Современный периодический закон. Периодический закон и Периодическая система химических элементов Д.И. Менделеева


Еще алхимики пытались найти закон природы, на основе которого можно было бы систематизировать химические элементы. Но им недоставало надежных и подробных сведений об элементах. К середине XIX в. знаний о химических элементах стало достаточно, а число элементов возросло настолько, что в науке возникла естественная потребность в их классификации. Первые попытки классификации элементов на металлы и неметаллы оказались несостоятельными. Предшественники Д.И.Менделеева (И. В. Деберейнер, Дж. А. Ньюлендс, Л. Ю. Мейер) многое сделали для подготовки открытия периодического закона, но не смогли постичь истину. Дмитрий Иванович установил связь между массой элементов и их свойствами.

Дмитрий Иванович родился в г. Тобольске. Он был семнадцатым ребенком в семье. Закончив в родном городе гимназию, Дмитрий Иванович поступил в Санкт-Петербурге в Главный педагогический институт, после окончания которого с золотой медалью уехал на два года в научную командировку за границу. После возвращения его пригласили в Петербургский университет. Приступая к чтению лекций по химии, Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве учебного пособия. И он решил написать новую книгу – «Основы химии».

Открытию периодического закона предшествовало 15 лет напряженной работы. 1 марта 1869 г. Дмитрий Иванович предполагал выехать из Петербурга в губернии по делам.

Периодический закон был открыт на основе характеристики атома – относительной атомной массы .

Менделеев расположил химические элементы в порядке возрастания их атомных масс и заметил, что свойства элементов повторяются через определенный промежуток – период, Дмитрий Иванович расположил периодыдруг под другом., так, чтобы сходные элементы располагались друг под другом – на одной вертикали, так была построена периодическая система элементов.

1 марта 1869г. Формулировка периодического закона Д.И. Менделеева.

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

К сожалению, сторонников периодического закона сначала было очень мало, даже среди русских ученых. Противников – много, особенно в Германии и Англии.
Открытие периодического закона – это блестящий образец научного предвидения: в 1870 г. Дмитрий Иванович предсказал существование трех еще неизвестных тогда элементов, которые назвал экасилицием, экаалюминием и экабором. Он сумел правильно предсказать и важнейшие свойства новых элементов. И вот через 5 лет, в 1875 г., французский ученый П.Э. Лекок де Буабодран, ничего не знавший о работах Дмитрия Ивановича, открыл новый металл, назвав его галлием. По ряду свойств и способу открытия галлий совпадал с экаалюминием, предсказанным Менделеевым. Но его вес оказался меньше предсказанного. Несмотря на это, Дмитрий Иванович послал во Францию письмо, настаивая на своем предсказании.
Ученый мир был ошеломлен тем, что предсказание Менделеевым свойств экаалюминия оказалось таким точным. С этого момента периодический закон начинает утверждаться в химии.
В 1879 г. Л. Нильсон в Швеции открыл скандий, в котором воплотился предсказанный Дмитрием Ивановичем экабор .
В 1886 г. К. Винклер в Германии открыл германий, который оказался экасилицием .

Но гениальность Дмитрия Ивановича Менделеева и его открытия - не только эти предсказания!

В четырёх местах периодической системы Д. И. Менделеев расположил элементы не в порядке возрастания атомных масс:

Ещё в конце 19 века Д.И. Менделеев писал, что, по-видимому, атом состоит из других более мелких частиц. После его смерти в 1907 г. было доказано, что атом состоит из элементарных частиц. Теория строения атома подтвердила правотуМенделеева, перестановки данных элементов не в соответствии с ростом атомных масс полностью оправданы.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.
И вот спустя более 130 лет после открытия периодического закона мы можем вернуться к словам Дмитрия Ивановича, взятым в качестве девиза нашего урока: «Периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещаются». Сколько химических элементов открыто на данный момент? И это далеко не предел.

Графическим изображением периодического закона является периодическая система химических элементов. Это краткий конспект всей химии элементов и их соединений.

Изменения свойств в периодической системе с ростом величины атомных весов в периоде (слева направо):

1. Металлические свойства уменьшаются

2. Неметаллические свойства возрастают

3. Свойства высших оксидов и гидроксидов изменяются от основных через амфотерные к кислотным.

4. Валентность элементов в формулах высших оксидов возрастает от I до VII , а в формулах летучих водородных соединений уменьшается от IV до I .

Основные принципы построения периодической системы.

Признак сравнения

Д.И.Менделеев

1. Как устанавливается последовательность элементов по номерам? (Что положено в основу п.с.?)

Элементы расставлены в порядке увеличения их относительных атомных масс. При этом есть исключения.

Ar – K, Co – Ni, Te – I, Th - Pa

2. Принцип объединения элементов в группы.

Качественный признак. Сходство свойств простых веществ и однотипных сложных.

3. Принцип объединения элементов в периоды.

Периодический закон Д.И.Менделеева, его современная формулировка. В чем её отличие от той, которая была дана Д.И.Менделеевым? Поясните, чем обусловлено такое изменение формулировки закона? В чем заключается физический смысл Периодического закона? Поясните причину периодического изменения свойств химических элементов. Как вы понимаете явление периодичности?

Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».

Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.

Периодический закон универсален для Вселенной: как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании».

В современном состоянии Периодическая система элементов состоит из 10 горизонтальных рядов (периодов) и 8 вертикальных столбцов (групп). Первые три ряда образуют три малых периода. Последующие периоды включают по два ряда. Кроме того, начиная с шестого, периоды включают дополнительные ряды лантаноидов (шестой период) и актиноидов (седьмой период).

По период наблюдается ослабление металлических свойств и усиление неметаллических. Конечный элемент периода представляет собой благородный газ. Каждый последующий период начинается со щелочного металла, т. е. по мере роста атомной массы элементов изменение химических свойств имеет периодический характер.

С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).

Периодические свойства химических элементов

В принципе, свойства химического элемента объединяют все без исключения его характеристики в состоянии свободных атомов или ионов, гидратированных или сольватированных, в состоянии простого вещества, а также формы и свойства образуемых им многочисленных соединений. Но обычно под свойствами химического элемента подразумевают, во-первых, свойства его свободных атомов и, во-вторых, свойства простого вещества. Большинство этих свойств проявляет явную периодическую зависимость от атомных номеров химических элементов. Среди этих свойств наиболее важными, имеющими особое значение при объяснении или предсказании химического поведения элементов и образуемых ими соединений являются:

Энергия ионизации атомов;

Энергия сродства атомов к электрону;

Электроотрицательность;

Атомные (и ионные) радиусы;

Энергия атомизации простых веществ

Степени окисления;

Окислительные потенциалы простых веществ.

Физический смысл периодического закона состоит в том, что периодическое изменение свойств элементов находится в полном соответствии с периодически возобновляющимися на все более высоких энергетических уровнях сходными электронными структурами атомов. С их закономерным изменением закономерно изменяются физические и химические свойства.

Физический смысл периодического закона стал понятен после создания теории строения атома.

Итак, физический смысл периодического закона состоит в том, что периодическое изменение свойств элементов находится в полном соответствии с периодически возобновляющимися на все более высоких энергетических уровнях сходными электронными структурами атомов. С их закономерным изменением закономерно изменяются физические и химические свойства элементов.

В чем состоит физический смысл периодического закона.

Этими выводами вскрывается физический смысл периодического закона Д. И. Менделеева, который оставался неясным в течение полувека после открытия этого закона.

Отсюда следует, что физический смысл периодического закона Д. И. Менделеева состоит в периодичности повторения сходных электронных конфигураций при возрастании главного квантового числа и объединении элементов по близости их электронного строения.

Теория строения атомов показала, что физический смысл периодического закона состоит в том, что при последовательном возрастании зарядов ядер периодически повторяются сходные валентные электронные структуры атомов.

Из всего изложенного ясно, что теория строения атома раскрыла физический смысл периодического закона Д. И. Менделеева и еще ярче выявила его значение как основы для дальнейшего развития химии, физики и ряда других наук.

Замена атомной массы зарядом ядра была первым шагом в раскрытии физического смысла периодического закона, Далее, было важно установить причины возникновения периодичности, характер периодической функции зависимости свойств от заряда ядра, объяснить величины периодов, число редкоземельных элементов и пр.

Для элементов-аналогов наблюдается одинаковое число электронов на одноименных оболочках при разных значениях главного квантового числа. Поэтому физический смысл Периодического закона заключается в периодическом изменении свойств элементов в результате периодически возобновляющихся сходных электронных оболочек атомов при последовательном возрастании значений главного квантового числа.

Для элементов - аналогов наблюдается одинаковое число электронов на одноименных орбиталях при разных значениях главного квантового числа. Поэтому физический смысл Периодического закона заключается в периодическом изменении свойств элементов в результате периодически возобновляющихся сходных электронных оболочек атомов при последовательном возрастании значений главного квантового числа.

Таким образом, при последовательном увеличении зарядов атомных ядер периодически повторяется конфигурация электронных оболочек и, как следствие, периодически повторяются химические свойства элементов. В этом заключается физический смысл периодического закона.

Периодический закон Д. И. Менделеева является основой современной химии. Изучение строения атомов вскрывает физический смысл периодического закона и объясняет закономерности изменения свойств элементов в периодах и в группах периодической системы. Знание строения атомов является необходимым для понимания причин образования химической связи. Природа химической связи в молекулах определяет свойства веществ. Поэтому данный раздел является одним из важнейших разделов общей химии.

естествознание периодический экосистема

Периодический закон – основной закон химии – был открыт в 1869 году Д.И. Менделеевым. В то время атом еще считался неделимым и ничего не было известно о его внутреннем строении.

Атомные массы (тогда – атомные веса ) и химические свойства элементов были положены в основу Периодического закона Д.И. Менделеева. Д.И. Менделеев, расположив 63 известных в то время элемента в порядке возрастания их атомных масс, получил естественный (природный) ряд химических элементов, где он отметил периодическую повторяемость химических свойств. Например, типичного неметалла фтор F повторялись у элементов хлор Сl, бром Br, йод I, свойства типичного металла литий Li – у элементов натрий Na и калий К и т.д.

Для некоторых элементов Д.И. Менделеевым не было обнаружено химических аналогов (у алюминия Al и кремния Si, например), в сиу того что в то время такие аналоги известны еще не были. В таблице им предназначались пустые места, но на основе периодической повторяемости ученый предсказал их химические свойства). После открытия соответствующих элементов предсказания Д.И. Менделеева полностью подтвердились (аналог алюминия – галлий Ga, аналог кремния – германий Ge ).

Периодический закон в формулировке Д.И. Менделеева представлен так: в периодической зависимости от величины атомных весов элементов находятся свойства простых тел, а также формы и свойства соединений элементов.

Современная формулировка Периодического закона Д.И. Менделеева звучит следующим образом: свойства элементов находятся в периодической зависимости от порядкового номера.

Периодический закон Д.И. Менделеева стал базой для создания ученым Периодической системы химических элементов . Она представлена 7 периодами и 8 группами.

Периодами называются горизонтальные ряды таблицы, которые делятся на малые и большие. 2 элемента (1-й период) или 8 элементов (2-й, 3-й периоды) находятся в малых периодах, а в больших периодах находятся 18 элементов (4-й, 5-й периоды) или 32 элемента (6-й период), 7-й период пока остается незавершенным. Каждый период с типичного металла начинается и заканчивается типичным неметаллом и благородным газом.

Группами элементов называются вертикальные столбцы. Каждая группа представлена двумя подгруппами – главной и побочной . Подгруппой называется совокупность элементов, которые являются полными химическими аналогами; часто элементы подгруппы имеют высшую степень окисления, соответствующую номеру группы. Например, высшая степень окисления (+ II) отвечает элементам подгруппы бериллия и цинка (главная и побочная подгруппы II группы), а элементам подгруппы азота и ванадия (V группа) отвечает высшая степень окисления (+ V).

Химические свойства элементов в главных подгруппах могут меняться от неметаллических до металлических (в главной подгруппе V группы азот – неметалл, а висмут – метал) – в широком диапазоне. Свойства элементов в побочных подгруппах меняются, но не столь резко; например, элементы побочной группы IV группы – цирконий, титан, гафний – очень похожи по своим свойствам (особенно цирконий и гафний ).

В Периодической системе в I группе (Li – Fr), II (Mg – Ra) и III (In, Tl) расположены типичные металлы. Неметаллы расположены в группах VII (F – At), VI (O – Te) , V (N – As) , IV (C, Si) и III (B). Некоторые элементы главных групп (Be, Al, Ge, Sb, Po ), а также многие элементы побочных групп могут проявлять и металлические, и неметаллические свойства. Это явление получило название амфотерности .

Для некоторых главных групп применяют групповые названия: VIII (Не – Rn) – благородные газы , VII (F – At) – галогены , IV (О – Ро) – халькогены , II (Са – Ra) – щелочноземельные металлы , I (Li – Fr) – щелочные металлы .

Форма Периодической системы, которую предложил Д.И. Менделеев, получила название короткопериодной , или классической . В современной химии все шире используется другая форма – длиннопериодная , в которой все периоды – малые и большие – вытянуты в длинные ряды, начинающиеся щелочным металлом и заканчивающиеся благородным газом.

Периодический закон Д.И. Менделеева и Периодическая система элементов Д.И. Менделеева стали основой современной химии.

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Все элементы обычно представляется в химии в виде периодической системы: располагаются строках (периоды и ряды) и столбцах (соответствуют группам) таблицы с учетом возрастания их атомных масс. Открытие периодического закона относится к 1869 году и бесспорно принадлежит русскому ученому химику — Дмитрию Ивановичу Менделееву. Хотя многие зарубежные источники рядом с его именем упоминают имя Юлиуас Лотар Мейера, который, по их утверждению, годом позже (но независимо) разработал подобную систему. Ключом к успеху многолетних усилий было осознание того, что предыдущие попытки других ученых потерпели неудачу, так как многие из химических элементов еще не были открыты, поэтому в своей таблице он оставил для них свободные места.

Периодический закон, отображающийся как таблица Менделеева, по горизонтали делится на семь периодов. Обозначения первого, второго и третьего периодов совпадают с такими же римскими цифрами рядов: I, II, III. Периоды четвертый, пятый и шестой делятся на четные и нечетные ряды, идентифицируются римскими цифрами: IV, V, VI, VII, VIII и IX. А седьмой период совпадает с X рядом. По вертикали в восемнадцати столбцах или колонках все элементы распределены по восьми группам. Каждая группа, с первой по седьмую, делится на две колонки, представляющие собой главную и побочную подгруппы. Восьмая группа состоит из четырех подгрупп. Кроме того, две ячейки с третьей группы — лантаном и актинием — скрывают ряды, называемые соответственно лантаноиды (с 58 по 71 номер) и актиноиды (с 90 по 103 номер).

В первом периоде всего два представителя: водород и гелий. Второй и третий включают по восемь химических элементов. Периоды четвертый, пятый и шестой являются длительными, так как в каждый входит по восемнадцать видимых элементов, они распределяются таким образом: в четных рядах содержится десять, а в нечетных всего восемь. Но если учитывать лантаноиды, то шестой период содержит тридцать два химических элемента, включая четырнадцать скрытых. Седьмой период также является длительным, он имеет восемнадцать, четыре из них видимые, а четырнадцать (актиноиды) являются скрытыми. Элементы нечетных рядов четвертого, пятого и шестого периодов относятся к побочным подгруппам (b), а четных рядов входят в главные подгруппы (a), наряду с теми, которые относятся к первому, второму, третьему и седьмому периодам.

Периодический закон устанавливает, что все элементы в пределах одной группы отличаются значительными сходствами друг с другом и заметно отличаются от тех, что входят в состав других групп. Например, в группу Ia, за исключением водорода, входят металлы с химической валентностью плюс 1, в то время как в группе VIIa, за исключением астата, все элементы являются неметаллами, которые в соединениях обычно имеют валентность минус 1. Сегодня периодический закон представляется не только таблицей. Математического выражения он не имеет, но существует в виде утверждения, что свойства любого химического элемента, а также свойства всех и сложных соединений, в состав которых он входит, имеют периодическую зависимость от величины заряда

Термин периодичность был предложен впервые Д. И. Менделеевым, несмотря на то, что и ранее были попытки ученых из разных стран каким-то образом классифицировать известные Но именно он заметил, что при расположении их в порядке увеличения атомных масс, свойство каждого восьмого элемента напоминают свойства первого. В 1869 году первый вариант таблицы (на тот момент было известно только 60 элементов) еще сильно отличался от современного вида, наглядно отображающего периодический закон. Со временем он претерпел определенные изменения, которые заключались в дополнении новыми, позже открытыми химическими элементами. Но это не только не разрушило представления о периодичности свойств химических атомов, которыми руководствовался но, каждое из них подтверждало закон, сформулированный нашим ученым.

Открытый русским ученым периодический закон и созданная на его основе стали надежным фундаментом современной химии. Благодаря чему Менделеев исправил у некоторых атомов их массы и предсказал существование в природе трех еще не открытых элементов, что позже нашло экспериментальное подтверждение, и были открыты галлий, скандий и германий. Все это привело к всеобщему признанию периодической системы. Значение периодического закона переоценить невозможно, так как это открытие имело огромное значение в развитии химии.

ЗАНЯТИЕ 5 10-й класс (первый год обучения)

Периодический закон и система химических элементов д.И.Менделеева План

1. История открытия периодического закона и системы химических элементов Д.И.Менделеева.

2. Периодический закон в формулировке Д.И.Менделеева.

3. Современная формулировка периодического закона.

4. Значение периодического закона и системы химических элементов Д.И.Менделеева.

5. Периодическая система химических элементов – графическое отражение периодического закона. Строение периодической системы: периоды, группы, подгруппы.

6. Зависимость свойств химических элементов от строения их атомов.

1 марта (по новому стилю) 1869 г. считается датой открытия одного из важнейших законов химии – периодического закона. В середине XIX в. было известно 63 химических элемента, и возникла потребность в их классификации. Попытки такой классификации предпринимали многие ученые (У.Одлинг и Дж.А.Р.Ньюлендс, Ж.Б.А.Дюма и А.Э.Шанкуртуа, И.В.Деберейнер и Л.Ю.Мейер), но лишь Д.И.Менделееву удалось увидеть определенную закономерность, расположив элементы в порядке возрастания их атомных масс. Эта закономерность имеет периодический характер, поэтому Менделеев сформулировал открытый им закон следующим образом: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины атомной массы элемента.

В системе химических элементов, предложенной Менделеевым, был ряд противоречий, которые сам автор периодического закона устранить не смог (аргон–калий, теллур–йод, кобальт–никель). Лишь в начале XX в., после открытия строения атома, был объяснен физический смысл периодического закона и появилась его современная формулировка: свойства элементов, а также формы и свойства их соединений находятся в периодической зависимости от величины заряда ядер их атомов.

Такую формулировку подтверждает и наличие изотопов, химические свойства которых одинаковы, хотя атомные массы различны.

Периодический закон – один из основных законов природы и важнейший закон химии. С открытия этого закона начинается современный этап развития химической науки. Хотя физический смысл периодического закона стал понятен только после создания теории строения атома, сама эта теория развивалась на основе периодического закона и системы химических элементов. Закон помогает ученым создавать новые химические элементы и новые соединения элементов, получать вещества с нужными свойствами. Сам Менделеев предсказал существование 12 элементов, которые в то время еще не были открыты, и определил их положение в периодической системе. Свойства трех из этих элементов он подробно описал, и при жизни ученого эти элементы были открыты («экабор» – галлий, «экаалюминий» – скандий, «экасилиций» – германий). Кроме того, периодический закон имеет большое философское значение, подтверждая наиболее общие законы развития природы.

Графическим отражением периодического закона является периодическая система химических элементов Менделеева. Существует несколько форм периодической системы (короткая, длинная, лестничная (предложена Н.Бором), спиралеобразная). В России наибольшее распространение получила короткая форма. Современная периодическая система содержит 110 открытых на сегодняшний день химических элементов, каждый из которых занимает определенное место, имеет свой порядковый номер и название. В таблице выделяют горизонтальные ряды – периоды (1–3 – малые, состоят из одного ряда; 4–6 – большие, состоят из двух рядов; 7-й период – незавершенный). Кроме периодов выделяют вертикальные ряды – группы, каждая из которых подразделяется на две подгруппы (главную – а и побочную – б). Побочные подгруппы содержат элементы только больших периодов, все они проявляют металлические свойства. Элементы одной подгруппы имеют одинаковое строение внешних электронных оболочек, что обусловливает их схожие химические свойства.

Период – это последовательность элементов (от щелочного металла до инертного газа), атомы которых имеют одинаковое число энергетических уровней, равное номеру периода.

Главная подгруппа – это вертикальный ряд элементов, атомы которых имеют одинаковое число электронов на внешнем энергетическом уровне. Это число равно номеру группы (кроме водорода и гелия).

Все элементы в периодической системе разделяются на 4 электронных семейства (s -, p -, d -, f -элементы) в зависимости от того, какой подуровень в атоме элемента заполняется последним.

Побочная подгруппа – это вертикальный ряд d -элементов, имеющих одинаковое суммарное число электронов на d -подуровне предвнешнего слоя и s -подуровне внешнего слоя. Это число обычно равно номеру группы.

Важнейшими свойствами химических элементов являются металличность и неметалличность.

Металличность – это способность атомов химического элемента отдавать электроны. Количественной характеристикой металличности является энергия ионизации.

Энергия ионизации атома – это количество энергии, которое необходимо для отрыва электрона от атома элемента, т. е. для превращения атома в катион. Чем меньше энергия ионизации, тем легче атом отдает электрон, тем сильнее металлические свойства элемента.

Неметалличность – это способность атомов химического элемента присоединять электроны. Количественной характеристикой неметалличности является сродство к электрону.

Сродство к электрону – это энергия, которая выделяется при присоединении электрона к нейтральному атому, т. е. при превращении атома в анион. Чем больше сродство к электрону, тем легче атом присоединяет электрон, тем сильнее неметаллические свойства элемента.

Универсальной характеристикой металличности и неметалличности является электроотрицательность (ЭО) элемента.

ЭО элемента характеризует способность его атомов притягивать к себе электроны, которые участвуют в образовании химических связей с другими атомами в молекуле.

Чем больше металличность, тем меньше ЭО.

Чем больше неметалличность, тем больше ЭО.

При определении значений относительной ЭО по шкале Полинга за единицу принята ЭО атома лития (ЭО(Li) = 1); самым электроотрицательным элементом является фтор (ЭО(F) = 4).

В малых периодах от щелочного металла к инертному газу:

Заряд ядер атомов увеличивается;

Число энергетических уровней не изменяется;

Число электронов на внешнем уровне увеличивается от 1 до 8;

Радиус атомов уменьшается;

Прочность связи электронов внешнего слоя с ядром увеличивается;

Энергия ионизации увеличивается;

Сродство к электрону увеличивается;

ЭО увеличивается;

Металличность элементов уменьшается;

Неметалличность элементов увеличивается.

Все d -элементы данного периода похожи по своим свойствам – все они являются металлами, имеют мало различающиеся радиусы атомов и значения ЭО, поскольку содержат одинаковое число электронов на внешнем уровне (например, в 4-м периоде – кроме Cr и Cu).

В главных подгруппах сверху вниз:

Число энергетических уровней в атоме увеличивается;

Число электронов на внешнем уровне одинаково;

Радиус атомов увеличивается;

Прочность связи электронов внешнего уровня с ядром уменьшается;

Энергия ионизации уменьшается;

Сродство к электрону уменьшается;

ЭО уменьшается;

Металличность элементов увеличивается;

Неметалличность элементов уменьшается.