Излучение теплопередача. Виды теплообмена: коэффициент теплопередачи


Теплопередача - это важный физический процесс. Он предполагает перенос теплоты и является сложным процессом, который состоит из совокупности простых превращений.

Существуют определенные виды теплопередачи: конвекция, теплопроводность, тепловое излучение.

Особенности процесса

Теория теплообмена является наукой об особенностях передачи теплоты. Теплопередача - это перенос энергии в газообразных, жидких, твердых средах.

Теория о теплоте появилась в середине XVIII века. Ее автором стал М. В. Ломоносов, который сформулировал механическую теорию теплоты, воспользовавшись законом сохранения и превращения энергии.

Варианты теплообмена

Теплопередача - это составная часть теплотехники. Разные тела могут обмениваться своей внутренней энергией в форме теплоты. Вариант теплообмена является самопроизвольным процессом передачи теплоты в свободном пространстве, который наблюдается при неравномерном распределении температур.

Разность в значениях температур является обязательным условием проведения теплообмена. Распространение тепла происходит от тел, имеющих более высокую температуру, к телам, обладающим меньшим ее показателем.

Результаты исследований

Теплопередача - это процесс переноса тепла и внутри твердого тела, но при условии, что есть разность температур.

Многочисленные исследования свидетельствуют о том, что теплопередача ограждающих конструкций является сложным процессом. Для того чтобы упростить изучение сути явлений, связанных с передачей тепла, выделяют элементарные операции: кондукцию, излучение, конвекцию.

Теплопроводность: общая информация

Чаще всего используется какой вид теплопередачи? Переносом вещества внутри тела можно изменить температуру, например, нагревая металлический стержень, увеличить скорость теплового движения атомов, молекул, повысить показатель внутренней энергии, увеличить теплопроводность материала. По мере соударения частиц происходит постепенная передача энергии, в результате чего весь стержень меняет свою температуру.

Если рассматривать газообразные и жидкие вещества, то передача энергии путем теплопроводности в них имеет незначительные показатели.

Конвекция

Такие способы теплопередачи связаны с переносом теплоты при движении в газах или жидкостях из области с одним температурным значением в область с другим ее показателем. Существует подразделение конвекции на два вида: вынужденную и свободную.

Во втором случае происходит перемещение жидкости под воздействием разности в плотностях ее отдельных частей из-за нагревания. К примеру, в помещении от горячей поверхности радиатора холодный воздух поднимается вверх, получая от батареи дополнительное тепло.

В тех случаях, когда для перемещения тепла необходимо применение насоса, вентилятора, мешалки, ведут речь о вынужденной конвекции. Прогревание по всему объему жидкости в этом случае происходит существенно быстрее, нежели при свободной конвекции.

Излучение

Какой вид теплопередачи характеризует изменение температурного показателя в газообразной среде? Речь идет о тепловом излучении.

Именно оно предполагает перенос тепла в виде электромагнитных волн, подразумевающий двойной переход тепловой энергии в излучение, затем обратно.

Особенности передачи тепла

Для того чтобы проводить расчет теплопередачи, необходимо иметь представление о том, что для теплопроводности и конвекции нужна материальная среда, а для излучения в этом нет необходимости. В процессе теплообмена между телами наблюдается уменьшение температуры у того тела, у которого этот показатель имел большую величину.

На такую же точно величину повышается температура холодного тела, что подтверждает полноценный процесс обмена энергией.

Интенсивность теплообмена зависит от разности в температурах между телами, которые обмениваются энергией. Если она практически отсутствует, процесс завершается, устанавливается тепловое равновесие.

Характеристика процесса теплопроводности

Коэффициент теплопередачи связан со степенью нагретости тела. Температурным полем называют сумму показателей температур для разных точек пространства в определенный момент времени. При изменении значения температуры в единицу времени поле является нестационарным, для неизменной величины - стационарным видом.

Изотермическая поверхность

Независимо от температурного поля, всегда можно выявить точки, имеющие одинаковое температурное значение. Геометрическое расположение их образует определенную изотермическую поверхность.

В одной точке пространства не допускается одновременного нахождения двух разных температур, поэтому изотермические поверхности не могут пересекаться между собой. Можно сделать вывод о том, что изменение в теле значения температуры проявляется лишь в тех направлениях, которые пересекают изотермические поверхности.

Максимальный скачок отмечается в направлении нормали к поверхности. Температурный градиент представляет собой отношение наибольшего показателя температур к промежутку между изотермами и является векторной величиной.

Он показывает интенсивность изменения температуры внутри тела, определяет коэффициент теплопередачи. То количество теплоты, которое будет переноситься через любую изотермическую поверхность, называют тепловым потоком.

Под его плотностью подразумевают отношение к единице площади самой изотермической поверхности. Эти величины являются векторами, противоположными по направлению.

Закон Фурье

Он является основным законом теплопроводности. Суть его заключается в пропорциональности плотности теплового потока градиенту температуры.

Коэффициент теплопроводности характеризует способность тел пропускать теплоту, он зависит от физических свойств вещества и его химического состава, влажности, температуры, пористости. Влага при заполнении пор стимулирует повышение теплопроводности. При высокой пористости внутри тела содержится повышенное количество воздуха, что сказывается на уменьшении показателя теплопроводности.

Определенный коэффициент сопротивления теплопередаче есть у всех материалов, найти его можно в справочниках.

Теплопроводность в твердой стенке

В качестве обязательного условия для данного процесса считается разность температур поверхностей стенки. В такой ситуации образуется поток теплоты, который направлен от стенки с большим значением температуры к поверхности стенки с небольшой температурой.

По закону Фурье тепловой поток будет пропорционален площади стенки, а также температурному напору, и обратно пропорционален толщине этой стенки.

Приведенное сопротивление теплопередаче зависит от теплопроводности материала, из которого изготовлены стенки. Если они включают в себя несколько разных слоев, их считают многослойными поверхностями.

В качестве примера подобных материалов можно назвать стены домов, где на кирпичный слой наносят внутреннюю штукатурку, а также внешнюю облицовку. В случае загрязнения наружной поверхности передающей тепловую энергию, к примеру, радиаторов либо двигателей, грязь можно рассмотреть как наложение нового слоя, имеющего незначительный коэффициент теплопроводности.

Именно из-за этого снижается теплообмен, возникает угроза перегревания работающего двигателя. Аналогичный эффект вызывает нагар и накипь. При увеличении количества слоев стенки растет ее максимальное термическое сопротивление, уменьшается величина теплового потока.

Для многослойных стенок распределение температуры является ломаной линией. Во многих теплообменных аппаратах осуществляется прохождение теплового потока через стенки круглых трубок. Если нагревающее тело движется внутри таких трубок, то в таком случае тепловой поток направлен к наружным стенкам от внутренних частей. При наружном варианте наблюдается обратный процесс.

Теплопередача: особенности процесса

Существует взаимодействие между тепловым излучением, конвекцией, теплопроводностью. Например, в процессе конвекции происходит тепловое излучение. Теплопроводность в пористых материалах невозможна без излучения и конвекции.

При проведении практических вычислений деление сложных процессов на отдельные явления не всегда целесообразно и возможно. В основном результат суммарного воздействия нескольких простейших явлений приписывают тому процессу, который считается основным в конкретном случае.

Второстепенные процессы при таком подходе учитывают только для количественных вычислений.

В современных теплообменных аппаратах происходит передача теплоты от одного вида жидкости к другой жидкости через стенку, которая их разделяет. Важным фактором, который влияет на коэффициент теплообмена, является форма стенки. Если она плоская, в таком случае можно выделить три этапа теплопередачи:

  • к поверхности стенки от нагревающей жидкости;
  • теплопроводностью через стенку;
  • к нагреваемой жидкости к поверхности стенки.

Полное термическое сопротивление теплопередачи является величиной, которая обратна коэффициенту теплопередачи.

Заключение

Теплопроводность является процессом передачи внутренней энергии от нагретых участков тела к его холодным частям. Подобный процесс осуществляется с помощью беспорядочно движущихся атомов, молекул, электронов. Такой процесс может происходить в телах, которые имеют неоднородное распределение значений температур, но будет отличаться в зависимости от агрегатного состояния рассматриваемого вещества.

Можно рассматривать данную величину в качестве количественной характеристики способности тела к провождению тепла. Удельной теплопроводностью называют количество тепла, которое может проходить через материал, имеющий толщину 1м, площадь 1 м²/сек.

Долгое время считали, что существует взаимосвязь между передачей тепловой энергии и перетеканием от тела к телу теплорода. Но после проведения многочисленных экспериментов была выявлена зависимость подобных процессов от температуры.

В реальности при проведении математических расчетов, касающихся определения количества теплоты, передаваемой разными способами, учитывают проводимость путем конвекции, а также проникающее излучение. Коэффициент теплопередачи связан со скоростью передвижения жидкости, характером движения, его природой, а также с физическими параметрами движущейся среды.

В качестве носителей лучистой энергии выступают электромагнитные колебания, имеющие разную длину волн. Излучать их могут любые тела, температура которых превышает нулевое значение.

Излучение является результатом процессов, происходящих внутри тела. При попадании его на другие тела наблюдается частичное ее поглощение и частичное поглощение телом.

Закон Планка определяет зависимость плотности поверхностного потока излучения черного тела от абсолютной температуры и длины волны.

Простейшие виды теплообмена, которые были рассмотрены выше, не существуют по отдельности, они взаимосвязаны друг с другом. Сочетание их является сложным теплообменом, который предполагает серьезное изучение и детальное рассмотрение.

В теплотехнических расчетах используют суммарный коэффициент передачи тепла, который представляет собой совокупность коэффициентов теплоотдачи соприкосновением, которое учитывает теплопроводность, конвекцию, излучение.

При правильном подходе и учете отдельных тепловых явлений можно с высокой достоверностью рассчитать количество теплоты, переданное телу.

Теплопередача - это один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы.

Существует 3 вида теплопередачи:

Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними.
Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому.

Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене.
Это является частным случаем закона сохранения энергии.

ИНТЕРЕСНО

Куропатки, утки и другие птицы зимой не мерзнут потому, что температура лап у них может отличаться от температуры тела более чем на 30 градусов. Низкая температура лап сильно понижает теплоотдачу. Таковы защитные силы организма!

Теплопроводность - это перенос энергии от более нагретых участков тела к менее нагретым за счет теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.), который приводит к выравниванию температуры тела.
Не сопровождается переносом вещества!

Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей и газов.
Теплопроводность различных веществ разная.
Металлы обладают самой высокой теплопроводностью,

причем у разных металлов теплопроводность отличается.

Жидкости обладают меньшей теплопроводностью, чем твердые тела, а газы меньшей, чем жидкости.

При нагревании верхнего конца закрытой пальцем пробирки с воздухом внутри можно не бояться обжечь палец, т.к. теплопроводность газов очень низкая.
Интересно, что можно было бы поднести руку почти вплотную к пламени, например, газовой горелки (температура больше 1000 градусов) и не обжечь ее, если бы …

А что если бы?

Газ, как правило, очень плохой проводник тепла, поэтому достаточно было бы лишь небольшой прослойки воздуха между рукой и пламенем. Но!
Но существует такое явление, как конвекция в газах, поэтому вблизи пламени руку сильно жжет.

ЗАГЛЯНИ НА КНИЖНУЮ ПОЛКУ

Знаешь ли ты, что...

Большие трудности строителям зданий доставляет просадка фундамента особенно в регионах с вечной мерзлотой. Дома часто дают трещины из-за подтаивания грунта под ними Фундамент передает почве какое-то количество теплоты. Поэтому здания начали строить на сваях. В этом случае тепло передается только теплопроводностью от фундамента свае и далее от сваи грунту Из чего же надо делать сваи? Оказывается, сваи, выполненные из прочного твердого материала внутри должны быть заполнены керосином. Летом свая проводит тепло сверху вниз плохо, т.к. жидкость обладает низкой теплопроводностью. Зимой свая за счет конвекции жидкости внутри неё, наоборот, будет способствовать дополнительному охлаждению грунта.
Это не сказка, не фантастика!
Такой проект реально разработан и испытан!

Итальянские ученые изобрели рубашку, позволяющую поддерживать постоянную температуру тела. Ученые обещают, что летом в ней не будет жарко, а зимой – холодно, поскольку она сшита из специальных материалов. Подобные материалы уже используются при космических полетах.

В старых пулеметах "Максим" нагревание воды предохраняло оружие от расплавления.

На кухне, поднимая посуду, наполненную горячей жидкостью, чтобы не обжечься, можно использовать только сухую тряпку. Теплопроводность воздуха намного меньше, чем у воды! А ткань структура очень рыхлая, и все прмежутки между волокнами заполнены у сухой тряпки воздухом, а у влажной - водой. Смотри, не обожгись!

Огонь в решете

Явление, о котором рассказано ниже демонстрирует свойство металлов хорошо проводить тепло.
Если изготовить сетку из проволоки, обеспечив хорошее соединение металла в местах перекрещивания проволоки, и поместить ее над газовой горелкой, то можно при включенном вентиле поджечь газ над сеткой, в то время как под сеткой он гореть не будет. А если зажечь газ под сеткой, то наверх через сетку огонь « не просочится»!

В те времена, когда еще не было электрических шахтерских лампочек, пользовались лампой Дэви.
Это была свеча, «посаженная» в металлическую клетку. И даже, если шахта наполнялась легковоспламеняющимися газами, лампа Дэви была безопасна и не вызывала взрыва - пламя не выходило за пределы лампы,благодаря металлической сетке.

Положить на лежащие рядом на столе кусок пенопласта (или дерева) и зеркало ладони, то ощущения от этих предметов будут разными: пенопласт покажется теплее, а зеркало - холоднее.
Почему?
Ведь температура окружающего воздуха одинаковая!
Стекло - хороший проводник тепла (обладает высокой теплопроводностью), и сразу начнет "отбирать" от руки тепло. Рука будет ощущать холод! Пенопласт хуже проводит тепло. Он тоже будет, нагреваясь, "отбирать" тепло у руки, но медленнее, поэтому и покажется теплее.


ДОМАШНИЕ ОПЫТЫ

Оберните толстый гвоздь или металлический стержень полоской бумаги в один слой. Подержите над пламенем свечи до момента возгорания, засеките время. Объясните, почему бумага загорелась не сразу.

Используйте свои руки как термодатчики – обследуйте окружающие вас предметы. Найдите самые холодные на ощупь, сделайте вывод об их теплопроводности. По своим ощущениям составьте список веществ, обладающих разной теплопроводностью, от самой хорошей до самой плохой.

Подберите ложки из разных материалов (алюминиевую, мельхиоровую, стальную, деревянную и т.д.). Опустите их наполовину в сосуд с горячей водой. Через 1–2 мин проверьте, одинаково ли нагрелись их ручки. Проанализируйте результат.

Приготовьте три одинаковых кусочка льда, один из них заверните в фольгу, второй – в бумагу, третий– в вату и оставьте на блюдцах в комнате. Определите время полного таяния. Объясните разницу.

Приготовьте в морозилке лед. Сложите его в целлофановый пакет и оберните пуховым платком или обложите ватой. Можно дополнительно завернуть в шубу. Оставьте этот сверток на 5–7 ч,затем проверьте сохранность льда. Объясните наблюдаемое состояние. Предложите дома способ сохранения замороженных продуктов при размораживании холодильника.


ЗАДАЧИ ДЛЯ УМЕЮЩИХ ДУМАТЬ

(или " покумекаем"?)

1. Какая почва прогревается солнцем быстрее: влажная или сухая? Почему?

2. Почему толстый человек в холодной воде меньше мерзнет, чем худой?

3. Человек не чувствует прохлады на воздухе при температуре 20 градусов Цельсия, но в воде мерзнет при температуре 25 градусов Цельсия. Почему?

4. Если зимой к замерзшему стеклу(покрытому инеем) трамвая или автобуса приложить на одинаковое время палец, а другим пальцем прижать монету, то площадь оттаивания под монетой окажется больше.
Почему?

Энергию движения и взаимодействия частиц, из которых состоит тело, называют внутренней энергией тела .

Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Внутреннюю энергию тела можно изменить двумя способами: совершением механической работы или теплопередачей.

теплопередачей .

При повышении температуры внутренняя энергия тела увеличивается. С понижением температуры внутренняя энергия тела уменьшается. Внутренняя энергия тела увеличивается при совершении над ним работы.

Механическая и внутренняя энергия могут переходить от одного тела к другому.

Этот вывод справедлив для всех тепловых процессов. При теплопередаче, например, тело более нагретое отдает энергию, а тело менее нагретое получает энергию.

При переходе энергии от одного тела к другому или при превращении одного вида энергии в другой энергия сохраняется.

Если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается настолько, насколько уменьшается внутренняя энергия остывающих тел.

Виды теплопередачи: теплопроводность, конвекция, излучение. Примеры теплопередачи в природе и технике

Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей .

Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц называется теплопроводностью .

При конвекции энергия переносится самими струями газа или жидкости.

Излучение -- процесс передачи теплоты путем лучеиспускания.

Передача энергии излучением отличается от других видов теплопередачи тем, что она может осуществляться в полном вакууме.

Примеры теплопередачи в природе и технике

1. Ветры. Все ветры в атмосфере представляют собой конвекционные потоки огромного масштаба.

Конвекцией объясняются, например, ветры бризы, возникающие на берегах морей. В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой, его плотность уменьшается и давление становится меньше давления более холодного воздуха над морем. В результате, как в сообщающихся сосудах, холодный воздух по низу с моря перемещается к берегу -- дует ветер. Это и есть дневной бриз. Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Образуется ночной бриз -- движение холодного воздуха от суши к морю.

2. Тяга. Мы знаем, что без притока свежего воздуха горение топлива невозможно. Если в топку, в печь, в трубу самовара не будет поступать воздух, то горение топлива прекратится. Обычно используют естественный приток воздуха -- тягу. Для создания тяги над топкой, например в котельных установках фабрик, заводов, электростанций, устанавливают трубу. При горении топлива воздух в ней нагревается. Значит, давление воздуха, находящегося в топке и трубе, становится меньше давления наружного воздуха. Вследствие разницы давлений холодный воздух поступает в топку, а теплый поднимается вверх -- образуется тяга.

Чем выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе. Поэтому тяга усиливается при увеличении высоты трубы.

3. Отопление и охлаждение жилых помещений. Жители стран, расположенных в умеренных и холодных поясах Земли, вынуждены обогревать свое жилище. В странах, расположенных в тропических и субтропических поясах, температура воздуха даже в январе достигает + 20 и +30 о С. Здесь применяют устройства, охлаждающие воздух в помещениях. И нагревание, и охлаждение воздуха в помещениях основано на конвекции.

Охлаждающие устройства целесообразно располагать наверху, ближе к потолку, чтобы осуществлялась естественная конвекция. Ведь холодный воздух имеет плотность большую, чем теплый, и поэтому будет опускаться.

Обогревательные приборы располагают внизу. Во многих современных больших домах устраивают водяное отопление. Циркуляция воды в нем и прогревание воздуха в помещении происходят за счет конвекции.

Если установка для обогревания здания находится в нем самом, то в подвальном этаже устанавливают котел, в котором нагревают воду. По вертикальной трубе, отходящей от котла, горячая вода поднимается в бак, который обычно помещают на чердаке дома. От бака проводят систему распределительных труб, по которым вода проходит в радиаторы, устанавливаемые на всех этажах, она отдает им свое тепло и возвращается в котел, где снова подогревается. Так происходит естественная циркуляция воды -- конвекция.

В больших зданиях используются более сложные установки. Горячая вода подается сразу в несколько зданий из котла, установленного в специальном помещении. Воду гонят в. здания при помощи насосов, т. е. создают искусственную конвекцию.

4. Теплопередача и растительный мир. Температура нижнего слоя воздуха и поверхностного слоя почвы имеет большое значение для развития растений.

В прилегающем к Земле слое воздуха и верхнем слое почвы происходят изменения температуры. Днем почва поглощает энергию и нагревается, ночью, наоборот, охлаждается. На ее нагревание и охлаждение влияет присутствие растительности. Так, темная, вспаханная почва сильнее нагревается излучением, но быстрее и охлаждается, чем почва, покрытая растительностью.

На теплообмен между почвой и воздухом влияет также погода. В ясные, безоблачные ночи почва сильно охлаждается -- излучение от почвы беспрепятственно уходит в пространство. В такие ночи ранней весной возможны заморозки на почве. Если же погода облачная, то облака закрывают Землю и играют роль своеобразных экранов, защищающих почву от потери энергии путем излучения.

Одним из средств повышения температуры участка почвы и припочвенного воздуха служат теплицы, которые позволяют полнее использовать излучение Солнца. Участок почвы покрывают стеклянными рамами или прозрачными пленками. Стекло хорошо пропускает видимое солнечное излучение, которое, попадая на темную почву, нагревает ее, но хуже пропускает невидимое излучение, испускаемое нагретой поверхностью Земли. Кроме того, стекло (или пленка) препятствует движению теплого воздуха вверх, т. е. осуществлению конвекции. Таким образом, стекла теплиц действуют как «ловушка» энергии. Внутри теплиц температура выше, чем на незащищенном грунте, примерно на 10 °С.

5. Термос. Теплопередача от более нагретого тела к более холодному приводит к выравниванию их температур. Поэтому если в комнату внести, например, горячий чайник, то он остынет. Часть его внутренней энергии перейдет к окружающим телам. Чтобы помешать телу остывать или нагреваться, нужно уменьшить теплопередачу. При этом стремятся сделать так, чтобы энергия не передавалась ни одним из трех видов теплопередачи: конвекцией, теплопроводностью и излучением.

Он состоит из стеклянного сосуда с двойными стенками. Внутренняя поверхность стенок покрыта блестящим металлическим слоем, а из пространства между стенками сосуда выкачан воздух. Лишенное воздуха пространство между стенками не проводит тепло, блестящий слой, вследствие отражения, препятствует передаче энергии излучением. Чтобы защитить стекло от повреждений, термос помещают в картонный или металлический футляр. Сосуд закупоривают пробкой, а сверху футляра навинчивают колпачок.




























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока:

  • Познакомить учащихся с видами теплопередачи.
  • Формировать умение объяснять теплопроводность тел с точки зрения строения вещества; уметь анализировать видеоинформацию; объяснять наблюдаемые явления.

Тип урока: комбинированный урок.

Демонстрации:

1. Перемещение тепла по металлическому стержню.
2. Видео демонстрация эксперимента по сравнению теплопроводности серебра, меди и железа.
3. Вращение бумажной вертушки над включенной лампой или плиткой.
4. Видео демонстрация возникновения конвекционных потоков при нагревании воды с марганцовкой.
5. Видео демонстрация по излучению тел с темной и светлой поверхностью.

ХОД УРОКА

I. Организационный момент

II. Сообщение темы и целей урока

На предыдущем уроке вы узнали, что внутреннюю энергию можно изменить путем совершения работы или теплопередачей. Сегодня на уроке мы рассмотрим, как происходит изменение внутренней энергии теплопередачей.
Попробуйте объяснить значение слова «теплопередача» (слово «теплопередача» подразумевает передачу тепловой энергии). Существует три способа передачи теплоты, но называть их я не буду, вы сами их назовете, когда решите ребусы.

Ответы: теплопроводность, конвекция, излучение.
Познакомимся с каждым видом теплопередачи отдельно, и пусть девизом нашего урока станут слова М.Фарадея: «Наблюдать, изучать, работать».

III. Изучение нового материала

1. Теплопроводность

Ответьте на вопросы: (слайд 3)

1. Что произойдет, если в горячий чай опустим холодную ложку? (Через некоторое время она нагреется).
2. Почему холодная ложка нагрелась? (Чай отдал часть своего тепла ложке, а часть окружающему воздуху).
Вывод: Из примера ясно, что тепло может передаваться от тела, более нагретого к телу менее нагретому (от горячей воды к холодной ложке). Но энергия передавалась и по самой ложке – от ее нагретого конца к холодному.
3. В результате чего происходит перенос тепла от нагретого конца ложки к холодному? (В результате движения и взаимодействия частиц)

Нагревание ложки в горячем чае - пример теплопроводности.

Теплопроводность – перенос энергии от более нагретых участков тела к менее нагретым, в результате теплового движения и взаимодействия частиц.

Проведем опыт:

Закрепим конец медной проволоки в лапке штатива. Воском к проволоке прикреплены гвоздики. Будем нагревать свободный конец проволоки свечей или на пламени спиртовки.

Вопросы: (слайд 4)

1. Что наблюдаем? (Гвоздики начинают постепенно один за другим отпадать, сначала те, которые ближе к пламени).
2. Как происходит передача тепла? (От горячего конца проволоки к холодному).
3. Как долго будет происходить передача тепла по проволоке? (Пока проволока вся не нагреется, т. е пока температура во всей проволоке не выровняется)
4. Что можно сказать про скорость движения молекул на участке, расположенном ближе к пламени? (Скорость движения молекул увеличивается)
5. Почему нагревается следующий участок проволоки? (В результате взаимодействия молекул скорость движения молекул на следующем участке также увеличивается и температура данной части возрастает)
6. Влияет ли расстояние между молекулами на скорость передачи тепла? (Чем меньше расстояние между молекулами, тем с большей скоростью идет перенос тепла)
7. Вспомните расположение молекул в твердых телах, жидкостях и газах. В каких телах процесс переноса энергии будет происходить быстрее? (Быстрее в металлах, затем в жидкостях и газах).

Посмотрите демонстрацию эксперимента и подготовьтесь ответить на мои вопросы.

Вопросы: (слайд 5)

1. По какой пластине теплота распространяется быстрее, а по какой медленнее?
2. Сделайте вывод о теплопроводности данных металлов. (Лучшая теплопроводность у серебра и меди, несколько хуже у железа)

Обратите внимание, что при передаче тепла в данном случае переноса тела не происходит.

Плохой теплопроводностью обладают шерсть, волосы, перья птиц, бумага, пробка и другие пористые тела. Это связано с тем, что между волокнами этих веществ содержится воздух. Самой низкой теплопроводностью обладает вакуум (освобожденное от воздуха пространство).

Запишем основные особенности теплопроводности: (слайд 7)

  • в твердых телах, жидкостях и газах;
  • само вещество не переносится;
  • приводит к выравниванию температуры тела;
  • разные тела – разная теплопроводность

Примеры теплопроводности : (слайд 8)

1. Снег - пористое, рыхлое вещество, в нем содержится воздух. Поэтому снег обладает плохой теплопроводностью и хорошо защищает землю, озимые посевы, плодовые деревья от вымерзания.
2. Кухонные прихватки сшиты из материала, который обладает плохой теплопроводностью. Ручки чайников, кастрюль делают из материалов обладающих плохой теплопроводностью. Все это защищает руки от ожогов, при прикосновении к горячим предметам.
3. Вещества с хорошей теплопроводностью (металлы) используют для быстрого нагревания тел или деталей.

2. Конвекция

Отгадайте загадки:

1) Загляните под окошко –
Там растянута гармошка,
Но гармошке не играет –
Нам квартиру согревает... (батарея)

2) Наша толстая Федора
наедается не скоро.
А зато когда сыта,
От Федоры – теплота... (печь)

Батареи, печи, радиаторы отопления используются человеком для обогрева жилых помещений, а точнее нагревания воздуха в них. Происходит это благодаря конвекции – следующему виду теплопередачи.

Конвекция – это перенос энергии струями жидкости или газа. (Слайд 9)
Попробуем объяснить, как происходит конвекция в жилых помещениях.
Воздух, соприкасаясь с батареей, от нее нагревается, при этом он расширяется, его плотность становится меньше плотности холодного воздуха. Теплый воздух, как более легкий, поднимается вверх под действием силы Архимеда, а тяжелый холодный воздух опускается вниз.
Затем снова: более холодный воздух доходит до батареи, нагревается, расширяется, становится легче и под действием Архимедовой силы поднимается вверх и т.д.
Благодаря такому движению воздух в комнате прогревается.

Бумажная вертушка, помещенная над включенной лампой, начинает вращаться. (Слайд 10)
Попробуйте объяснить, как это происходит? (Холодный воздух при нагревании у лампы становится теплым и поднимается вверх, при этом вертушка вращается).

Точно также происходит нагревание жидкости. Посмотрите эксперимент по наблюдению конвекционных потоков при нагревании воды (с помощью марганцовки). (Слайд 11)

Обратите внимание, что в отличие от теплопроводности, при конвекции происходит перенос вещества и в твердых телах конвекция не происходит.

Различают два вида конвекции: естественную и вынужденную.
Нагревание жидкости в кастрюле или воздуха в комнате – это примеры естественной конвекции. Для ее возникновения вещества нужно нагревать снизу или охлаждать сверху. Почему именно так? Если нагревать будем сверху, то куда будут перемещаться нагретые слои воды, а куда холодные? (Ответ: никуда, так как нагретые слои и так уже наверху, а холодные слои так и останутся внизу)
Вынужденная конвекция наблюдается, если жидкость перемешивать ложкой, насосом или вентилятором.

Особенности конвекции: (слайд 12)

  • возникает в жидкостях и газах, невозможна в твердых телах и вакууме;
  • само вещество переносится;
  • нагревать вещества нужно снизу.

Примеры конвекции: (слайд 13)

1) холодные и теплые морские и океанические течения,
2) в атмосфере, вертикальные перемещения воздуха приводят к образованию облаков;
3) охлаждение или нагревание жидкостей и газов в различных технических устройствах, например в холодильниках и др., обеспечивается водяное охлаждение двигателей
внутреннего сгорания.

3. Излучение

(Слайд 14)

Всем известно, что Солнце основной источник тепла на Земле. Земля находится от него на расстоянии 150 млн. км. Как передается тепло от Солнца на Землю?
Между Землей и Солнцем за пределами нашей атмосферы все пространство – вакуум. А нам известно, что в вакууме теплопроводность и конвекция происходить не могут.
Каким способом происходит передача тепла? Здесь осуществляется еще один вид теплопередачи – излучение.

Излучение – это теплообмен, при котором энергия переносится электромагнитными лучами.

Отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум.

Посмотрите видеофрагмент об излучении (слайд 15).

Излучают энергию все тела: тело человека, печь, электрическая лампа.
Чем выше температура тела, тем сильнее его тепловое излучение.

Тела не только излучают энергию, но и поглощают ее.
(слайд 16) Причем темные поверхности лучше поглощают и излучают энергию, чем тела, имеющие светлую поверхность.

Особенности излучения (слайд 17):

  • происходит в любом веществе;
  • чем выше температура тела, тем интенсивнее излучение;
  • происходит в вакууме;
  • темные тела лучше поглощают излучение, чем светлые и лучше излучают.

Примеры использования излучения тел (слайд 18):

поверхности ракет, дирижаблей, воздушных шаров, спутников, самолётов, окрашивают серебристой краской, чтобы они не нагревались Солнцем. Если наоборот надо использовать солнечную энергию, то части приборов окрашивают в темный цвет.
Люди зимой носят темные одежды (черного, синего, коричного цвета) в них теплее, а летом светлые (бежевые, белые цвета). Грязный снег в солнечную погоду тает быстрее, чем чистый, потому что тела с темной поверхностью лучше поглощают солнечное излучение и быстрее нагреваются.

IV. Закрепление полученных знаний на примерах задач

Игра «Попробуй, объясни» , (слайды 19-25).

Перед вами игровое поле с шестью заданиями, вы можете выбрать любое. После выполнения всех заданий вам откроется мудрое высказывание и тот, кто его очень часто произносит с экранов телевизоров.

1. В каком доме теплее зимой, если толщина стен одинакова? Теплее в деревянном доме, так как дерево содержит 70% воздуха, а кирпич 20%. Воздух - плохой проводник тепла. В последнее время в строительстве применяют «пористые» кирпичи для уменьшения теплопроводности.

2. Каким способом происходит передача энергии от источника тепла к мальчику? Мальчику, сидящему у печки, энергия в основном передается теплопроводностью.

3. Каким способом происходит передача энергии от источника тепла к мальчику?
Мальчику, лежащему на песке, энергия от солнца передается излучением, а от песка теплопроводностью.

4. В каком из этих вагонов перевозят скоропортящиеся продукты? Почему? Скоропортящиеся продукты перевозят в вагонах, окрашенных в белый цвет, так как такой вагон в меньшей степе­ни нагревается солнечными лучами.

5. Почему водоплавающие птицы и другие животные не замерзают зимой?
Мех, шерсть, пух обладают плохой теплопроводностью (наличие между волокнами воздуха), что позволяет телу животного сохранять вырабатываемую организмом энергию и защищаться от охлаждения.

6. Почему оконные рамы делают двойными?
Между рамами содержится воздух, который обладает плохой теплопроводностью и защищает от потерь тепла.

«Мир интересней, чем нам кажется», Александр Пушной, программа «Галилео».

V. Итог урока

– С какими видами теплопередачи мы познакомились?
– Определите, какой из видов теплопередачи играет основную роль в следующих ситуациях:

а) нагревание воды в чайнике (конвекция);
б) человек греется у костра (излучение);
в) нагревание поверхности стола от включенной настольной лампы (излучение);
г) нагревание металлического цилиндра, опущенного в кипяток (теплопроводность).

Разгадайте кроссворд (слайд 26):

1. Величина, от которой зависит интенсивность излучения.
2. Вид теплопередачи, который может осуществляться в вакууме.
3. Процесс изменения внутренней энергии без совершения работы над телом или самим телом.
4. Основной источник энергии на Земле.
5. Смесь газов. Обладает плохой теплопроводностью.
6. Процесс превращения одного вида энергии в другой.
7. Металл, имеющий самую хорошую теплопроводностью.
8. Разреженный газ.
9. Величина, обладающая свойством сохранения.
10. Вид теплопередачи, который сопровождается переносом вещества.

Разгадав кроссворд, вы получили еще одно слово, которое является синонимом к слову «теплопередача» – это слово… («теплообмен»). «Теплопередача» и «теплообмен» – одинаковые по смыслу слова. Используйте их, заменяя одно другим.

VI. Домашнее задание

§ 4, 5, 6, Упр. 1 (3), Упр. 2(1), Упр. 3(1) – письменно.

VII. Рефлексия

В конце урока предлагаем учащимся обсудить урок: что понравилось, что хотелось бы изменить, оценить свое участие в уроке.

Прозвенит сейчас звонок,
Подошел к концу урок.
До свидания, друзья,
Отдыхать пришла пора.

ТЕПЛОПЕРЕДАЧА (или теплообмен) - один из способов изменения внутренней энергии тела (или системы тел), при этом внутренняя энергия одного тела переходит во внутреннюю энергию другого тела без совершения механической работы.
Теплообмен между двумя средами происходит через разделяющую их твердую стенку или через поверхность раздела между ними.
Теплота способна переходить только от тела с более высокой температурой к телу менее нагретому.
Теплообмен всегда протекает так, что убыль внутренней энергии одних тел всегда сопровождается таким же приращением внутренней энергии других тел, участвующих в теплообмене.
Существует три вида теплопередачи: теплопроводность, конвекция и излучение.

ТЕПЛОПРОВОДНОСТЬ - перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия микрочастиц (атомов, молекул, ионов и т.п.).
Приводит к выравниванию температуры тела. Не сопровождается переносом вещества!
Этот вид передачи внутренней энергии характерен как для твердых веществ, так и для жидкостей,газов.
Теплопроводность различных веществ разная.
Существует зависимость теплопроводности от плотности вещества.

КОНВЕКЦИЯ - это перенос энергии струями жидкости или газа.
Конвекция происходит за счет перемешивания вещества жидкой или газообразной среды.
Конвекция невозможна в твёрдых телах.
Существует зависимость скорости конвекции от плотности вещества и от разницы температур соприкасающихся тел.
Конвекция может быть естественной и принудительной, например, с помощью вентилятора.

ИЗЛУЧЕНИЕ
Все окружающие нас предметы излучают тепло в той или иной мере. Излучая энергию, тела остывают.
Чем выше температура тела, тем интенсивнее тепловое излучение.
Тепловое (инфракрасное) излучение не воспринимается глазом.
Теплопередача способом излучения возможна в любом веществе и в вакууме.
Тела способны не только излучать, но и поглощать тепловое излучение, при этом они нагреваются.
Темные тела лучше поглощают излучение, чем светлые или имеющие зеркальную, или полированную поверхность, и лучше излучают.
Как фантастично выглядел бы окружающий мир, если бы мы могли видеть недоступные нашему глазу тепловые излучения других тел!
Пар - газообразное состояние вещества в условиях, когда газовая фаза может находиться в равновесии с жидкой или твёрдой фазами того же вещества. Процесс возникновения пара из жидкой (твёрдой) фазы называется «парообразованием». Обратный процесс называется конденсация. При низких давлениях и высоких температурах свойства пара приближаются к свойствам идеального газа. В разговорной речи под словом «пар» почти всегда понимают водяной пар. Пары́ прочих веществ оговариваются в явном виде.