Эдс самоиндукции формула и формулировка. Импульсный генератор эдс самоиндукции


Чему равна ЭДС самоиндукции?

Согласно закону Фарадея ℰ is = – . Если Ф = LI , то ℰ is = = – . При условии, что индуктивность контура в процессе изменения тока не меняется (т.е. не меняются геометрические размеры контура и магнитные свойства среды), то

is = – . (13.2)

Из этой формулы видно, что если индуктивность катушки L достаточно велика, а время изменения тока мало, то величина ℰ is может достигнуть большой величины и превысить ЭДС источника тока при размыкании цепи. Именно этот эффект мы наблюдали в опыте 1.

Из формулы (13.2) можно выразить L :

L = – ℰ is /(DI /Dt ),

т.е. индуктивность имеет еще один физический смысл: она численно равна ЭДС самоиндукции при скорости изменения тока через контур 1 А в 1 с.

Читатель : Но тогда получится, что размерность индуктивности

[L ] = Гн = .

СТОП! Решите самостоятельно: А3, А4, В3–В5, С1, С2.

Задача 13.2. Какова индуктивность катушки с железным сердечником, если за время Dt = 0,50 с ток в цепи изменился от I 1 = = 10,0 А до I 2 = 5,0 А, а возникшая при этом ЭДС самоиндукции по модулю равна |ℰ is | = 25 В?

Ответ : L = ℰ is » 2,5 Гн.

СТОП! Решите самостоятельно: А5, А6, В6.

Читатель : А какой смысл имеет знак минус в формуле (13.2)?

Рис. 13.6

Автор : Рассмотрим какой-либо проводящий контур, по которому течет ток. Выберем направление обхода контура – по или против часовой стрелки (рис. 13.6). Вспомним: если направление тока совпадает с выбранным направлением обхода, то сила тока считается положительной, а если нет – отрицательной.

Изменение тока DI = I кон – I нач – также величина алгебраическая (отрицательная или положительная). ЭДС самоиндукции – это работа, совершаемая вихревым полем при перемещении единичного положительного заряда по контуру вдоль направления обхода контура . Если напряженность вихревого поля направлена вдоль направления обхода контура, то эта работа положительна, а если против – отрицательна. Таким образом, знак минус в формуле (13.2) показывает, что величины DI и ℰ is всегда имеют разные знаки.

Покажем это на примерах (рис. 13.7):

а) I > 0 и DI > 0, значит, ℰ is < 0, т.е. ЭДС самоиндукции «включена» навстречу направлению обхода;

б) I > 0 и DI < 0, значит, ℰ is >

в) I < 0, а D|I| > 0, т.е. модуль тока возрастает, а сам ток становится все «более отрицательным». Значит, DI < 0, тогда ℰ is > 0, т.е. ЭДС самоиндукции «включена» вдоль направления обхода;

г) I < 0, а D|I| < 0, т.е. модуль тока уменьшается, а сам ток становится все «менее отрицательным». Значит, DI > 0, тогда ℰ is < 0, т.е. ЭДС самоиндукции «включена» навстречу направлению обхода.

В задачах, по возможности, следует выбирать такое направление обхода, чтобы ток был положительным.

Задача 13.3. В цепи на рис. 13.8, а L 1 = 0,02 Гн и L 2 = 0,005 Гн. В некоторый момент ток I 1 = 0,1 А и возрастает со скоростью 10 А/с, а ток I 2 = 0,2 А и возрастает со скоростью 20 А/с. Найти сопротивление R .

а б Рис. 13.8 Решение. Так как оба тока возрастают, то в обеих катушках возникают ЭДС самоиндукции ℰ is 1
L 1 = 0,02 Гн L 2 = 0,005 Гн I 1 = 0,1 А I 2 = 0,2 А DI 1 /Dt = 10 А/с DI 2 /Dt = 20 А/с
R = ?

и ℰ is 2 , включенные навстречу токам I 1 и I 2 (рис. 13.8, б ), где

|ℰ is 1 | = ; |ℰ is 2 | = .

Выберем направление обхода по часовой стрелке (см. рис. 13.8,б ) и применим второе правило Кирхгофа

–|ℰ is 1 | + |ℰ is 2 | = I 1 R – I 2 R ,

R = |ℰ is 2 | – |ℰ is 1 | / (I 1 – I 2) = =

1 Ом.

Ответ : R = » 1 Ом.

СТОП! Решите самостоятельно: В7, В8, С3.

Задача 13.4. Катушка сопротивлением R = 20 Ом и индуктивностью L = 0,010 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличился на DФ = = 0,001 Вб, ток в катушке возрос на DI = 0,050 А. Какой заряд прошел за это время по катушке?

Рис. 13.9

дукции |ℰ is | = . Причем ℰ is «включилась» навстречу ℰ i , так как ток в цепи возрастал (рис. 13.9).

Возьмем направление обхода контура по часовой стрелке. Тогда согласно второму правилу Кирхгофа получим:

|ℰ i | – |ℰ is | = IR ,

I = (|ℰ i | – |ℰ is |)/R = .

Заряд q , прошедший по катушке за время Dt , равна

q = I Dt =

Ответ : 25 мкКл.

СТОП! Решите самостоятельно: В9, В10, С4.

Задача 13.5. Катушка с индуктивностью L и электрическим сопротивлением R подключена через ключ к источнику тока с ЭДС ℰ. В момент t = 0 ключ замыкают. Как изменяется со временем сила тока I в цепи сразу же после замыкания ключа? Через длительное время после замыкания? Оцените характерное время t возрастания тока в такой цепи. Внутренним сопротивлением источника тока можно пренебречь.

Рис. 13.10

Рис. 13.11

Сразу же после замыкания ключа I = 0, поэтому можно считать » ℰ/L , т.е. ток возрастает с постоянной скоростью (I = (ℰ/L )t ;рис. 13.11).

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-14-210x140..jpg 614w" sizes="(max-width: 600px) 100vw, 600px">

Эксперименты Фарадея

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-10-768x454..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

Е = — В x l x v;

  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Jpg?x15027" alt="Перемещение провода в МП" width="600" height="429">

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-10-768x536..jpg 900w" sizes="(max-width: 600px) 100vw, 600px">

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Е = — L x dI/dt.

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-5.jpg 680w" sizes="(max-width: 600px) 100vw, 600px">

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.

Изменяющийся по величине ток всегда создает изменяющееся магнитное поле, которое, в свою очередь, всегда индуктирует ЭДС. При всяком изменении тока в катушке (или вообще в проводнике) в ней самой индуктируется ЭДС самоиндукции. Когда ЭДС в катушке индуктируется за счет изменения собственного магнитного потока, величина этой ЭДС зависит от скорости изменения тока. Чем больше скорость изменения тока, тем больше ЭДС самоиндукции. Величина ЭДС самоиндукции зависит также от числа витков катушки, густоты их намотки и размеров катушки. Чем больше диаметр катушки, число ее витков и густота намотки, тем больше ЭДС самоиндукции. Эта зависимость ЭДС самоиндукции от скорости изменения тока в катушке, числа ее витков и размеров имеет большое значение в электротехнике. Направление ЭДС самоиндукции определяется по закону Ленца. ЭДС самоиндукции имеет всегда такое направление, при котором она препятствует изменению вызвавшего ее тока.

Дисперсия света (разложение света) - это явление, обусловленное зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимость фазовой скорости света в веществе от длины волны (или частоты). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Один из самых наглядных примеров дисперсии - разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие скоростей распространения лучей света c различной длиной волны в прозрачном веществе - оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и следовательно цвета). Обычно, чем больше частота световой волны, тем больше показатель преломления среды для неё и тем меньше скорость волны в среде:

у света красного цвета скорость распространения в среде максимальна, а степень преломления - минимальна,

у света фиолетового цвета скорость распространения в среде минимальна, а степень преломления - максимальна.

Разложение белого света призмой в спектр было известно очень давно. Однако разобраться в этом явлении до Ньютона никто не смог.

Ученых, занимающихся оптикой, интересовал вопрос о природе цвета. Наиболее распространенным было мнение о том, что белый свет является простым. Цветные же лучи получаются в результате тех или иных его изменений. Существовали различные теории по этому вопросу, на которых мы останавливаться не будем.

Изучая явление разложения белого света в спектр, Ньютон пришел к заключению, что белый свет является сложным светом. Он представляет собой сумму простых цветных лучей.

Ньютон работал с простой установкой. В ставне окна затемненной комнаты было проделано маленькое отверстие. Через это отверстие проходил узкий пучок солнечного света. На пути светового луча ставилась призма, а за призмой экран. На экране Ньютон наблюдал спектр, т. е. удлиненное изображение круглого отверстия, как бы составленного из многих цветных кружков. При этом наибольшее отклонение имели фиолетовые лучи – один конец спектра – и наименьшее отклонение – красные – другой конец спектра.

Но этот опыт еще не являлся убедительным доказательством сложности белого света и существования простых лучей. Он был хорошо известен, и из него можно было сделать заключение, что, проходя призму, белый свет не разлагается на простые лучи, а изменяется, как многие думали до Ньютона.

Задача к Билету№25

Определить энергию W магнитного поля катушки, содержащей N=120 витков, если при силе тока i=7,5 A магнитный поток вней равен Ф=2,3*10^-3 Вб

Магнитный поток, пронизывающий все N витков соленоида, можно расчитать по формуле Ф=B*S*N , но по условию он нам дан (с учетом количества витков), тогда энергия магнитного поля катушки

W=Ф*i/2=2,3*10^-3*7,5/2=8.6*10^-3 Дж

Ответ 8.6*10^-3 Дж

1. Строение ядра. Модель атома. Опыты Резерфорда.

2. Трансформатор. Устройство, принцип действия, применение.

3. при разрядки батареи состоящей из 20 параллельно включенных одинаковых конденсаторов ёмкостью 4 мкФ каждый,выделилось 10 Дж тепла. Определить.до какой разности потенциалов были заряжены конденсаторы.

Ответы на Билет№26

1) Атомное ядро- центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.

Атомные ядра изучает ядерная физика.

Атомное ядро состоит из нуклонов - положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным и связанным с ним магнитным моментом. Единственный атом, не содержащий нейтрон в ядре - лёгкий водород (протий).

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.

Атом - частица вещества микроскопических размеров и массы, наименьшая часть химического элемента, являющаяся носителем его свойств.

Атом состоит из атомного ядра и электронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. В некоторых случаях под атомами понимают только электронейтральные системы, в которых заряд ядра равен суммарному заряду электронов, тем самым противопоставляя их электрически заряженным ионам.

Ядро, несущее почти всю (более чем 99,9 %) массу атома, состоит из положительно заряженных протонов и незаряженных нейтронов, связанных между собой при помощи сильного взаимодействия. Атомы классифицируются по количеству протонов и нейтронов в ядре: число протонов Z соответствует порядковому номеру атома в периодической системе Менделеева и определяет его принадлежность к некоторому химическому элементу, а число нейтронов N - определённому изотопу этого элемента. Единственный атом, не содержащий нейтронов в ядре - лёгкий водород (протий). Число Z также определяет суммарный положительный электрический заряд (Ze) атомного ядра и число электронов в нейтральном атоме, задающее его размер.

Атомы различного вида в разных количествах, связанные межатомными связями, образуют молекулы.

>> Самоиндукция. Индуктивность

§ 15 САМОИНДУКЦИЯ. ИНДУКТИВНОСТЬ

Самоиндукция . Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому в том же самом проводнике, по которому идет переменный ток, возникает ЭДС индукции. Это явление называют самоиндукцией .

При самоиндукции проводящий контур выполняет двойную роль: переменный ток в проводнике вызывает появление магнитного потока через поверхность, ограниченную контуром. А так как магнитный поток изменяется со временем, то появляется ЭДС индукции . По правилу Ленца в момент нарастания тока напряженность вихревого электрического поля направлена против тока. Следовательно, в этот момент вихревое поле препятствует нарастанию тока. Наоборот, в момент уменьшения тока вихревое поле поддерживает его.

Явление самоиндукции можно наблюдать в простых опытах. На рисунке 2.13 показана схема параллельного соединения двух одинаковых ламп. Одну из них подключают к источнику через резистор R, а другую - последовательно с катушкой L, снабженной железным сердечником.

При замыкании ключа первая лампа вспыхивает практически сразу, а вторая - с заметным запозданием. ЭДС самоиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения (рис. 2.14).

Появление ЭДС самоиндукции при размыкании можно наблюдать в опыте с цепью, схематически показанной на рисунке 2.15. При размыкании ключа в катушке L возникает ЭДС самоиндукции, поддерживающая первоначальный ток. в результате в момент размыкания через гальванометр идет ток (цветная стрелка), направленный против начального тока до размыкания (черная стрелка). Сила тока при размыкании цепи может превышать силу тока, проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции больше ЭДС батареи элементов.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

При замыкании выключателя в цепи, представленной на рисунке 1, возникнет электрический ток, направление которого показано одинарными стрелками. С появлением тока возникает магнитное поле, индукционные линии которого пересекают проводник и индуктируют в нем электродвижущую силу (ЭДС). Как было указано в статье "Явление электромагнитной индукции ", эта ЭДС называется ЭДС самоиндукции. Так как всякая индуктированная ЭДС по правилу Ленца направлена против причины, ее вызвавшей, а этой причиной будет ЭДС батареи элементов, то ЭДС самоиндукции катушки будет направлена против ЭДС батареи. Направление ЭДС самоиндукции на рисунке 1 показано двойными стрелками.

Таким образом, ток устанавливается в цепи не сразу. Только когда магнитный поток установится, пересечение проводника магнитными линиями прекратится и ЭДС самоиндукции исчезнет. Тогда в цепи будет протекать постоянный ток.

На рисунке 2 дано графическое изображение постоянного тока. По горизонтальной оси отложено время, по вертикальной оси - ток. Из рисунка видно, что если в первый момент времени ток равен 6 А, то в третий, седьмой и так далее моменты времени он также и будет равен 6 А.

На рисунке 3 показано, как устанавливается ток в цепи после включения. ЭДС самоиндукции, направленная в момент включения против ЭДС батареи элементов, ослабляет ток в цепи, и поэтому в момент включения ток равен нулю. Далее в первый момент времени ток равен 2 А, во второй момент времени - 4 А, в третий - 5 А, и только спустя некоторое время в цепи устанавливается ток 6 А.

Рисунок 3. График нарастания тока в цепи с учетом ЭДС самоиндукции Рисунок 4. ЭДС самоиндукции в момент размыкания цепи направлена одинаково с ЭДС источника напряжения

При размыкании цепи (рисунок 4) исчезающий ток, направление которого показано одинарной стрелкой, будет уменьшать свое магнитное поле. Это поле, уменьшаясь от некоторой величины до нуля, будет вновь пересекать проводник и индуктировать в нем ЭДС самоиндукции.

При выключении электрической цепи с индуктивностью ЭДС самоиндукции будет направлена в ту же сторону, что и ЭДС источника напряжения. Направление ЭДС самоиндукции показано на рисунке 4 двойной стрелкой. В результате действия ЭДС самоиндукции ток в цепи исчезает не сразу.

Таким образом, ЭДС самоиндукции всегда направлена против причины, ее вызвавшей. Отмечая это ее свойство, говорят что ЭДС самоиндукции имеет реактивный характер.

Графически изменение тока в нашей цепи с учетом ЭДС самоиндукции при замыкании ее и при последующем размыкании в восьмой момент времени показано на рисунке 5.

Рисунок 5. График нарастания и исчезновения тока в цепи с учетом ЭДС самоиндукции Рисунок 6. Индукционные токи при размыкании цепи

При размыкании цепей, содержащих большое количество витков и массивные стальные сердечники или, как говорят, обладающих большой индуктивностью, ЭДС самоиндукции может быть во много раз больше ЭДС источника напряжения. Тогда в момент размыкания воздушный промежуток между ножом и неподвижным зажимом рубильника будет пробит и появившаяся электрическая дуга будет плавить медные части рубильника, а при отсутствии кожуха на рубильнике может ожечь руки человека (рисунок 6).

В самой цепи ЭДС самоиндукции может пробить изоляцию витков катушек, электромагнитов и так далее. Во избежание этого в некоторых выключающих приспособлениях устраивают защиту от ЭДС самоиндукции в виде специального контакта, который замыкает накоротко обмотку электромагнита при выключении.

Следует учитывать, что ЭДС самоиндукции проявляет себя не только в моменты включения и выключения цепи, но также и при всяких изменениях тока.

Величина ЭДС самоиндукции зависит от скорости изменения тока в цепи. Так, например, если для одной и той же цепи в одном случае в течение 1 секунды ток в цепи изменился с 50 до 40 А (то есть на 10 А), а в другом случае с 50 до 20 А (то есть на 30 А), то во втором случае в цепи будет индуктироваться втрое большая ЭДС самоиндукции.

Величина ЭДС самоиндукции зависит от индуктивности самой цепи. Цепями с большой индуктивностью являются обмотки генераторов, электродвигателей, трансформаторов и индукционных катушек, обладающих стальными сердечниками. Меньшей индуктивностью обладают прямолинейные проводники. Короткие прямолинейные проводники, лампы накаливания и электронагревательные приборы (печи, плитки) индуктивностью практически не обладают и появления ЭДС самоиндукции в них почти не наблюдается.

Магнитный поток, пронизывающий контур и индуктирующий в нем ЭДС самоиндукции, пропорционален току, протекающему по контуру:

Ф = L × I ,

где L - коэффициент пропорциональности. Он называется индуктивностью. Определим размерность индуктивности:

Ом × сек иначе называется генри (Гн).

1 генри = 10 3 ; миллигенри (мГн) = 10 6 микрогенри (мкГн).

Индуктивность, кроме генри, измеряют в сантиметрах:

1 генри = 10 9 см.

Так, например, 1 км линии телеграфа обладает индуктивностью 0,002 Гн. Индуктивность обмоток больших электромагнитов достигает нескольких сотен генри.

Если ток в контуре изменился на Δi , то магнитный поток изменится на величину Δ Ф:

Δ Ф = L × Δ i .

Величина ЭДС самоиндукции, которая появится в контуре, будет равна (формула ЭДС самоиндукции):

При равномерном изменении тока по времени выражение будет постоянным и его можно заменить выражением . Тогда абсолютная величина ЭДС самоиндукции, возникающая в контуре, может быть найдена так:

На основании последней формулы можно дать определение единицы индуктивности - генри:

Проводник обладает индуктивностью 1 Гн, если при равномерном изменении тока на 1 А в 1 секунду в нем индуктируется ЭДС самоиндукции 1 В.

Как мы убедились выше, ЭДС самоиндукции возникает в цепи постоянного тока только в моменты его включения, выключения и при всяком его изменении. Если же величина тока в цепи неизменна, то магнитный поток проводника постоянен и ЭДС самоиндукции возникнуть не может (так как . В моменты изменения тока в цепи ЭДС самоиндукции мешает изменениям тока, то есть оказывает ему своеобразное сопротивление.

Часто на практике встречаются случаи, когда нужно изготовить катушку, не обладающую индуктивностью (добавочные сопротивления к электроизмерительным приборам, сопротивления штепсельных реостатов и тому подобные). В этом случае применяют бифилярную обмотку катушки (рисунок 7)