Числовые и алгебраические выражения. Преобразование выражений. Калькулятор онлайн.Упрощение многочлена.Умножение многочленов


Важные замечания!
1. Если вместо формул ты видишь абракадабру, почисти кэш. Как это сделать в твоем браузере написано здесь:
2. Прежде чем на начнешь читать статью, обрати внимание на наш навигатор по самым полезным ресурса для

Часто мы слышим эту неприятную фразу: «упростите выражение». Обычно при этом перед нами какое-то страшилище типа этого:

«Да куда уж проще» - говорим мы, но такой ответ обычно не прокатывает.

Сейчас я научу тебя не бояться никаких подобных задач.

Более того, в конце занятия ты сам упростишь этот пример до (всего лишь!) обычного числа (да-да, к черту эти буквы).

Но прежде чем приступить к этому занятию, тебе необходимо уметь обращаться с дробями и раскладывать многочлены на множители.

Поэтому, если ты этого не сделал раньше, обязательно освой темы « » и « ».

Прочитал? Если да, то теперь ты готов.

Let"s go! (Поехали!)

Базовые операции упрощения выражений

Сейчас разберем основные приемы, которые используются при упрощении выражений.

Самый простой из них - это

1. Приведение подобных

Что такое подобные? Ты проходил это в 7 классе, как только впервые в математике появились буквы вместо чисел.

Подобные - это слагаемые (одночлены) с одинаковой буквенной частью.

Например, в сумме подобные слагаемые - это и.

Вспомнил?

Привести подобные - значит сложить несколько подобных слагаемых друг с другом и получить одно слагаемое.

А как же нам сложить друг с другом буквы? - спросишь ты.

Это очень легко понять, если представить, что буквы - это какие-то предметы.

Например, буква - это стул. Тогда чему равно выражение?

Два стула плюс три стула, сколько будет? Правильно, стульев: .

А теперь попробуй такое выражение: .

Чтобы не запутаться, пусть разные буквы обозначают разны предметы.

Например, - это (как обычно) стул, а - это стол.

стула стола стул столов стульев стульев столов

Числа, на которые умножаются буквы в таких слагаемых называются коэффициентами .

Например, в одночлене коэффициент равен. А в он равен.

Итак, правило приведения подобных:

Примеры:

Приведите подобные:

Ответы:

2. (и подобны, так как, следовательно у этих слагаемых одинаковая буквенная часть).

2. Разложение на множители

Это обычно самая важная часть в упрощении выражений.

После того как ты привел подобные, чаще всего полученное выражение нужно разложить на множители , то есть представить в виде произведения.

Особенно это важно в дробях: ведь чтобы можно было сократить дробь, числитель и знаменатель должны быть представлены в виде произведения.

Подробно способы разложения выражений на множители ты проходил в теме « », поэтому здесь тебе остается только вспомнить выученное.

Для этого реши несколько примеров (нужно разложить на множители)

Примеры:

Решения:

3. Сокращение дроби.

Ну что может быть приятнее, чем зачеркнуть часть числителя и знаменателя, и выбросить их из своей жизни?

В этом вся прелесть сокращения.

Все просто:

Если числитель и знаменатель содержат одинаковые множители, их можно сократить, то есть убрать из дроби.

Это правило вытекает из основного свойства дроби:

То есть суть операции сокращения в том, что числитель и знаменатель дроби делим на одно и то же число (или на одно и то же выражение).

Чтобы сократить дробь, нужно:

1) числитель и знаменатель разложить на множители

2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

Примеры:

Принцип, я думаю, понятен?

Хочу обратить внимание на одну типичную ошибку при сокращении. Хоть эта тема и простая, но очень многие делают все неправильно, не понимая, что сократить - это значит поделить числитель и знаменатель на одно и то же число.

Никаких сокращений, если в числителе или знаменателе сумма.

Например: надо упростить.

Некоторые делают так: , что абсолютно неверно.

Еще пример: сократить.

«Самые умные» сделают так:

Скажи мне, что здесь неверно? Казалось бы: - это множитель, значит можно сокращать.

Но нет: - это множитель только одного слагаемого в числителе, но сам числитель в целом на множители не разложен.

Вот другой пример: .

Это выражение разложено на множители, значит, можно сократить, то есть поделить числитель и знаменатель на, а потом и на:

Можно и сразу поделить на:

Чтобы не допускать подобных ошибок, запомни легкий способ, как определить, разложено ли выражение на множители:

Арифметическое действие, которое выполняется последним при подсчете значения выражения, является «главным».

То есть, если ты подставишь вместо букв какие-нибудь (любые) числа, и попытаешься вычислить значение выражения, то если последним действием будет умножение - значит, у нас произведение (выражение разложено на множители).

Если последним действием будет сложение или вычитание, это значит, что выражение не разложено на множители (а значит, сокращать нельзя).

Для закрепления реши самостоятельно несколько примеров:

Примеры:

Решения:

4. Сложение и вычитание дробей. Приведение дробей к общему знаменателю.

Сложение и вычитание обычных дробей - операция хорошо знакомая: ищем общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители.

Давай вспомним:

Ответы:

1. Знаменатели и - взаимно простые, то есть у них нет общих множителей. Следовательно, НОК этих чисел равен их произведению. Это и будет общий знаменатель:

2. Здесь общий знаменатель равен:

3. Здесь первым делом смешанные дроби превращаем в неправильные, а дальше - по привычной схеме:

Совсем другое дело, если дроби содержат буквы, например:

Начнем с простого:

a) Знаменатели не содержат букв

Здесь все то же, что и с обычными числовыми дробями: находим общий знаменатель, домножаем каждую дробь на недостающий множитель и складываем/вычитаем числители:

теперь в числителе можно приводить подобные, если есть, и раскладывать на множители:

Попробуй сам:

Ответы:

b) Знаменатели содержат буквы

Давай вспомним принцип нахождения общего знаменателя без букв:

· в первую очередь мы определяем общие множители;

· затем выписываем все общие множители по одному разу;

· и домножаем их на все остальные множители, не общие.

Чтобы определить общие множители знаменателей, сперва разложим их на простые множители:

Подчеркнем общие множители:

Теперь выпишем общие множители по одному разу и допишем к ним все необщие (не подчеркнутые) множители:

Это и есть общий знаменатель.

Вернемся к буквам. Знаменатели приводятся по точно такой же схеме:

· раскладываем знаменатели на множители;

· определяем общие (одинаковые) множители;

· выписываем все общие множители по одному разу;

· домножаем их на все остальные множители, не общие.

Итак, по порядку:

1) раскладываем знаменатели на множители:

2) определяем общие (одинаковые) множители:

3) выписываем все общие множители по одному разу и домножаем их на все остальные (неподчеркнутые) множители:

Значит, общий знаменатель здесь. Первую дробь нужно домножить на, вторую - на:

Кстати, есть одна хитрость:

Например: .

Видим в знаменателях одни и те же множители, только все с разными показателями. В общий знаменатель пойдут:

в степени

в степени

в степени

в степени.

Усложним задание:

Как сделать у дробей одинаковый знаменатель?

Давай вспомним основное свойство дроби:

Нигде не сказано, что из числителя и знаменателя дроби можно вычитать (или прибавлять) одно и то же число. Потому что это неверно!

Убедись сам: возьми любую дробь, например, и прибавь к числителю и знаменателю какое-нибудь число, например, . Что поучилось?

Итак, очередное незыблемое правило:

Когда приводишь дроби к общему знаменателю, пользуйся только операцией умножения!

Но на что же надо домножить, чтобы получить?

Вот на и домножай. А домножай на:

Выражения, которые невозможно разложить на множители будем называть «элементарными множителями».

Например, - это элементарный множитель. - тоже. А вот - нет: он раскладывается на множители.

Что скажешь насчет выражения? Оно элементарное?

Нет, поскольку его можно разложить на множители:

(о разложении на множители ты уже читал в теме « »).

Так вот, элементарные множители, на которые ты раскладываешь выражение с буквами - это аналог простых множителей, на которые ты раскладываешь числа. И поступать с ними будем таким же образом.

Видим, что в обоих знаменателях есть множитель. Он пойдет в общий знаменатель в степени (помнишь, почему?).

Множитель - элементарный, и он у них не общий, значит первую дробь на него придется просто домножить:

Еще пример:

Решение:

Предже, чем в панике перемножать эти знаменатели, надо подумать, как их разложить на множители? Оба они представляют :

Отлично! Тогда:

Еще пример:

Решение:

Как обычно, разложим знаменатели на множители. В первом знаменателе просто выносим за скобки; во втором - разность квадратов:

Казалось бы, общих множителей нет. Но если присмотреться, то и так похожи… И правда:

Так и напишем:

То есть получилось так: внутри скобки мы поменяли местами слагаемые, и при этом знак перед дробью поменялся на противоположный. Возьми на заметку, так поступать придется часто.

Теперь приводим к общему знаменателю:

Усвоил? Сейчас проверим.

Задачи для самостоятельного решения:

Ответы:

5. Умножение и деление дробей.

Ну что же, самое сложное теперь позади. А впереди у нас самое простое, но при этом самое важное:

Порядок действий

Какой порядок действий при подсчете числового выражения? Вспомни, посчитав значение такого выражения:

Посчитал?

Должно получиться.

Итак, напоминаю.

Первым делом вычисляется степень.

Вторым - умножение и деление. Если умножений и делений одновременно несколько, делать их можно в любом порядке.

И напоследок выполняем сложение и вычитание. Опять же, в любом порядке.

Но: выражение в скобках вычисляется вне очереди!

Если несколько скобок умножаются или делятся друг на друга, вычисляем сначала выражение в каждой из скобок, а потом умножаем или дели их.

А если внутри скобок есть еще одни скобки? Ну давай подумаем: внутри скобок написано какое-то выражение. А при вычислении выражения в первую очередь надо делать что? Правильно, вычислять скобки. Ну вот и разобрались: сначала вычисляем внутренние скобки, потом все остальное.

Итак, порядок действий для выражения выше такой (красным выделено текущее дествие, то есть действие, которое выполняю прямо сейчас):

Хорошо, это все просто.

Но это ведь не то же самое, что выражение с буквами?

Нет, это то же самое! Только вместо арифметических действий надо делать алгебраические, то есть действия, описанные в предыдущем разделе: приведение подобных , сложение дробей, сокращение дробей и так далее. Единственным отличием будет действие разложения многочленов на множители (его мы часто применяем при работе с дробями). Чаще всего для разложения на множители нужно применять я или просто выносить общий множитель за скобки.

Обычно наша цель - представить выражение в виде произведения или частного.

Например:

Упростим выражение.

1) Первым упрощаем выражение в скобках. Там у нас разность дробей, а наша цель - представить ее как произведение или частное. Значит, приводим дроби к общему знаменателю и складываем:

Больше это выражение упростить невозможно, все множители здесь - элементарные (ты еще помнишь, что это значит?).

2) Получаем:

Умножение дробей: что может быть проще.

3) Теперь можно и сократить:

Ну вот и все. Ничего сложного, правда?

Еще пример:

Упрости выражение.

Сначала попробуй решить сам, и уж только потом посмотри решение.

Решение:

Перво-наперво определим порядок действий.

Сначала выполним сложение дробей в скобках, получится вместо двух дробей одна.

Потом выполним деление дробей. Ну и результат сложим с последней дробью.

Схематически пронумерую действия:

Напоследок дам тебе два полезных совета:

1. Если есть подобные, их надо немедленно привести. В какой бы момент у нас ни образовались подобные, их желательно приводить сразу.

2. То же самое касается сокращения дробей: как только появляется возможность сократить, ей надо воспользоваться. Исключение составляют дроби, которые ты складываешь или вычитаешь: если у них сейчас одинаковые знаменатели, то сокращение нужно оставить на потом.

Вот тебе задачи для самостоятельного решения:

И обещанная в самом начале:

Ответы:

Решения (краткие):

Если ты справился хотя бы с первыми тремя примерами, то тему ты, считай, освоил.

Теперь вперед к обучению!

ПРЕОБРАЗОВАНИЕ ВЫРАЖЕНИЙ. КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Базовые операции упрощения:

  • Приведение подобных : чтобы сложить (привести) подобные слагаемые, надо сложить их коэффициенты и приписать буквенную часть.
  • Разложение на множители: вынесение общего множителя за скобки, применение и т.д.
  • Сокращение дроби : числитель и знаменатель дроби можно умножать или делить на одно и то же ненулевое число, от чего величина дроби не изменяется.
    1) числитель и знаменатель разложить на множители
    2) если в числителе и знаменателе есть общие множители , их можно вычеркнуть.

    ВАЖНО: сокращать можно только множители!

  • Сложение и вычитание дробей:
    ;
  • Умножение и деление дробей:
    ;

Ну вот, тема закончена. Если ты читаешь эти строки, значит ты очень крут.

Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, значит ты попал в эти 5%!

Теперь самое главное.

Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.

Проблема в том, что этого может не хватить…

Для чего?

Для успешной сдачи ЕГЭ, для поступления в институт на бюджет и, САМОЕ ГЛАВНОЕ, для жизни.

Я не буду тебя ни в чем убеждать, просто скажу одну вещь…

Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.

Но и это - не главное.

Главное то, что они БОЛЕЕ СЧАСТЛИВЫ (есть такие исследования). Возможно потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю...

Но, думай сам...

Что нужно, чтобы быть наверняка лучше других на ЕГЭ и быть в конечном итоге… более счастливым?

НАБИТЬ РУКУ, РЕШАЯ ЗАДАЧИ ПО ЭТОЙ ТЕМЕ.

На экзамене у тебя не будут спрашивать теорию.

Тебе нужно будет решать задачи на время .

И, если ты не решал их (МНОГО!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь.

Это как в спорте - нужно много раз повторить, чтобы выиграть наверняка.

Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!

Можно воспользоваться нашими задачами (не обязательно) и мы их, конечно, рекомендуем.

Для того, чтобы набить руку с помощью наших задач нужно помочь продлить жизнь учебнику YouClever, который ты сейчас читаешь.

Как? Есть два варианта:

  1. Открой доступ ко всем скрытым задачам в этой статье -
  2. Открой доступ ко всем скрытым задачам во всех 99-ти статьях учебника - Купить учебник - 499 руб

Да, у нас в учебнике 99 таких статей и доступ для всех задач и всех скрытых текстов в них можно открыть сразу.

Доступ ко всем скрытым задачам предоставляется на ВСЕ время существования сайта.

И в заключение...

Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.

“Понял” и “Умею решать” - это совершенно разные навыки. Тебе нужны оба.

Найди задачи и решай!

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

Тема № 2.

Преобразование алгебраических выражений

I . Теоретический материал

Основные понятия

    Алгебраическое выражение: целое, дробное, рациональное, иррациональное.

    Область определения, допустимые значения выражения.

    Значение алгебраического выражения.

    Одночлен, многочлен.

    Формулы сокращенного умножения.

    Разложение на множители, вынесение за скобки общего множителя.

    Основное свойство дроби.

    Степень, свойства степени.

    Корtym, свойства корней.

    Преобразование рационального и иррационального выражений.

Выражение, составленное из чисел и переменных с помощью знаков сложения, вычитания, умножения, деления, возведения в рациональную степень, извлечения корня и с помощью скобок называется алгебраическим.

Например : ;
;
;

;
;
;
.

Если алгебраическое выражение не содержит деления на переменные и извлечения корня из переменных (в частности, возведения в степень с дробным показателем), то оно называется целым.

Например :
;
;
.

Если алгебраическое выражение составлено из чисел и переменных с помощью действий сложения, вычитания, умножения, возведения в степень с натуральным показателем и деления, причем используется деление на выражения с переменными, то оно называется дробным .

Например :
;
.

Целые и дробные выражения называются рациональными выражениями.

Например : ;
;

.

Если в алгебраическом выражении используется извлечение корня из переменных (или возведение переменных в дробную степень), то такое алгебраическое выражение называется иррациональным.

Например :
;
.

Значения переменных, при которых алгебраическое выражение имеет смысл, называются допустимыми значениями переменных .

Множество всех допустимых значений переменных называется областью определения .

Областью определения целого алгебраического выражения является множество действительных чисел.

Областью определения дробного алгебраического выражения является множество всех действительных чисел, кроме тех, которые обращают знаменатель в нуль.

Например : имеет смысл при
;

имеет смысл при
, то есть при
.

Областью определения иррационального алгебраического выражения является множество всех действительных чисел, кроме тех, которые обращают в отрицательное число выражение, стоящее под знаком корня четной степени или под знаком возведения в дробную степень.

Например :
имеет смысл при
;

имеет смысл при
, то есть при
.

Числовое значение, полученное при подстановке в алгебраическое выражение допустимых значений переменных, называется значением алгебраического выражения .

Например : выражение
при
,
принимает значение
.

Алгебраическое выражение, содержащее только числа, натуральные степени переменных и их произведения, называется одночленом.

Например :
;
;
.

Одночлен, записанный в виде произведения числового множителя, стоящего на первом месте, и степеней различных переменных, приведен к стандартному виду .

Например :
;
.

Числовой множитель стандартной записи одночлена называется коэффициентом одночлена . Сумма показателей степеней всех переменных называется степенью одночлена .

При умножении одночлена на одночлен и при возведении одночлена в натуральную степень получаем одночлен, который нужно привести к стандартному виду.

Сумма одночленов называется многочленом .

Например :
; ;
.

Если все члены многочлена записаны в стандартном виде и выполнено приведение подобных членов, то полученный многочлен стандартного вида .

Например : .

Если в многочлене только одна переменная, то наибольший показатель степени этой переменной называется степенью многочлена .

Например : многочлен имеет пятую степень.

Значение переменной, при которой значение многочлена равно нулю, называется корнем многочлена .

Например : корнями многочлена
являются числа 1,5 и 2.

Формулы сокращенного умножения

Частные случаи использования формул сокращенного умножения

Разность квадратов:
или

Квадрат суммы:
или

Квадрат разности:
или

Сумма кубов:
или

Разность кубов:
или

Куб суммы:
или

Куб разности:
или

Преобразование многочлена в произведение нескольких сомножителей (многочленов или одночленов) называется разложением многочлена на множители.

Например: .

Способы разложения многочлена на множители


Например : .

    Использование формул сокращенного умножения .

Например : .

    Способ группировки . Переместительный и сочетательный законы позволяют группировать члены многочлена различными способами. Один из способов приводит к тому, что в скобках получается одинаковое выражение, которое в свою очередь выносится за скобки.

Например: .

Любое дробное алгебраическое выражение можно записать в виде частного двух рациональных выражений с переменной в знаменателе.

Например :
.

Дробь, у которой числитель и знаменатель являются рациональными выражениями и в знаменателе есть переменная, называется рациональной дробью .

Например :
;
;
.

Если числитель и знаменатель рациональной дроби умножить или разделить на одно и то же отличное от нуля число, одночлен или многочлен, то значение дроби не изменится. Данное выражение называется основным свойством дроби:

.

Действие деления числителя и знаменателя дроби на одно и то же число, называется сокращением дроби :

.

Например :
;
.

Произведение n множителей, каждый из которых равен а, где а – произвольное алгебраическое выражение или действительное число, а n натуральное число, называется степенью а :

.

Алгебраическое выражение а называется основанием степени , число
n показателем .

Например :
.

Полагают по определению, что для любого а , не равного нулю:

и
.

Если
, то
.

Свойства степени

1.
.

2.
.

3.
.

4.
.

5.
.

Если ,
, то выражение, n -я степень которого равна а , называется корнем n -й степени из а . Его принято обозначать
. При этом а называется подкоренным выражением , n называется показателем корня .

Например :
;
;
.

Свойства корня n -й степени из а

1.
.

2.
,
.

3.
.

4.
.

5.
.

Обобщая понятие степени и корня, получают понятие степени с рациональным показателем:

.

В частности,
.

Действия, производимые с корнями

Например : .

II . Практический материал

Примеры выполнения заданий

Пример 1 . Найдите значение дроби
.

Ответ: .

Пример 2 . Упростите выражение
.

Преобразуем выражение в первых скобках:





, если
.

Преобразуем выражение во вторых скобках:



.

Разделим результат из первой скобки на результат из второй скобки:

Ответ:

Пример 3 . Упростите выражение:







.

Пример 4 . Упростите выражение .

Преобразуем первую дробь:




.

Преобразуем вторую дробь:




.

В результате получим:
.

Пример 5. Упростите выражение
.

Решение. Выполним решение по действиям:

1)
;

2)
;

3)
;

6)
;

Ответ:
.

Пример 6. Докажите тождество
.

1)
;

2)
;

Пример 7. Упростите выражение:

.

Решение. Выполняем по действиям:

;

2)
.

Пример 8. Докажите тождество
.

Решение. Выполняем по действиям:

1)
;

2)

;

3)
.

Задания для самостоятельной работы

1. Упростите выражение:

а)
;

б)
;

2. Разложите на множители:

а)
;

б)
;.Документ

Тема № 5.1. Тригонометрические уравнения I. Теоретический материал Основные понятия Тригонометрическое уравнение... с помощью различных алгебраических и тригонометрических формул и преобразований . II. Практический материал Примеры выполнения заданий...

  • Теоретический материал для групп экстерната и сессионников оглавление урок 1 информатика урок 2 информация

    Урок

    Теоретический материал для... , преобразования , передачи и использования. Сведения - это знания, выраженные ... и накопленной ранее, тем самым, способствуя поступательному... их истинности с помощью алгебраических методов. Высказывания и высказывательные...

  • Тема «Разработка программы курса по выбору в рамках предпрофильной подготовки» Выполнила

    Документ

    ... Теоретическое обоснование проекта Июнь-август 2005 г. 3. Отбор материала ... показывается применение определения модуля при преобразовании алгебраических выражений . Модуль в уравнениях: - ... мотивацию ученика, способствуя тем самым, внутрипрофильной...

  • Учебно-методическое пособие

    ... Тема 1. Тождественные преобразования алгебраических выражений Тема 2. Алгебраические теоретический материал

  • И к кондаурова избранные главы теории и методики обучения математике дополнительное математическое образование школьников

    Учебно-методическое пособие

    ... Тема 1. Тождественные преобразования алгебраических выражений (в том числе с использованием подстановок, понятия модуля числа). Тема 2. Алгебраические ... педагогов. Дистанционные лекции – это теоретический материал , который может быть представлен в...

  • Основные свойства сложения и умножения чисел.

    Переместительное свойство сложения: от перестановки слагаемых значение суммы не меняется. Для любых чисел a и b верно равенство

    Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего. Для любых чисел a, b и c верно равенство

    Переместительное свойство умножения: от перестановки множителей значение произведения не изменяется. Для любых чисел а, b и c верно равенство

    Сочетательное свойство умножения: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего.

    Для любых чисел а, b и c верно равенство

    Распределительное свойство: чтобы умножить число на сумму, можно умножить это число на каждое слагаемое и сложить полученные результаты. Для любых чисел a, b и c верно равенство

    Из переместительного и сочетательного свойств сложения следует: в любой сумме можно как угодно переставлять слагаемые и произвольным образом объединять их в группы.

    Пример 1 Вычислим сумму 1,23+13,5+4,27.

    Для этого удобно объединить первое слагаемое с третьим. Получим:

    1,23+13,5+4,27=(1,23+4,27)+13,5=5,5+13,5=19.

    Из переместительного и сочетательного свойств умножения следует: в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.

    Пример 2 Найдём значение произведения 1,8·0,25·64·0,5.

    Объединив первый множитель с четвёртым, а второй с третьим, будем иметь:

    1,8·0,25·64·0,5=(1,8·0,5)·(0,25·64)=0,9·16=14,4.

    Распределительное свойство справедливо и в том случае, когда число умножается на сумму трёх и более слагаемых.

    Например, для любых чисел a, b, c и d верно равенство

    a(b+c+d)=ab+ac+ad.

    Мы знаем, что вычитание можно заменить сложением, прибавив к уменьшаемому число, противоположное вычитаемому:

    Это позволяет числовое выражение вида a-b считать суммой чисел a и -b, числовое выражение вида a+b-c-d считать суммой чисел a, b, -c, -d и т. п. Рассмотренные свойства действий справедливы и для таких сумм.

    Пример 3 Найдём значение выражения 3,27-6,5-2,5+1,73.

    Это выражение является суммой чисел 3,27, -6,5, -2,5 и 1,73. Применив свойства сложения, получим: 3,27-6,5-2,5+1,73=(3,27+1,73)+(-6,5-2,5)=5+(-9) =-4.

    Пример 4 Вычислим произведение 36·().

    Множитель можно рассматривать как сумму чисел и -. Используя распределительное свойство умножения, получим:

    36()=36·-36·=9-10=-1.

    Тождества

    Определение. Два выражения, соответственные значения которых равны при любых значениях переменных, называются тождественно равными.

    Определение. Равенство, верное при любых значениях переменных, называется тождеством.

    Найдём значения выражений 3(x+y) и 3x+3y при x=5, y=4:

    3(x+y)=3(5+4)=3·9=27,

    3x+3y=3·5+3·4=15+12=27.

    Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных соответственные значения выражений 3(x+y) и 3x+3y равны.

    Рассмотрим теперь выражения 2x+y и 2xy. При x=1, y=2 они принимают равные значения:

    Однако можно указать такие значения x и y, при которых значения этих выражений не равны. Например, если x=3, y=4, то

    Выражения 3(x+y) и 3x+3y являются тождественно равными, а выражения 2x+y и 2xy не являются тождественно равными.

    Равенство 3(x+y)=x+3y, верное при любых значениях x и y, является тождеством.

    Тождествами считают и верные числовые равенства.

    Так, тождествами являются равенства, выражающие основные свойства действий над числами:

    a+b=b+a, (a+b)+c=a+(b+c),

    ab=ba, (ab)c=a(bc), a(b+c)=ab+ac.

    Можно привести и другие примеры тождеств:

    a+0=a, a+(-a)=0, a-b=a+(-b),

    a·1=a, a·(-b)=-ab, (-a)(-b)=ab.

    Тождественные преобразования выражений

    Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения.

    Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

    Чтобы найти значение выражения xy-xz при заданных значениях x, y, z, надо выполнить три действия. Например, при x=2,3, y=0,8, z=0,2 получаем:

    xy-xz=2,3·0,8-2,3·0,2=1,84-0,46=1,38.

    Этот результат можно получить, выполнив лишь два действия, если воспользоваться выражением x(y-z), тождественно равным выражению xy-xz:

    xy-xz=2,3(0,8-0,2)=2,3·0,6=1,38.

    Мы упростили вычисления, заменив выражение xy-xz тождественно равным выражением x(y-z).

    Тождественные преобразования выражений широко применяются при вычислении значений выражений и решении других задач. Некоторые тождественные преобразования уже приходилось выполнять, например, приведение подобных слагаемых, раскрытие скобок. Напомним правила выполнения этих преобразований:

    чтобы привести подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть;

    если перед скобками стоит знак "плюс", то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки;

    если перед скобками стоит знак "минус", то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки.

    Пример 1 Приведём подобные слагаемые в сумме 5x+2x-3x.

    Воспользуемся правилом приведения подобных слагаемых:

    5x+2x-3x=(5+2-3)x=4x.

    Это преобразование основано на распределительном свойстве умножения.

    Пример 2 Раскроем скобки в выражении 2a+(b-3c).

    Применив правило раскрытия скобок, перед которыми стоит знак "плюс":

    2a+(b-3c)=2a+b-3c.

    Проведённое преобразование основано на сочетательном свойстве сложения.

    Пример 3 Раскроем скобки в выражении a-(4b-c).

    Воспользуемся правилом раскрытия скобок, перед которыми стоит знак "минус":

    a-(4b-c)=a-4b+c.

    Выполненное преобразование основано на распределительном свойстве умножения и сочетательном свойстве сложения. Покажем это. Представим в данном выражении второе слагаемое -(4b-c) в виде произведения (-1)(4b-c):

    a-(4b-c)=a+(-1)(4b-c).

    Применив указанные свойства действий, получим:

    a-(4b-c)=a+(-1)(4b-c)=a+(-4b+c)=a-4b+c.

    I. Выражения, в которых наряду с буквами могут быть использованы числа, знаки арифметических действий и скобки, называются алгебраическими выражениями.

    Примеры алгебраических выражений:

    2m -n; 3· (2a + b); 0,24x; 0,3a -b · (4a + 2b); a 2 – 2ab;

    Так как букву в алгебраическом выражении можно заменить какими то различными числами, то букву называют переменной, а само алгебраическое выражение — выражением с переменной.

    II. Если в алгебраическом выражении буквы (переменные) заменить их значениями и выполнить указанные действия, то полученное в результате число называется значением алгебраического выражения.

    Примеры. Найти значение выражения:

    1) a + 2b -c при a = -2; b = 10; c = -3,5.

    2) |x| + |y| -|z| при x = -8; y = -5; z = 6.

    Решение .

    1) a + 2b -c при a = -2; b = 10; c = -3,5. Вместо переменных подставим их значения. Получим:

    — 2+ 2 · 10- (-3,5) = -2 + 20 +3,5 = 18 + 3,5 = 21,5.

    2) |x| + |y| -|z| при x = -8; y = -5; z = 6. Подставляем указанные значения. Помним, что модуль отрицательного числа равен противоположному ему числу, а модуль положительного числа равен самому этому числу. Получаем:

    |-8| + |-5| -|6| = 8 + 5 -6 = 7.

    III. Значения буквы (переменной), при которых алгебраическое выражение имеет смысл, называют допустимыми значениями буквы (переменной).

    Примеры. При каких значениях переменной выражение не имеет смысла?

    Решение. Мы знаем, что на нуль делить нельзя, поэтому, каждое из данных выражений не будет иметь смысла при том значении буквы (переменной), которая обращает знаменатель дроби в нуль!

    В примере 1) это значение а = 0. Действительно, если вместо а подставить 0, то нужно будет число 6 делить на 0, а этого делать нельзя. Ответ: выражение 1) не имеет смысла при а = 0.

    В примере 2) знаменатель х — 4 = 0 при х = 4, следовательно, это значение х = 4 и нельзя брать. Ответ: выражение 2) не имеет смысла при х = 4.

    В примере 3) знаменатель х + 2 = 0 при х = -2. Ответ: выражение 3) не имеет смысла при х = -2.

    В примере 4) знаменатель 5 -|x| = 0 при |x| = 5. А так как |5| = 5 и |-5| = 5, то нельзя брать х = 5 и х = -5. Ответ: выражение 4) не имеет смысла при х = -5 и при х = 5.
    IV. Два выражения называются тождественно равными, если при любых допустимых значениях переменных соответственные значения этих выражений равны.

    Пример: 5 (a – b) и 5a – 5b тожественно равны, так как равенство 5 (a – b) = 5a – 5b будет верным при любых значениях a и b. Равенство 5 (a – b) = 5a – 5b есть тождество.

    Тождество – это равенство, справедливое при всех допустимых значениях входящих в него переменных. Примерами уже известных вам тождеств являются, например, свойства сложения и умножения, распределительное свойство.

    Замену одного выражения другим, тождественно равным ему выражением, называют тождественным преобразованием или просто преобразованием выражения. Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

    Примеры.

    a) преобразуйте выражение в тождественно равное, используя распределительное свойство умножения:

    1) 10·(1,2х + 2,3у); 2) 1,5·(a -2b + 4c); 3) a·(6m -2n + k).

    Решение . Вспомним распределительное свойство (закон) умножения:

    (a+b)·c=a·c+b·c (распределительный закон умножения относительно сложения: чтобы сумму двух чисел умножить на третье число, можно каждое слагаемое умножить на это число и полученные результаты сложить).
    (а-b)·c=a·с-b·c (распределительный закон умножения относительно вычитания: чтобы разность двух чисел умножить на третье число, можно умножить на это число уменьшаемое и вычитаемое отдельно и из первого результата вычесть второй).

    1) 10·(1,2х + 2,3у) = 10 · 1,2х + 10 · 2,3у = 12х + 23у.

    2) 1,5·(a -2b + 4c) = 1,5а -3b + 6c.

    3) a·(6m -2n + k) = 6am -2an +ak.

    б) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) сложения:

    4) х + 4,5 +2х + 6,5; 5) (3а + 2,1) + 7,8; 6) 5,4с -3 -2,5 -2,3с.

    Решение. Применим законы (свойства) сложения:

    a+b=b+a (переместительный: от перестановки слагаемых сумма не меняется).
    (a+b)+c=a+(b+c) (сочетательный: чтобы к сумме двух слагаемых прибавить третье число, можно к первому числу прибавить сумму второго и третьего).

    4) х + 4,5 +2х + 6,5 = (х + 2х) + (4,5 + 6,5) = 3х + 11.

    5) (3а + 2,1) + 7,8 = 3а + (2,1 + 7,8) = 3а + 9,9.

    6) 6) 5,4с -3 -2,5 -2,3с = (5,4с -2,3с) + (-3 -2,5) = 3,1с -5,5.

    в) преобразуйте выражение в тождественно равное, используя переместительное и сочетательное свойства (законы) умножения:

    7) 4 · х · (-2,5); 8) -3,5 · · (-1); 9) 3а · (-3) · 2с.

    Решение. Применим законы (свойства) умножения:

    a·b=b·a (переместительный: от перестановки множителей произведение не меняется).
    (a·b)·c=a·(b·c) (сочетательный: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего).