающие внутриклеточные сигналы.

Методы определения количества и функциональной активности В-лимфоцитов.

В-лим­фоциты человека способны связывать эритроциты мыши и образовывать с ними розетки, а также формировать розетки с эритроцитами, сенсибилизированными молекулами антител (IgG) и молекулами СЗb фрагмента системы комплемента, что используется в лабораторной практике. Эти свойства совместно с экспрессией CD 5 молекул позволяют выявить субпопуляцию В-лимфоцитов.

Исследование количества и функционального состояния В-лимфоцитов В-клетки обнаруживаются в периферической крови по их рецепторному аппарату, а именно:

а) по наличию рецепторов к иммуноглобулинам и 3-ей фракции комплемента - реакция ЕАС-розеткообразования; Реакция ЕАС-розеткообразования ставится в 2 этапа: вначале

готовят реагент, состоящий из эритроцитов быка, антител к ним и комплемента, затем этот образовавшийся комплекс добавляют к лимфоцитам крови человека. Образуется розетка, которая внешне ничем не отличается от Е-розеток, но метод получения указывает на выявление именно В-лимфоцитов.

б) по наличию иммуноглобулиновых рецепторов - реакция иммунофлюоресценции; позволяет обнаружить на поверхности В-лимфоцита иммуноглобулиновые рецепторы. Для этого используются антиглобулиновые сыворотки, меченые люминофорами.

в) по наличию рецепторов к эритроцитам мыши - реакция МЕ-розеткообразования. Реакция роэеткообразования с мышиными эритроцитами появляется в результате смешивания последних с лимфоцитами периферической крови.

Функциональная характеристика В-лимфоцитов и количества иммуноглобулинов различных классов. Чаще других используется метод радиальной иммунодиффузии в агаре: на стеклянную пластину наливают расплавленный агар, содержаций антитела к даннному классу иммуноглобулинов. В агаре выбивают лунки, в которые вносят образцы изучаемых сывороток. В результате иммунопреципитации, образуются радиальные полоски, диаметр которых зависит от концентрации соответствующего иммуноглобулина. - Определение антител к аутоантигенам или к микробам нормальной микрофлоры.

Определение титра специфических антител, вырабатывающихся в организме человека после иммунизации его вакцинами.

55. Гуморальный иммунный ответ: определение, этапы развития. Активация, пролиферация и дифференцировка клеток. Элиминация антигена. Т-зависимый и Т-независимый ответ. Проявления первичного и вторичного гуморального иммунного ответа.

Этапы ГИО :

    Представление антигена (распознавание, переработка и презентация антигена).

    Индуктивная стадия (передача информации на соответствующий клон В-лимфоцитов, их пролиферация и дифференцировка).

    Эффекторная стадия (синтез антител и образование В-лимфоцитов памяти).

Т-независимая активация В-лимфоцитов - прямая стимуляция В-лимфоцитов без участия Т-лимфоцитов Т-независимыми антигенами.

    Этими АГ являются ЛПС или полисахариды микробов, имеющих линейно повторяющиеся структуры.

    Связываясь с ВКР, они или активируют соответствующий клон В-лимфоцитов (полисахариды пневмококков) или вызывают поликлональную активацию В-лимфоцитов (ЛПС грам- бактерий), которые пролиферируют, дифференцируются в плазматические клетки, синтезирующие IgM.

    В-лимфоциты памяти не образуются.

Т-зависимая активация В-лимфоцитов - осуществляется Т-зависимыми антигенами (белки, бактерии) при обязательном участии Т-лимфоцитов.

    АПК захватывают антиген, процессирует его до низкомолекулярных пептидов и в комплексе с молекулой ГКГС II презентирует наивным Т-лимфоцитам (Тх0), которые взаимодействуют с ним рецептором ТКР и корецептором СD4.

    Тх0 активируются, пролиферируют и превращаются в эффекторные клетки – Тх2.

    ВКР распознает антиген и клетка поглощает его. После процессинга также образуется комплекс пептид-молекула ГКГС II класса, который В-лимфоциты представляют Тх2-хелперам.

    В-Т-клеточное взаимодействие: Тх2 воспринимают сигнал с помощью ТКР и корецептора СD4. Однако для полноценной активации Т-хелперов необходима дополнительная стимуляция (костимуляция), которая осуществляется молекулами межклеточного взаимодействия (CD40-CD40L, CD80/86-CD28 и др). Эти процессы важны и для активации В-лимфоцитов. В случае отсутствия костимуляции наступает апоптоз Т-лимфоцитов.

    Активированный Тх2 продуцирует ИЛ-4, 5, 6, 10, под влиянием которых происходит пролиферация В-лимфоцитов, превращение их в бласты и затем в плазматические клетки, синтезирующие антитела. Именно при участии цитокинов Тх2 возможно переключение иммуноглобулиновых генов В-лимфоцитов, что обеспечивает синтез иммуноглобулинов различных классов.

    Часть бластных клеток превращаются в В-лимфоциты памяти. Небольшая популяция клеток, образующаяся в процессе гуморального иммунного ответа из активированных В-лимфоцитов. Переживают в состоянии функционального покоя многие годы после элиминации антигена из организма. Несут «память» об антигене в виде антигенспецифических ВКР (преимущественно IgG).

Первичный иммунный ответ развивается на первое попадание антигена в организм после латентного периода (2-3 дня). Первыми синтезируются IgM (выявляются через 2-3 суток), а затем IgG (пик на 10-14 сутки, могут сохраняться в низком титре в течение всей жизни). Параллельно отмечается небольшое увеличение уровня IgA, IgE, IgD. Первичный иммунный ответ затихает через 2-3 недели после стимуляции антигеном. После него остаются клетки памяти и может долго поддерживаться следовой уровень IgG-антител.

Вторичный иммунный ответ за счет В-клеток памяти стимуляция синтеза антител наступает быстро (через 1-3 дня). Количество антител резко увеличивается, причем сразу синтезируются IgG, титры которых во много раз больше, чем при первичном иммунном ответе. Возрастает их аффинность (сродство) к антигену. На слизистых оболочках значительно увеличивается уровень секреторных IgA-антител. Уровень IgM-антител существенно не меняется из-за отсутствия В-клеток памяти с рецептором IgM. Время затухания вторичного значительно превосходит длительность сохранения антител при первичном иммунном ответе.

Антигены микроорганизмов. Антигенная структура бактерий. Типовые, видовые, групповые антигены. Протективные антигены. Перекрёстно-реагирующие антигены, значение.

Бактериальные антигены:

  1. Группоспецифические (имеются у разных видов одного рода или семейства)
  2. Видоспецифические (у представителœей одного вида)
  3. Типоспецифические (определяют серологический вариант внутри одного вида)
  4. Штаммоспецифические
  5. Стадиоспецифические
  6. Перекрестнореагирующие антигены (сходные, одинаковые у человека и микроба)

По локализации:

О-Аг – соматический (ЛПС клеточной стенки)

Н-Аг – жгутиковый (белковой природы)

К-Аг – капсульный (ПС, белки, полипептиды)

Аг пилей (фимбриальные)

Цитоплазматические Аг (мембрана, ЦП)

Экзотоксины (белки)

Эктоферменты

О-АГ - липополисахарид клеточной стенки грамотрицательных бактерий. Состоит из полисахаридной цепочки и липида А. Полисахарид термостабилен, химически устойчив, слабая иммуногенность. Липид А - содержит глюкозамин и ЖК, онобладает сильной адьювантной, неспецифической иммуностимулирующей активностью и токсичностью. В целом ЛПС является эндотоксином. Уже в небольших дозах вызывает лихорадку из-за активации макрофагов и выделœения ими ИЛ1, ФНО и других цитокинов, дегрануляцию гранулоцитов, агрегацию тромбоцитов.

Н-АГ входит в состав бактериальных жгутиков, основа его - белок флагеллин. Термолабилен.

К-АГ - это гетерогенная группа поверхностных, капсульных АГ бактерий. Οʜᴎ находится в капсуле. Содержат главным образом кислые полисахариды, в состав которых входят галактуроновая, глюкуроновая кислоты.

Протективные ангтигены – эпитопы экзогенных антигенов (микробов), антитела против которых обладают наиболее выраженными защитными свойствами, что предохраняет организм от повторной инфекции, используются для получения вакцин. Очищенные протективные антигены бывают "идеальными" вакцинными препаратами.

Перекрестно-реагируюшие антигенные детерминанты встречающиеся у МО и человека/животных. У микробов различных видов и у человека встречаются общие, сходные по строению АГ. Эти явления называются антигенной мимикрией. Часто перекрестнореагируюшие антигены отражают филогенетическую общность данных представителœей, иногда являются результатом случайного сходства конформации и зарядов - молекул АГ. К примеру, АГ Форсмана содержится в эритроцитах барана, сальмонеллах и у морских свинок. Гемолитические стрептококки группы А содержат перекрестно реагирующие АГ (в частности, М-протеин), общие с АГ эндокарда и клубочков почек человека. Такие бактериальные антигены вызывают образование антител, перекрестно реагирующих с клетками человека, что приводит к развитию ревматизма и постстрептококкового гломерулонефрита. У возбудителя сифилиса есть фосфолипиды, сходные по строению с теми, которые имеются в сердце животных и человека. По этой причине кардиолипиновый антиген сердца животных используется для выявления антител к спирохете у больных людей (реакция Вассермана).

1673 0

Антигенами могут быть несколько основных химических семейств.

  • Углеводы (полисахариды). Полисахариды являются иммуногенными только тогда, когда они связаны с белками-носителями. Например, полисахариды, которые составляют часть более сложных молекул (гликопротеины), будут вызывать иммунную реакцию, часть которой направлена непосредственно на полисахаридную составляющую молекулы. Иммунный ответ, представленный в основном антителами, может индуцироваться против многих видов полисахаридных молекул, таких как компоненты микроорганизмов и клеток эукариоит. Прекрасным примером антигенности полисахаридов является иммунный ответ, связанный с группами крови АВО. Полисахариды в данном случае находятся на поверхности эритроцитов.
  • Липиды. Липиды редко являются иммуногенными, но иммунная реакция на них может быть вызвана, если липиды конъюгированы с белками-носителям. Таким образом, липиды могут рассматриваться как гаптены. Также отмечены иммунные реакции на гликолипиды и сфинголипиды.
  • Нуклеиновые кислоты. Нуклеиновые кислоты сами по себе являются слабыми иммуногенами, но становятся иммуногенными при связывании с белками-носителями. Нативная спиральная ДНК обычно не является иммуногенной у животных. Однако во многих случаях отмечались иммунные реакции на нуклеиновые кислоты. Одним из важных примеров в клинической медицине является появление антител против ДНК у больных системной красной волчанкой.
  • Белки. Фактически все белки иммуногенны. Таким образом, чаще всего иммунный ответ развивается к белкам. Более того, чем выше уровень сложности белка, тем сильнее иммунный ответ на этот протеин. Размер и сложность белковых молекул определяют наличие множества эпитопов.

Связывание антигена с антигенспецифичными антителами или Т-клетками

Связывание антигенов с антителами, взаимодействие антигена с В- и Т-клетками и последующие события. На данном этапе важно подчеркнуть только, что в связывании антигена с антителом или рецепторами Т-клетки ковалентные связи не участвуют. Нековалентное связывание может включать электростатические взаимодействия, гидрофобные взаимодействия, водородные связи и ван-дер-ваальсовы силы.

Поскольку эти взаимодействующие силы относительно слабы, сцепка между антигеном и его комплементарным участком на рецепторе антигена должна происходить на площади, достаточно большой, чтобы произошло суммирование всех возможных взаимодействий. Это условие является основой для исключительной специфичности наблюдаемых иммунологических взаимодействий.

Перекрестная реактивность

Поскольку макромолекулярные антигены содержат несколько отстоящих друг от друга эпитопов, некоторые из этих молекул могут быть изменены без полного изменения их иммуногенетической и антигенной структуры. Это имеет важные последствия при иммунизации против высокопатогенных микроорганизмов или чрезвычайно токсичных соединений. Действительно, проводить иммунизацию с помощью патогенного токсина неразумно. Однако можно разрушить биологическую активность такого токсина и целого ряда других токсинов (например, бактериальных токсинов или ядов змей), сохранив их иммуногенность.

Токсин, модифицированный до такой степени, что больше не является токсичным, но все еще сохраняет некоторые иммунохимические характеристики, называется анатоксином. Таким образом, мы можем говорить о том, что анатоксин иммунологи-чески перекрестно реагирует с токсином. Соответственно имеется возможность, иммунизируя индивидуума с помощью анатоксина, вызвать иммунный ответ к некоторым эпитопам, которые на анатоксине сохранены в том же виде, как и на токсине, поскольку не были уничтожены при модификации.

Хотя молекулы токсина и анатоксина отличаются по многим физико-химическим и биологическим характеристикам, они иммунологически перекрестно реактивны. Достаточное количество сходных эпитопов позволяет вызвать иммунный ответ на анатоксин и способствовать эффективной защите от самого токсина. Иммунологическую реакцию, в которой иммунные компоненты, будь то клетки или антитела, реагируют с двумя молекулами, имеющими одинаковые эпитопы, но отличающиеся по другим признакам, называют перекрестной реакцией.

Когда два соединения обладают перекрестной иммунологической реактивностью, они имеют один или несколько общих эпитопов, и в процессе иммунного ответа на одно из соединений будут распознаваться один или более таких же эпитопов на другом соединении с вовлечением его в реакцию. Другая форма перекрестной реактивности наблюдается в случаях, когда антитела или клетки, специфичные для одного эпитопа, связываются, обычно слабее, с другим эпитопом, который не является совершенно идентичным, но по структуре напоминает первый эпитоп.

Чтобы отметить, что антиген, используемый для иммунизации, отличен от того, против которого позднее будут реагировать произведенные иммунные компоненты, используют термины «гомологичный» и «гетерологичный». Термин «гомологичный» обозначает, что антиген и иммуноген одинаковы.

Термин «гетерологичный» указывает, что вещество, использованное для индуцирования иммунного ответа, отличается от вещества, которое позднее используется для реакции с продуктами индуцированного ответа. В последнем случае гетерологичный антиген может реагировать, а может и не реагировать с иммунными компонентами. При появлении реакции можно сделать заключение, что гетерологичный и гомологичный антигены проявляют иммунологическую перекрестную реактивность.

Несмотря на то что основным критерием в иммунологии является специфичность, иммунологическая перекрестная реактивность наблюдается на многих уровнях. Это не означает, что роль иммунологической специфичности уменьшается, а скорее указывает на то, что соединения, обладающие перекрестной реактивностью, имеют одинаковые антигенные детерминанты.

В случаях наличия перекрестной реактивности антигенные детерминанты веществ, обладающих перекрестной реактивностью, могут иметь идентичные химические структуры или состоять из одинаковых, но не идентичных физико-химических структур. В приведенном ранее примере токсин и соответствующий ему анатоксин представляют две молекулы: токсин является первоначальной молекулой, а анатоксин - модифицированной, которая обладает перекрестной реактивностью по отношению к первоначальной (нативной) молекуле.

Существуют и другие примеры иммунологической перекрестной реактивности, в которых два вещества, обладающие ею, не родственны друг другу за исключением того, что обладают одним или более общими эпитопами, точнее одним или более участками, имеющими одинаковые трехмерные характеристики. Эти вещества относят к гетерофильным антигенам. Например, антигены группы крови А человека реагируют с антисывороткой, полученной против полисахарида (тип XIV) капсулы пневмококка. Таким же образом, антигены группы крови В человека реагируют с антителами к определенным штаммам Escherichia coli. В этих примерах перекрестной реактивности антигены микроорганизмов относятся к гетерофильным антигенам (относительно антигенов групп крови).

Адъюванты

Для усиления иммунного ответа на представленный антиген часто используются различные добавки и наполнители. Адъювант (от лат. adjuvare - помогать) является веществом, которое при смешивании с иммуногеном усиливает иммунный ответ против этого иммуногена. Важно различать носитель для гаптена и адъювант. Гаптен становится иммуногенным после ковалентного конъюгирования с носителем; он не может быть иммуногенным при смешивании с адъювантом. Таким образом, адъювант усиливает иммунный ответ на иммуногены. но не придает иммуногенность гаптенам.

Адъюванты используются для усиления иммунной реакции на антигены уже более 70 лет. В настоящее время растет интерес к выявлению новых адъювантов для использования их при вакцинации, поскольку многие кандидаты в вакцины не обладают достаточной иммуногенностью. Это особенно важно для пептидных вакцин.

Механизм действия адъюванта включает: 1) увеличение биологического и иммунологического периода полураспада антигенов вакцины; 2) увеличение продукции местных воспалительных цитокинов; 3) улучшение доставки, процессирования антигенов и их представления (презентации) АПК особенно дендритными клетками. Эмпирически было выяснено, что адъюванты, содержащие микробные компоненты (например, экстракты микобактерий), являются лучшими. Патогенные компоненты вынуждают макрофаги и дендритные клетки экспрессировать костимулирующие молекулы и выделять цитокины.

Недавно было показано, что в такую индукцию, осуществляемую микробными компонентами, вовлекаются молекулы, распознающие структуры патогенных микроорганизмов (например, TLR 2), экспрессируемые этими клетками. Таким образом, связывание микробных компонентов с TLR дает клеткам сигнал экспрессировать костимуляторные молекулы и секретировать цитокины.

Хотя много различных адъювантов испытаны в опытах на животных (табл. 3.2) и в экспериментах на человеке, только один стал использоваться для обычной вакцинации . В настоящее время единственными адъювантами, разрешенными к использованию в патентованных вакцинах для людей в США, являются гидрат окиси алюминия и фосфат алюминия.

Как компонент неорганической соли ион алюминия связывается с протеинами, вызывая их преципитацию, что усиливает воспалительную реакцию, которая неспецифически увеличивает иммуногенность антигена. После инъекции преципитированный антиген высвобождается из места инъекции медленнее, чем обычный. Более того, если в результате преципитации размер антигена увеличится, это повысит вероятность того, что макромолекула будет подвергнута фагоцитозу.

Многие адъюванты используются в экспериментах на животных. Одним из обычно используемых адъювантов является полный адъювант Фрейнда (Freund"s complete adjuvant - FCA) , состоящий из убитых Mycobacterium tuberculosis или M.Butyricum, суспензированных в масле. В последующем из них готовится эмульсия с водным раствором антигена. Водно-масляная эмульсия, содержащая адъювант и антиген, позволяет антигену медленно и постепенно высвобождаться, продлевая воздействие иммуногена на реципиента. Другими микроорганизмами, используемыми в качестве адъювантов, являются бациллы Кальметта-Герена (БЦЖ) (аттенуированные Mycobacterium), Corynebacterium parvum и Bordetella pertusis.

В действительности многие из этих адъювантов используют способность молекул, экспрессируемых микробами, активировать иммунные клетки. К таким молекулам относят липополисахариды (ЛПС), бактериальную ДНК, содержащую неметилированные CpG динуклеотидные повторы, и бактериальные белки теплового шока. Многие из этих микробных адъювантов связывают рецепторы, распознающие структуры патогенных микроорганизмов, такие как TLR. Связывание этих рецепторов, экспрессируемых многими типами клеток врожденной иммунной системы, способствует стимуляции адаптивного ответа В- и Т-лимфоцитами. Например, дендритные клетки являются важными АПК, через которые проявляется

Таблица 3.2. Известные адъюванты и механизм их действия действие микробных адъювантов. Они отвечают секрецией цитокинов и экспрессией костимуляторных молекул, которые в свою очередь стимулируют активацию и дифференцировку антиген-специфичных Т-клеток.

Адъювант Состав Механизм действия
Гидрат окиси или фосфат алюминия (квасцы) Гель гидрата окиси алюминия
Алюминий с дипептидом, выделенным из мико-бактерий Гель гидрата окиси алюминия с мурамилдипептидом
Алюминий сBordetella pertusis I ель гидрата окиси алюминия с убитойBordetella pertusis Увеличение поглощения антигенов АПК; замедление высвобождения антигена; индукция костимуляторных молекул на АПК
Полный адъювант Фрейнда Водно-масляная эмульсия с убитыми микобактериями Увеличение поглощения антигенов АПК; замедление высвобождения антигена; индукция костимуляторных молекул на АПК
Неполный адъювант Фрейнда Водно-масляная эмульсия Увеличение поглощения антигенов АПК; замедление высвобождения антигена
Иммуностимулирующие комплексы Открытые структуры, напоминающие клетку, содержащие холестерин и смесь сапонинов Высвобождение антигена в цитозоль; позволяют индуцировать Т-клеточные цитотоксические ответы

Р.Койко, Д.Саншайн, Э.Бенджамини