Мейоз, отличия от митоза. Стадии мейоза


Образованием специализированных половых клеток , или гамет , из недифференцированных стволовых .

С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной. Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса .

В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках). Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма.

Этот же механизм лежит в основе стерильности межвидовых гибридов . Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет . Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

  • Профаза I - профаза первого деления очень сложная и состоит из 5 стадий:
  • Лептотена или лептонема - упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).
  • Зиготена или зигонема - происходит конъюгация - соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.
  • Пахитена или пахинема - (самая длительная стадия) кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.
  • Диплотена или диплонема - происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток .
  • Диакинез - ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

  • Метафаза I - бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • Анафаза I - микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе .
  • Телофаза I

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II - происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
  • Метафаза II - унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • Анафаза II - униваленты делятся и хроматиды расходятся к полюсам.
  • Телофаза II - хромосомы деспирализуются и появляется ядерная оболочка.

Значение

  • У организмов, размножающихся половым путем, предотвращается удвоение числа хромосом в каждом поколении, так как при образовании половых клеток мейозом происходит редукция числа хромосом.
  • Мейоз создает возможность для возникновения новых комбинаций генов (комбинативная изменчивость), так как происходит образование генетически различных гамет.
  • Редукция числа хромосом приводит к образованию "чистых гамет", несущих только один аллель соответствующего локуса.
  • Расположение бивалентов экваториальной пластинки веретена деления в метафазе 1 и хромосом в метафазе 2 определяется случайным образом. Последующее расхождение хромосом в анафазе приводит к образованию новых комбинаций аллелей в гаметах. Независимое расхождение хромосом лежит в основе третьего закона Менделя .

Примечания

Литература

  • Бабынин Э. В. Молекулярный механизм гомологичной рекомбинации в мейозе: происхождение и биологическое значение . Цитология, 2007, 49, N 3, 182-193.
  • Александр Марков. На пути к разгадке тайны мейоза . По статье: Ю. Ф. Богданов. Эволюция мейоза одноклеточных и многоклеточных эукариот. Ароморфоз на клеточном уровне. Журнал общей биологии, Том 69, 2008. № 2, Март-Апрель. Стр. 102-117
  • «Variation and evolution of meiosis» - Ю. Ф. Богданов, 2003
  • Биология:Пособия для поступающих в вузы: В 2 т. Т.1.-Б63 2-е изд., испр. и доп.-М.:РИА «Новая волна»: Издатель Умеренков,2011.-500с.

Wikimedia Foundation . 2010 .

Синонимы :

С уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет , из недифференцированных стволовых. С уменьшением числа хромосом в результате мейоза в жизненном цикле происходит переход от диплоидной фазы к гаплоидной.

Восстановление плоидности (переход от гаплоидной фазы к диплоидной) происходит в результате полового процесса. В связи с тем, что в профазе первого, редукционного, этапа происходит попарное слияние (конъюгация) гомологичных хромосом, правильное протекание мейоза возможно только в диплоидных клетках или в чётных полиплоидах (тетра-, гексаплоидных и т. п. клетках).

Мейоз может происходить и в нечётных полиплоидах (три-, пентаплоидных и т. п. клетках), но в них, из-за невозможности обеспечить попарное слияние хромосом в профазе I, расхождение хромосом происходит с нарушениями, которые ставят под угрозу жизнеспособность клетки или развивающегося из неё многоклеточного гаплоидного организма. Этот же механизм лежит в основе стерильности межвидовых гибридов.

Поскольку у межвидовых гибридов в ядре клеток сочетаются хромосомы родителей, относящихся к различным видам, хромосомы обычно не могут вступить в конъюгацию. Это приводит к нарушениям в расхождении хромосом при мейозе и, в конечном счете, к нежизнеспособности половых клеток, или гамет. Определенные ограничения на конъюгацию хромосом накладывают и хромосомные мутации (масштабные делеции, дупликации, инверсии или транслокации).

Фазы мейоза.

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

Профаза I — профаза первого деления очень сложная и состоит из 5 стадий:

Фаза лептотены или лептонемы — упаковка хромосом.

- Зиготена или зигонема — конъюгация (соединение) гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами.

- Пахитена или пахинема — кроссинговер (перекрест), обмен участками между гомологичными хромосомами; гомологичные хромосомы остаются соединенными между собой.

- Диплотена или диплонема — происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой.

- Диакинез — ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.


  • Метафаза I — бивалентные хромосомы выстраиваются вдоль экватора клетки.
  • Анафаза I — микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.
  • Телофаза I

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

  • Профаза II — происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления.
  • Метафаза II — унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.
  • Анафаза II — униваленты делятся и хроматиды расходятся к полюсам.
  • Телофаза II — хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и два так называемых редукционных тельца (абортивные дериваты первого и второго делений).

Кроссинго?вер (другое название в биологии перекрёст ) — явление обмена участками гомологичных хромосом во время конъюгации при мейозе. Помимо мейотического описан также митотический кроссинговер. Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом).

Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами, тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования. Первые карты хромосом были построены в 1913 г. для классического экспериментального объекта плодовой мушки Drosophila melanogaster Альфредом Стёртевантом, учеником и сотрудником Томаса Ханта Моргана.

Мейозом (редукционным делением) называют такое непрямое деление клеток, при котором дочерние клетки получают гаплоидный (одинарный) набор хромосом.

Процесс уменьшения диплоидного (двойного) набора хромосом до одинарного (гаплоидного) называется редукцией числа хромосом, поэтому процесс непрямого деления клеток, сопровождающийся появлением гаплоидного набора хромосом у дочерних клеток, называется редукционным.

Мейоз состоит из двух последовательно протекающих мейотических делений, между которыми интерфаза практически отсутствует.

Первое мейотическое деление, как и при митозе, начинается с профазы (следует помнить, что исходные (родительские) клетки имеют диплоидный набор хромосом, но тетраплоидное количество ядерного вещества). Профаза длится от нескольких часов до нескольких недель. За это время двухроматидные хромосомы (каждая) спирализуются и выявляются в своей структуре. Гомологичные (парные) хромосомы сближаются и конъюгируют (переплетаются). При конъюгации двух гомологичных хромосом образуется единая структура, состоящая из четырех хроматид, называемая бивалентом.

Конъюгация гомологичных хромосом приводит к тому, что возникающие биваленты способствуют обновлению ядерного вещества у хромосом за счет кроссинговера.

Кроссинговер - обмен ядерным веществом у конъюгировавших гомологичных хромосом.

В ряде случаев кроссинговера при конъюгации не происходит и вновь возникшие хромосомы после конъюгации остаются неизменными. Кроссинговер имеет большое значение в передаче признаков родителей потомкам, так как в результате его протекания происходит перекомбинация генов, что может способствовать либо гибели организмов, либо лучшей их выживаемости в условиях среды обитания.

В остальном профаза-I не отличается от таковой для обычного митоза, и ее результат тот же. После профазы-I клетка вступает в метафазу-I.

Метафаза-I аналогична таковой для метафазы обычного митоза, но имеет и свои особенности. В ней каждая бивалента прикрепляется к тянущим нитям веретена, разделяется на хромосомы и набор к концу метафазы остается диплоидным (в митозе он становился тетраплоидным). После завершения метафазы-I клетка вступает в анафазу-I.

Анафаза-I протекает аналогично анафазе в митозе, при этом к полюсам клетки, случайно распределяясь, расходятся гомологичные хромосомы. В конце анафазы-I около полюсов клетки возникает гаплоидный набор хромосом (с диплоидным количеством ядерного вещества, так как каждая хромосома содержит две хроматидные нити). По числу хромосом это деление будет редукционным, так как число хромосом по сравнению с родительской клеткой уменьшилось вдвое, т. е. произошла редукция числа хромосом, но не ядерного вещества. Наличие в клетке двойного количества ядерного вещества является побудительной причиной для второго мейотического деления.

Телофаза-I следует за анафазой-I и существенно не отличается от телофазы митоза, но имеет свои специфические особенности. После возникновения первичной мембраны между клетками происходит восстановление клеточного центра, перетяжка отделяет одну клетку от другой. Но в отличие от митоза, деспирализации хромосом не происходит, ядра не образуется. Длительность телофазы-I невелика. Интерфаза между первым и вторым делением отсутствует. Сразу после телофазы-I клетка вступает во второе мейотическое деление (в него вступают одновременно обе клетки, возникшие в результате первого деления).

Второе мейотическое деление начинается с профазы-II. Профаза-II сильно отличается от профазы-I, так как у родительских клеток нет ядра, хромосомы четко выражены и спирализированы. Процессы этой фазы сводятся к тому, что центриоли клеточного центра расходятся к разным полюсам клеток и возникает веретено деления. Хромосомы концентрируются на экваторе клеток, и далее наступает метафаза-II.

Метафаза-II напоминает метафазу-I, т. е. хромосомы прикрепляются к тянущим нитям веретена, между хроматидными нитями возникает пространство, центриоли делятся и в клетках возникает диплоидный набор хромосом (а был гаплоидный). Далее клетки вступают в анафазу-II.

Анафаза-II протекает так же, как и при митозе. В результате анафазы-II около каждого полюса двух родительских клеток возникает гаплоидное число хромосом и гаплоидное количество ядерного вещества, далее клетки вступают в телофазу-II.

Телофаза-II протекает так же, как и при митозе.

В результате мейоза в целом возникает четыре дочерние клетки, обладающие гаплоидным набором хромосом (n) и гаплоидным количеством ядерного вещества (с). Эти клетки в зависимости от процесса могут быть все равноценные (например, сперматозоиды при сперматогенезе) либо различные (одна яйцеклетка и три сопутствующие клетки, которые затем редуцируются при овогенезе). При мейозе образуются и споры растений (при спорогенезе).

Биологическая роль мейоза состоит в том, что он создает предпосылки для реализации полового процесса. В конечном счете мейоз непосредственно (гаметогенез у животных) или опосредованно (спорогенез у растений) создает предпосылки к осуществлению полового процесса (слияния гамет), который приводит к обновлению наследственного (ядерного) вещества у потомства, что позволяет последнему легче приспособиться к условиям существования в среде обитания.

Общая характеристика гаметогенеза

Гаметогенез - процесс образования половых клеток (гамет). Гаметами называют половые клетки, с помощью которых реализуется половой процесс. По характеру гамет различают два типа половых клеток: мужские половые клетки (сперматозоиды или спермии) и женские половые клетки (яйцеклетки).

Сперматозоиды являются мужскими половыми клетками, имеющими органоиды - жгутики (как правило, один). Спермии жгутиков не имеют и состоят только из головки. Сперматозоид образован жгутиком и головкой, которая состоит из ядра и слоя цитоплазмы. Главная биологическая функция сперматозоида и спермия - достичь яйцеклетки и слиться с ней. Поэтому мужские гаметы имеют короткий срок жизни и небольшой запас питательных веществ. Спермии характерны для растений и приспособлены к пассивному перемещению в процессе оплодотворения.

Женские половые гаметы являются яйцеклетками. Это крупные неподвижные клетки, богатые запасом питательных веществ. Их главная биологическая функция - обеспечить развитие зародыша после слияния с мужской гаметой. Аналогично протекает и спорогенез у растений.

По характеру формирования гамет различают сперматогенез и овогенез (оогенез).

Общая характеристика сперматогенеза

Сперматогенез - процесс формирования мужских половых клеток (мужских гамет, сперматозоидов).

У животных сперматогенез осуществляется в мужских половых железах - семенниках (яичках). Мужская половая железа имеет три зоны: I - зона размножения клеток; II - зона роста клеток; III - зона созревания клеток.

В зоне размножения клетки митотически делятся и в конечном итоге образуют сперматогонии. Сперматогонии переходят в зону роста, растут до определенного размера и переходят в зону созревания.

В зоне созревания сперматогонии превращаются в сперматоциты 1-го порядка, которые способны к мейозу, что делает возможным образование (в будущем) мужских гамет. При образовании сперматозоидов, сперматоциты 1-го порядка подвергаются собственно сперматогенезу, т. е. вступают в мейотическое деление. Они имеют диплоидный набор хромосом и тетраплоидное количество ядерного вещества. В результате первого мейотического деления из сперматоцитов 1-го порядка образуются сперматоциты 2-го порядка. Они имеют гаплоидный набор хромосом, но диплоидное количество ядерного вещества.

Сперматоциты 2-го порядка вступают во второе мейотическое деление и из них образуются по два сперматозоида (из двух сперматоцитов 1-го порядка образуется четыре сперматозоида). На этом сперматогенез завершается.

Итак, при сперматогенезе из одной исходной клетки (сперматоцита 1-го порядка) образуется четыре равноценных гаметы - сперматозоида, обладающих гаплоидным набором хромосом и гаплоидным количеством ядерного вещества.

Общая характеристика овогенеза (оогенеза)

Овогенез (оогенез) - образование женских гамет (яйцеклеток).

Яйцеклетка - женская половая клетка, обладающая достаточно крупными размерами, содержащая большое количество питательных веществ, не способная к передвижению.

Овогенез реализуется в женских половых железах - в яичниках. В результате овогенеза из одной исходной клетки образуется одна женская гамета, обладающая гаплоидным набором хромосом и гаплоидным количеством ядерного вещества.

Основными клетками яичников, участвующими в овогенезе, являются оогонии - клетки с диплоидным набором хромосом, которые в дальнейшем способны образовывать ооциты. Из оогониев образуются ооциты 1-го порядка. Эти ооциты имеют диплоидный набор хромосом и тетраплоидное количество ядерного вещества и способны к мейозу. Ооциты 1-го порядка представляют собой особое состояние клеток и отличаются от оогониев, так как последние способны к митозу, а первые - к мейозу.

Ооциты 1-го порядка вступают в первое мейотическое деление, в результате которого образуются две неравноценные клетки - ооцит 2-го порядка (крупная клетка с гаплоидным набором хромосом, но диплоидным количеством ядерного вещества; в этой клетке сосредоточена практически вся масса исходной клетки - ооцита 1-го порядка) и вторая клетка - первое полярное тельце (подобна ооциту 2-го порядка, за исключением массы тела, которая очень мала по сравнению с массой ооцита 2-го порядка).

Следовательно, при овогенезе из одной исходной клетки образуется только одна яйцеклетка.

Особенности сперматогенеза и овогенеза у растений

У растений при гаметогенезе мейотического деления не происходит, так как гаметы образуются в организмах полового поколения (в гаметофитах), клетки которого являются гаплоидными из-за того, что гаметофит развивается из спор. Споры образуются при спорогенезе, при котором осуществляется мейоз, поэтому споры обладают гаплоидным набором хромосом и гаплоидным количеством ядерного вещества. Схема спорогенеза в целом напоминает сперматогенез, отличаясь от такового лишь тем, что в результате спорогенеза образуются гаплоидные споры, а при сперматогенезе - гаплоидные сперматозоиды.

Сперматогенез у растений происходит в антеридиях и не сопровождается мейозом. Овогенез у высших растений происходит в архегониях (кроме покрытосеменных растений). Более подробно этот вопрос будет рассмотрен в подразделе, посвященном развитию растений.

Половое размножение животных, растений и грибов связано с формированием специализированных половых клеток.
Мейоз - особый тип деления клеток, в результате которого образуются половые клетки.
В отличии от митоза , при котором сохраняется число хромосом, получаемых дочерними клетками, при мейозе число хромосом в дочерних клетках уменьшается вдвое.
Процесс мейоза состоит из двух последовательных клеточных делений - мейоза I (первое деление) и мейоза II (второе деление).
Удвоение ДНК и хромосом происходит только перед мейозом I .
В результате первого деления мейоза, называемого редукционным , образуются клетки с уменьшенным вдвое числом хромосом. Второе деление мейоза заканчивается образованием половых клеток. Таким образом, все соматические клетки организма содержат двойной, диплоидный (2n) , набор хромосом, где каждая хромосома имеет парную, гомологичную хромосому. Зрелые половые клетки имеют лишь одинарный, гаплоидный (n) , набор хромосом и соответственно вдвое меньшее количество ДНК.

Фазы мейоза

Во время профазы I мейоза двойные хромосомы хорошо видны в световой микроскоп. Каждая хромосомы состоит из двух хромотид, которые связаны вместе одной центромерой. В процессе спирализации двойные хромосомы укорачиваются. Гомологичные хромосомы тесно соединяются друг с другом продольно (хроматида к хроматиде), или, как говорят, конъюгируют . При этом хроматиды нередко перекрещиваются или перекручиваются одна вокруг другой. Затем гомологичные двойные хромосомы начинают как бы отталкиваться друг от друга. В местах перекреста хроматид происходят поперечные разрыва и обмены их участками. Это явление называют перекрестом хромосом. Одновременно, как и при митозе, распадется ядерная оболочка, исчезает ядрышко, образуются нити веретена. Отличие профазы I мейоза от профазы митоза состоит в конъюгации гомологичных хромосом и взаимном обмене участками в процессе перекреста хромосом.
Характерный признак метафазы I - расположение в экваториальной плоскости клетки гомологичных хромосом, лежащих парами. Вслед за этим наступает анафаза I , во время которой целые гомологичные хромосомы, каждая состоящая из двух хроматид, отходят к противоположным полюсам клетки. Очень важно подчеркнуть одну особенность расхождения хромосом на этой стадии мейоза: гомологичные хромосомы каждой пары расходятся в стороны случайным образом, независимо от хромосом других пар. У каждого полюса оказывается вдвое меньше хромосом, чем было в клетке при начале деления. Затем наступает телофаза I , во время которой образуются две клетки с уменьшенным вдвое числом хромосом.
Интерфаза короткая, так как синтеза ДНК не происходит. Далее следует второе мейотическое деление (мейоз II ). Оно отличается от митоза только тем, что количество хромосом в метафазе II вдвое меньше, чем количество хромосом в метафазе митоза у того же организма. Поскольку каждая хромосома состоит из двух хроматид, то в метафазе II центромеры хромосом делятся, и к полюсам расходятся хроматиды, которые становятся дочерними хромосомами. Только теперь наступает настоящая интерфаза. Из каждой исходной клетки возникают четыре клетки с гаплоидным набором хромосом.

Разнообразие гамет

Рассмотри мейоз клетки, имеющей три пары хромосом (2n = 6 ). В этом случае после двух мейотических делений образуются четыре клетки с гаплоидным набором хромосом (n = 3 ). Поскольку хромосомы каждой пары расходятся в дочерние клетки независимо от хромосом других пар, равновероятно образование восьми тиров гамет с различным сочетанием хромосом, присутствовавших в исходной материнской клетке.
Еще большее разнообразие гамет обеспечивается конъюгацией и перекрестом гомологичных хромосом в профазе мейоза, что имеет очень большое общебиологическое значение.

Биологическое значение мейоза

Если бы в процессе мейоза не происходило уменьшения числа хромосом, то в каждом следующем поколении при слиянии ядер яйцеклетки и сперматозоида число хромосом увеличивалось бы бесконечно. Благодаря мейозу зрелые половые клетки получают гаплоидное (n) число хромосом, при оплодотворении же восстанавливается свойственное данному виду диплоидное (2n) число. При мейозе гомологичные хромосомы попадают в разные половые клетки, а при оплодотворении парность гомологичных хромосом восстанавливается. Следовательно, обеспечивается постоянных для каждого вида полных диплоидный набор хромосом и постоянное количество ДНК.
Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом определяют закономерности наследственной передачи признака от родителей потомству. Из каждой пары двух гомологичных хромосом (материнской и отцовской), входивших в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится лишь одна хромосома. Она может быть:

  • отцовской хромосомой;
  • материнской хромосомой;
  • отцовской с участком материнской;
  • материнской с участком отцовской.
Эти процессы возникновения большого количества качественно различных половых клеток способствуют наследственной изменчивости .
В отдельных случаях вследствие нарушения процесса мейоза, при нерасхождении гомологичных хромосом, половые клетки могут не иметь гомологичной хромосомы или, наоборот, иметь обе гомологичные хромосомы. Это приводит к тяжелым нарушениям в развитии организма или к его гибели.

Сопровождающееся уменьшением числа хромосом вдвое. Он состоит из двух последовательно идущих деле­ний, имеющих те же фазы, что и митоз. Однако, как показано в таблице «Сравнение митоза и мейоза» , продолжительность отдельных фаз и происходящие в них процессы значительно отличаются от процессов, происходящих при митозе.

Эти отличия в основном состоят в следующем.

В мейозе профаза I более продолжительна. В ней происходит конъюгация (соединение гомологичных хромосом) и обмен генетической информацией . В анафазе I центроме­ры , скрепляющие хроматиды, не делятся , а к полюсам отходит одна из гомологмейоза митоза и ичных хромосом. Интерфаза перед вторым делением очень короткая , в ней ДНК не синтезируется . Клетки (галиты ), образующиеся в результате двух мейотических делений, содержат гаплоидный (одинарный) набор хромосом. Диплоидность восстанавливается при слиянии двух клеток - материнской и отцовской. Опло­дотворенную яйцеклетку называют зиготой .

Митоз и его фазы

Митоз, или непрямое деление , наиболее широко рас­пространен в природе. Митоз лежит в основе деления всех неполовых клеток (эпителиальных, мышечных, нервных, костных и др.). Митоз состоит из четырех последователь­ных фаз (см. далее таблицу). Благодаря митозу обеспечи­вается равномерное распределение генетической информа­ции родительской клетки между дочерними. Период жизни клетки между двумя митозами называют интерфазой . Она в десятки раз продолжительнее митоза. В ней совершается ряд очень важных процессов, предшествующих делению клетки: синтезируются молекулы АТФ и белков , удваивается каждая хромосома, образуя две сестринские хроматиды , скрепленные общей центромерой , увеличивается число основных органоидов цитоплазмы.

В профазе спиралируются и вследствие этого утолща­ются хромосомы , состоящие из двух сестринских хроматид, удерживаемых вместе центромерой. К концу профазы ядерная мембрана и ядрышки исчезают и хромосомы рас­средоточиваются по всей клетке, центриоли отходят к полюсам и образуют веретено деления . В метафазе проис­ходит дальнейшая спирализация хромосом. В эту фазу они наиболее хорошо видны. Их центромеры располагаются по экватору. К ним прикрепляются нити веретена деления.

В анафазе центромеры делятся, сестринские хроматиды отделяются друг от друга и за счет сокращения нитей веретена отходят к противоположным полюсам клетки.

В телофазе цитоплазма делится, хромосомы раскручи­ваются, вновь образуются ядрышки и ядерные мембраны. В животных клетках цитоплазма перешнуровывается, в растительных - в центре материнской клетки образуется перегородка. Так из одной исходной клетки (материнской) образу­ются две новые дочерние.

Таблица - Сравнение митоза и мейоза

Фаза Митоз Мейоз
1 деление 2 деление
Интерфаза

Набор хромосом 2n.

Идет интенсивный синтез белков, АТФ и других органических веществ.

Удваиваются хромосомы, каждая оказывается состоящей из двух сестринских хроматид, скрепленных общей центромерой.

Набор хромосом 2n Наблюдаются те же процессы, что и в митозе, но более продолжительна, особенно при обра­зовании яйцеклеток. Набор хромосом гаплоидный (n). Синтез органических веществ отсутствует.
Профаза Непродолжительна, происходит спирализация хро­мосом, исчезают ядерная оболочка, ядрышко, образуется веретено деления. Более длительна. В начале фазы те же процессы, что и в митозе. Кроме того, происходит конъюгация хромосом, при которой гомологичные хромосомы сближаются по всей длине и скру­чиваются. При этом может происходить обмен генетической информацией (перекрест хромосом) - кроссинговер . Затем хромосомы расходятся. Короткая; те же процессы, что и в митозе, но при n хромосом.
Метафаза Происходит дальнейшая спирализация хромосом, их центромеры располагаются по экватору. Происходят процессы, аналогичные тем, что и в митозе.
Анафаза Центромеры, скрепляющие се­стринские хроматиды, делятся, каждая из них становится новой хромосомой и отходит к противоположным полюсам. Центромеры не делятся. К противоположным полюсам отходит одна из гомологичных хро­мосом, состоящая из двух хроматид, скрепленных общей центромерой. Происходит то же, что и в митозе, но при n хромосом.
Телофаза Делится цитоплазма, образуются две дочерние клетки, каждая с диплоидным набором хромосом. Исчезает веретено деления, формируются ядрышки. Длится недолго Гомологичные хро­мосомы попадают в разные клетки с гаплоидным набором хромосом. Цитоплазма делится не всегда. Делится цитоплазма. После двух мейотических делений образуется 4 клетки с гаплоидным набором хромосом.

Таблица сравнения митоза и мейоза.