Фигуры вращения платоновых тел. § платоновы тела с подробным их описанием


Введение

Данная курсовая работа предназначена для того чтобы:

1) закрепить, углубить и расширить теоретические знания в области методов моделирования поверхностей и объектов, практические умения и навыки программной реализации методов;

2) усовершенствовать навыки самостоятельной работы;

3) выработать умения формулировать суждения и выводы, логически последовательно и доказательно их излагать.

Тела Платона

Тела Платона - это выпуклые многогранники, все грани которых правильные многоугольники. Все многогранные углы правильного многогранника конгруэнтны. Как это следует уже из подсчета суммы плоских углов при вершине, выпуклых правильных многогранников не больше пяти. Указанным ниже путем можно доказать, что существует именно пять правильных многогранников (это доказал Евклид). Они - правильный тетраэдр, гексаэдр(куб), октаэдр, додекаэдр и икосаэдр. Названия этих правильных многогранников пришли из Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник". "двенадцатигранник", "двадцатигранник".

Таблица№1

Таблица№2

Название:

Радиус описанной сферы

Радиус вписанной сферы

Тетраэдр

Гексаэдр

Додекаэдр

Икосаэдр

Тетраэдр - четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками. (рис.1).

Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами. (рис.1).

Октаэдр - восьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников. (рис.1).

Додекаэдр - двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник. (рис.1).

Икосаэдр - двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками. (рис.1).


Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен - ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена 13-я книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр? воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр? воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь.

В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента? землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.

Важное место занимали правильные многогранники в системе гармоничного устройства мира И. Кеплера. Все та же вера в гармонию, красоту и математически закономерное устройство мироздания привела И. Кеплера к мысли о том, что поскольку существует пять правильных многогранников, то им соответствуют только шесть планет. По его мнению, сферы планет связаны между собой вписанными в них платоновыми телами. Поскольку для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором будет находиться Солнце.

Проделав огромную вычислительную работу, в 1596 г. И. Кеплер в книге "Тайна мироздания" опубликовал результаты своего открытия. В сферу орбиты Сатурна он вписывает куб, в куб? сферу Юпитера, в сферу Юпитера - тетраэдр, и так далее последовательно вписываются друг в друга сфера Марса? додекаэдр, сфера Земли? икосаэдр, сфера Венеры? октаэдр, сфера Меркурия. Тайна мироздания кажется открытой.

Сегодня можно с уверенностью сказать, что расстояния между планетами не связаны ни с какими многогранниками. Впрочем, возможно, что без "Тайны мироздания", "Гармонии мира" И. Кеплера, правильных многогранников не было бы трех знаменитых законов И. Кеплера, которые играют важную роль в описании движения планет.

Где еще можно увидеть эти удивительные тела? В книге немецкого биолога начала прошлого века Э. Геккеля "Красота форм в природе" можно прочитать такие строки: "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы". Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видно и одноклеточные организмы? феодарии, форма которых точно передает икосаэдр. Чем же вызвана такая природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень? икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники? самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов (KAlSO4)2 12Н2О имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьмянистый сернокислый натрий - тетраэдра, бор - икосаэдра. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ.

Итак, правильные многогранники открыли нам попытки ученых приблизиться к тайне мировой гармонии и показали неотразимую привлекательность и красоту этих геометрических фигур.

Текущая страница: 4 (всего у книги 36 страниц) [доступный отрывок для чтения: 9 страниц]

Платон I: Структура из симметрии – платоновы тела

Платоновы тела поддерживают вокруг себя какую-то магию. Они всегда были и остаются теми объектами, с которыми можно творить волшебство. Они уходят корнями глубоко в доисторическую пору человечества и живут сейчас как предметы, сулящие удачу или неудачу в самых известных настольных играх, в частности в знаменитых «Подземельях и драконах». Кроме того, их таинственная сила вдохновила ученых на некоторые из самых плодотворных открытий в развитии математики и физики. Их невыразимая красота достойна того, чтобы поглубже сконцентрироваться на них.

Альбрехт Дюрер на своей гравюре «Меланхолия I» (илл. 4) подразумевает очарование правильных многогранников, хотя тело, изображенное на его картине, не вполне платоново. (Технически это усеченный треугольный трапецоэдр. Он может быть получен растягиванием граней октаэдра определенным образом.) Возможно, Крылатый Гений впал в меланхолию, потому что не может вникнуть, почему злобная летучая мышь сбросила ему в кабинет именно это, не вполне платоново тело вместо правильной фигуры.


Илл. 4. Альбрехт Дюрер «Меланхолия I»


На картине изображено усеченное платоново тело, магический квадрат и множество других эзотерических символов. С моей точки зрения, она прекрасно показывает досаду, которую я часто испытываю, пытаясь с помощью чистой идеи понять реальность. К счастью, так бывает не всегда.

Правильные многоугольники

Прежде чем перейти к платоновым телам, давайте начнем с чего-нибудь попроще – с их самых близких аналогов в двух измерениях, а именно с правильных многоугольников. Правильный многоугольник – это плоская фигура, у которой все стороны равны и смыкаются под равными углами. Самый простой правильный многоугольник имеет три стороны – это равносторонний треугольник. Далее идет квадрат с четырьмя сторонами. Затем – правильный пятиугольник, или пентагон (который был выбран символом пифагорейцев и взят за основу в проекте хорошо известной штаб-квартиры вооруженных сил9
Имеется в виду Пентагон – главное административное здание Министерства обороны США. – Прим. пер.

), шестиугольник (часть пчелиного улья и, как мы увидим далее, графена10
Слой атомов углерода, соединенных в гексагональную двумерную кристаллическую решетку. – Прим. пер.

), семиугольник (его можно найти на различных монетах), восьмиугольник (знаки обязательной остановки), девятиугольник… Этот ряд можно продолжать бесконечно: для каждого целого числа, начиная с трех, существует уникальный правильный многоугольник. В каждом случае количество вершин равно количеству сторон. Мы также можем рассматривать круг как предельный случай правильного многоугольника, где число сторон становится бесконечным.

Правильные многоугольники, в некотором интуитивном смысле, могут приобрести значение идеального воплощения плоскостных «атомов». Они могут служить как концептуальные атомы, из которых мы можем составлять более сложные построения порядка и симметрии.

Платоновы тела

Теперь перейдем от плоских фигур к объемным. Для максимального единообразия мы можем обобщать понятие правильного многогранника различными способами. Самый естественный из них, который оказывается наиболее плодотворным, ведет к платоновым телам. Мы говорим об объемных телах, грани которых являются правильными многоугольниками, все одинаковы и одинаково смыкаются в каждой вершине. Тогда вместо бесконечного ряда решений мы получим ровно пять тел!


Илл. 5. Пять платоновых тел – волшебных фигур


Пять платоновых тел – это:

тетраэдр с четырьмя треугольными гранями и четырьмя вершинами, в каждой из которых сходится по три грани;

октаэдр с восемью треугольными гранями и шестью вершинами, в каждой из которых сходится по четыре грани;

икосаэдр с 20 треугольными гранями и 12 вершинами, в каждой из которых сходится по пять граней;

Додекаэдр с 20 пятиугольными гранями и 20 вершинами, в каждой из которых сходится по три грани;

Куб с шестью квадратными гранями и восемью вершинами, в каждой из которых сходится по три грани.


Существование этих пяти многогранников легко понять, без особых трудностей можно и сконструировать их модели. Но почему их только пять? (Или есть еще другие?)

Чтобы разобраться с этим вопросом, заметим, что вершины тетраэдра, октаэдра и икосаэдра объединяют три, четыре и пять треугольников, сходящихся вместе, и зададим вопрос: «Что произойдет, если мы продолжим и их будет шесть?» Тогда мы поймем, что шесть равносторонних треугольников, имеющих общую вершину, будут лежать на плоскости. Сколько ни повторяй этот плоский объект, он не позволит нам построить законченную фигуру, ограничивающую некий объем. Вместо этого фигура будет бесконечно распространяться по плоскости, как показано на илл. 6 (слева).


Илл. 6. Три бесконечных платоновы поверхности

На рисунке показаны только конечные их части. Эти три правильных замещения плоскости могут и должны восприниматься как родственные платоновым телам – их блудные братья, которые отправились в паломничество и никогда не вернутся.


Мы получим такие же результаты, если совместим четыре квадрата или три шестиугольника. Эти три правильные сечения на плоскости – достойные дополнения к платоновым телам. Далее мы увидим, как они воплощаются в жизнь в микромире (илл. 29).

Если мы попытаемся совместить более шести равносторонних треугольников, четырех квадратов или трех любых бо́льших правильных многоугольников, нам не хватит места и мы просто не сможем разместить вокруг вершины их суммарный угол. И поэтому пять платоновых тел – это все конечные правильные многогранники, которые могут существовать.

Знаменательно, что определенное конечное число – пять – появляется из соображений геометрической правильности и симметрии. Правильность и симметрия – это естественные и прекрасные вещи для размышления, но у них нет очевидной или прямой связи с определенными числами. Как мы увидим, Платон интерпретировал этот сложный случай их возникновения удивительно творческим образом.

Предыстория

Часто известным людям достается слава за открытия, сделанные другими. Это «эффект Матфея», обнаруженный социологом Робертом Мёртоном и основанный на строчках из Евангелия от Матфея:

Ибо каждому имеющему будет дано, и у него будет изобилие, а у неимеющего будет взято и то, что он имеет11
Евангелие от Матфея, 13:12. – Прим. пер.

Так случилось и с платоновыми телами.

В музее Ашмолин в Оксфордском университете12
Музей искусства и археологии в Оксфорде. – Прим. пер.

Можно увидеть стенд с пятью резными камнями, изготовленными примерно в 2000 г. до н. э. в Шотландии, которые кажутся реализациями пяти платоновых тел (хотя некоторые ученые и оспаривают это). По всей видимости, они использовались в какой-то игре с костями. Можно представить, как пещерные люди собирались вокруг общего костра и резались в «Подземелья и драконы» эпохи палеолита. Вполне возможно, что не Платон, а его современник Теэтет (417–369 гг. до н. э.) первым математически доказал, что это эти самые пять тел – единственные возможные правильные многогранники. Не ясно, в какой степени Платон вдохновил Теэтета или наоборот, или в воздухе античных Афин витало что-то такое, что вдохнули они оба. В любом случае платоновы тела получили свое название, потому что Платон оригинально использовал их в работе гения, одаренного творческим воображением, чтобы провидческим образом создать теорию физического мира.


Илл. 7. Доплатоновские изображения платоновых тел, которые, возможно, использовались в играх с костями около 2000 г. до н. э.


Заглянув в гораздо более далекое прошлое, мы понимаем, что некоторые простейшие создания биосферы, в том числе вирусы и диатомеи (не пары атомов, как можно было бы подумать из названия, а морские водоросли, которые часто отращивают вычурные панцири в виде платоновых тел), не только «открыли», но и буквально воплотили платоновы тела задолго до того, как на Земле появились первые люди. Вирус герпеса; вирус, который вызывает гепатит В; вирус иммунодефицита человека и вирусы многих других болезней имеют форму, напоминающую икосаэдр или додекаэдр. Они заключают свой генетический материал – ДНК или РНК – в белковые капсулы-экзоскелеты, которые определяют их внешние формы, как показано на цветной вклейке D. Капсулы маркированы цветом таким образом, что одинаковые цвета обозначают одинаковые «строительные блоки». В глаза бросается характерное для додекаэдра соединение трех пятиугольников. Но если провести прямые линии через центры синих областей, то мы увидим икосаэдр.

Более сложные микроскопические существа, в том числе радиолярии, которые любил изображать Эрнст Геккель в своей великолепной книге «Красота форм в природе», также воплощают в жизнь платоновы тела. На илл. 8 мы видим замысловатый кремниевый экзоскелет этих одноклеточных организмов. Радиолярии – древняя форма жизни, которую обнаруживают в самых ранних окаменелостях. Ими полны океаны и сегодня. Каждое из пяти платоновых тел воплощается в некотором количестве биологических видов живых организмов. В названиях некоторых из них даже закрепилась их форма, в том числе Circoporus octahedrus, Circogonia icosahedra и Circorrhegma dodecahedra .

Вдохновляющая идея Евклида

«Начала» Евклида являются величайшим учебником всех времен, и другие книги им в этом не чета. Эта книга принесла в геометрию систему и строгость. Если посмотреть более широко, она ввела в область идей – путем практического применения – метод анализа и синтеза.


Илл. 8. Радиолярии становятся видимыми под объективом самого простого микроскопа. Их экзоскелеты часто демонстрируют симметрию платоновых тел.


Анализ и Синтез являются предпочтительной формулировкой «редукционизма» для Исаака Ньютона и для нас тоже. Вот что говорит Ньютон:

Путем такого анализа мы можем переходить от соединений к ингредиентам, от движений – к силам, их производящим, и вообще от действий – к их причинам, от частных причин – к более общим, пока аргумент не закончится наиболее общей причиной. Таков метод анализа, синтез же предполагает причины открытыми и установленными в качестве принципов; он состоит в объяснении при помощи принципов явлений, происходящих от них, и доказательстве объяснений13
Цит. по: Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. – М.-Л.: Госиздат, 1927. – С. 306.

Эту стратегию можно сравнить с подходом Евклида к геометрии, где он начинает с простых, интуитивно понятных аксиом, чтобы потом вывести из них более сложные и удивительные следствия. Великие «Математические начала» Ньютона, основополагающий документ современной математической физики, тоже следуют показательному стилю Евклида, пошагово переходя от аксиом при помощи логических построений к более значительным результатам.

Важно подчеркнуть, что аксиомы (или законы физики) не говорят вам, что с ними делать. Собирая их вместе без всякой цели, легко создать большое количество ничего не значащих фактов, о которых скоро забудут. Это как пьеса или музыкальный отрывок, которые бредут как неприкаянные и не приходят никуда. Как обнаружили те, кто пытался приспособить искусственный интеллект для решения творческих математических задач, самое трудное в этом деле – определить цели. Имея в голове стóящую цель, становится легче найти средства, чтобы достичь ее. Я люблю печенье с предсказаниями, и раз мне попалось самое удачное на свете печенье: изречение, которое я в нем нашел, великолепно подытоживает все сказанное:

Работа сама научит вас, как ее сделать.

И, конечно, для лучшего усвоения материала, для студентов и потенциальных читателей заманчиво иметь перед собой вдохновляющую цель. С самого начала на них производит глубокое впечатление понимание того, что они могут предвкушать ощущение удивительного трюка создания конструкции, которая неумолимо движется от «очевидных» аксиом к далеко не очевидным заключениям.

Итак, какова была цель Евклида в «Началах»? Тринадцатый и последний том этого шедевра завершается построением пяти платоновых тел и доказательством, почему их существует только пять. Мне приятно думать – тем более что это вполне правдоподобно, – что Евклид думал об этом заключении, когда начинал работать над всей книгой и пока писал ее. В любом случае это подходящее и приносящее чувство завершенности заключение.

Платоновы тела как атомы

Древние греки признавали в материальном мире четыре основные составляющие, или элемента: огонь, вода, земля и воздух. Вы, возможно, заметили, что количество элементов – четыре – близко к пяти, количеству правильных многогранников. Платон, разумеется, заметил! В его самом авторитетном, пророческом и непостижимом диалоге «Тимей» можно найти теорию элементов, основанную на многогранниках. Она состоит в следующем.

Каждый элемент состоит из атомов определенного вида. Атомы имеют форму платоновых тел: атомы огня – форму тетраэдра, атомы воды – икосаэдра, атомы земли – куба, атомы воздуха – октаэдра.

В этих утверждениях есть определенное правдоподобие. Они дают объяснения. Атомы огня имеют острую форму, что объясняет, почему прикосновение к огню болезненно. Атомы воды самые гладкие и круглые, поэтому они могут плавно обтекать друг друга. Атомы земли могут быть плотно прижаты друг к другу и заполняют пространство без пустот. Воздух, который может быть и горячим, и влажным, имеет промежуточную между огнем и водой форму атомов.

Хотя четыре и близко к пяти, но они не могут быть равны, поэтому полного совпадения между правильными многогранниками, рассмотренными как атомы, и элементами быть не может. Менее одаренный мыслитель был бы, возможно, обескуражен этой трудностью, но гениальный Платон не утратил присутствия духа. Он воспринял это как вызов и как возможность. Он предположил, что оставшийся правильный многогранник, додекаэдр, тоже сыграл свою роль в руках Творца-строителя, но не как атом. Нет, додекаэдр – это не просто какой-то атом, скорее, он повторяет форму самой Вселенной в целом.

Аристотель, который всегда старался превзойти Платона, предложил другую, более консервативную и последовательную теорию. Две главные идеи этих влиятельных философов состояли в том, что Луна, планеты и звезды, населяющие небесный свод, состоят из совершенно иной материи, чем та, которую мы можем найти в подлунном мире, и в том, что «природа не терпит пустоты»; таким образом, небесное пространство не могло быть пустым. Эти рассуждения требовали существования пятого элемента, или квинтэссенции, отличающейся от земли, огня, воды и воздуха, чтобы заполнить небесный свод. Так додекаэдр нашел свое место в качестве атома квинтэссенции или эфира.

Сегодня трудно согласиться с деталями обеих этих теорий. Науке нет никакой пользы от того, чтобы анализировать мир в терминах этих четырех (или пяти) элементов. В современном представлении атомы – вовсе не твердые тела, и уж подавно они не имеют форму платоновых тел. Теория элементов Платона с сегодняшней точки зрения выглядит грубой и во всех отношениях безнадежно неверной.

Структура из симметрии

Но хотя взгляды Платона провалились как научная теория, они были успешны как предсказание и, я бы сказал, как произведение интеллектуального искусства. Чтобы оценить концепцию в этом качестве, мы должны отойти от деталей и посмотреть на нее в целом. Глубинная, ключевая догадка в системе физического мира с точки зрения Платона состоит в том, что мир этот должен по большому счету воплощать в жизнь красивые понятия. И эта красота должна быть красотой особого рода: красотой математической правильности, идеальной симметрии. Для Платона, как и для Пифагора, эта догадка была в то же время верой, страстным желанием и основополагающим принципом. Они жаждали привести Разум в гармонию с Веществом, показав, что Вещество состоит из чистейших произведений Разума.

Важно подчеркнуть, что Платон поднялся в своих идеях над общепринятым уровнем философских обобщений своего времени, чтобы сделать определенные заявления о том, что же такое вещество. Его своеобразные, хотя и неправильные, идеи не попадают в позорную категорию «даже не ошибочно»14
Говорят, что знаменитый физик-теоретик Вольфганг Паули однажды раскритиковал беспомощную работу молодого ученого такими вошедшими в поговорку словами: «Это не просто неверно, это даже не дотягивает до ошибочного!» – Прим. пер.

Как мы уже видели, Платон даже сделал некоторые шаги в направлении сравнения этой теории с реальностью. Огонь обжигает, потому что у тетраэдра острые грани, вода течет, потому что икосаэдры легко перекатываются друг по другу, и т. д. В диалоге Платона «Тимей», где говорится обо всем этом, вы также найдете причудливые объяснения того, что мы бы назвали химическими реакциями и свойствами сложных (состоящих больше чем из одного элемента) веществ. Эти объяснения основаны на геометрии атомов. Но эти напрасно потраченные усилия удручающе далеки от того, что мы при всем желании могли бы считать серьезным экспериментальным доказательством научной теории и еще дальше от использования научных знаний для практических целей.

И все же взгляды Платона в нескольких направлениях предвосхищают современные идеи, находящиеся сегодня на переднем крае научного мышления.

Хотя строительные «кирпичики» материи, которые предложил Платон, совсем не те, которые мы знаем сегодня, сама идея о том, что есть лишь немногие строительные элементы, существующие в множестве одинаковых копий, остается основополагающей.

Но даже если не принимать во внимание эту смутную вдохновляющую идею, более специфический принцип построения теории Платона – выделение структуры из симметрии – оставил свой след в веках. Мы приходим к небольшому числу особых структур из чисто математических соображений – соображений симметрии – и преподносим их Природе как возможные элементы ее строения. Тот вид математической симметрии, который избрал Платон, чтобы составить свой список составляющих элементов, весьма отличен от симметрии, которую мы используем сегодня. Но идея о том, что в основе Природы лежит симметрия, стала доминировать в нашем восприятии физической реальности. Умозрительная идея о том, что симметрия определяет структуру – т. е. что кто-то может использовать высокие требования математического совершенства, чтобы прийти к небольшому перечню возможных реализаций, а потом воспользоваться этим списком как руководством по построению модели мира, – стала нашей путеводной звездой на границах неизведанного, не нанесенных ни на одну карту. Эта идея почти кощунственна в своем безрассудстве, поскольку провозглашает, что мы можем разобраться, как действовал Мастер и точно узнать, как все было сделано. И, как мы увидим далее, она оказалась совершенно правильной.

Для того чтобы обозначить Творца физического мира, Платон использовал слово «демиург». Буквальное его значение – «мастер»; обычно его переводят словом «создатель», что не совсем верно. Это греческое слово Платон подобрал очень тщательно. Оно отражало его веру в то, что физический мир не является окончательной реальностью. Есть также вечный и вневременной мир Идей, которые существуют до какого-либо, с необходимостью несовершенного, физического воплощения и независимо от него. Беспокойный творческий ум – Мастер или Создатель – отливает свои создания из идей, используя последние как формы.

«Тимей» – непростое для понимания произведение, и всегда остается соблазн принять неясность или ошибку за глубину. Осознавая это, я нахожу тем не менее интересным и вдохновляющим то, что Платон не останавливается на платоновых телах, но размышляет о том, что атомы в иных формах, подобно физическим объектам, в свою очередь могут быть составлены из более примитивных треугольников. Детали, конечно, «даже не ошибочны», но интуиция, призывающая рассмотреть модель серьезно, говорить на ее языке и раздвигать границы, в корне верна. Идея о том, что атомы могут иметь составные части, предвосхищает современное стремление анализировать все глубже и глубже. А идея о том, что эти составные части в нормальных условиях не могут существовать как отдельные объекты, а обнаруживаются только как части более сложных объектов, возможно, как раз и реализуется в сегодняшних кварках и глюонах, вечно связанных внутри атомных ядер.

Помимо всего прочего среди размышлений Платона мы найдем идею, которая является центральной в наших размышлениях, – идею о том, что мир в своей глубинной структуре воплощает Красоту. Это оживший дух умозаключений Платона. Он предполагает, что сама основа структуры мира – его атомы – это воплощения чистых идей, которые могут быть открыты и четко сформулированы одним лишь напряжением ума.

Экономия средств

Возвращаясь к вирусам: где же они научились своей геометрии?

Это тот случай, когда простота приобретает вид сложности или, если быть более точным, когда простые правила определяют строение кажущихся сложными структур, которые по зрелом размышлении становятся идеально простыми. Суть в том, что ДНК вирусов15
Не во всех вирусах генетический материал представлен в виде ДНК; есть и РНК-содержащие вирусы. – Прим. ред.

Которая должна нести в себе информацию обо всех аспектах их жизнедеятельности, очень ограничена в размерах. Чтобы сэкономить на длине строительного материала, стоит делать что-либо из простых идентичных частей, соединенных одинаковым образом. Мы уже слышали эту песню: «простые, идентичные части, одинаково соединенные» – и как раз в определении платоновых тел! Поскольку часть создает целое, вирусам не нужно знать о додекаэдрах или икосаэдрах, а только о треугольниках, да еще одно или два правила, чтобы соединить их вместе. Это только более разнородным, нерегулярным и на первый взгляд даже случайным телам – таким как люди – требуются более подробные сборочные инструкции. Симметрия появляется как структура по умолчанию, когда информация и ресурсы ограничены.

ПЛАТОНОВЫ ТЕЛА С ПОДРОБНЫМ ИХ ОПИСАНИЕМ

ПЛАТОНОВЫ ТЕЛА [П. - от греч. Platon (427–347 гг. до н. э. / Т. - происх. см. ТЕЛО), совокупность всех правильных многогранников [т. е. объемных (трехмерных) тел, ограниченных равными правильными многоугольниками] трехмерного Мира, впервые описанных Платоном (им также посвящена заключительная, XIII-я книга «Начал» Платонова ученика Евклида); // при всём бесконечном многообразии правильных многоугольников (двумерных геометрических фигур, ограниченных равными сторонами, смежные пары которых попарно образуют равные между собой углы), существует всего пять объемных П.т. (см. Табл. 6), в соответствие которым со времен Платона ставятся пять стихий Мироздания; любопытна связь, существующая между гексаэдром и октаэдром, а также между додекаэдром и икосаэдром: геометрические центры граней каждого первого являются вершинами каждого второго.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности - от двухлетнего ребенка, играющего деревянными кубиками, до зрелого математика. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа. Что же такое многогранник? Для ответа на этот вопрос напомним, что собственно геометрию определяют иногда как науку о пространстве и пространственных фигурах - двумерных и трехмерных. Двумерную фигуру можно определить как множество отрезков прямых, ограничивающих часть плоскости. Такая плоская фигура называется многоугольником. Из этого следует, что многогранник можно определить как множество многоугольников, ограничивающих часть трехмерного пространства. Многоугольники, образующие многогранник, называются его гранями.

Издавна ученые интересовались "идеальными" или правильными многоугольниками, то есть многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т.д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть число правильных многоугольников бесконечно.

Что же такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? На первый взгляд ответ на этот вопрос очень простой - столько же, сколько существует правильных многоугольников. Однако это не так. В "Началах Евклида" мы находим строгое доказательство того, что существует только пять правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Наименование Кол-во граней Стихия
Тетраэдр 4 Огонь
Гексаэдр/Куб 6 Земля
Октаэдр 8 Воздух
Икосаэдр 10 Вода
Додекаэдр 12 Эфир

Мир звездчатых многогранников

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Впрочем, многогранники отнюдь не только объект научных исследований. Их формы – завершенные и причудливые, широко используются в декоративном искусстве.

Звездчатые многогранники очень декоративны, что позволяет широко применять их в ювелирной промышленности при изготовлении всевозможных украшений. Применяются они и в архитектуре. Многие формы звездчатых многогранников подсказывает сама природа. Снежинки - это звездчатые многогранники. С древности люди пытались описать все возможные типы снежинок, составляли специальные атласы. Сейчас известно несколько тысяч различных типов снежинок.

Звездчатый додекаэдр

Большой звездчатый додекаэдр принадлежит к семейству тел Кеплера-Пуансо, то есть правильных невыпуклых многогранников. Грани большого звездчатого додекаэдра – пентаграммы, как и у малого звездчатого додекаэдра. У каждой вершины соединяются три грани. Вершины большого звездчатого додекаэдра совпадают с вершинами описанного додекаэдра.

Большой звездчатый додекаэдр был впервые описан Кеплером в 1619 г. Это последняя звездчатая форма правильного додекаэдра.

Додекаэдр

Древние мудрецы говорили: "Чтобы познать невидимое, смотри внимательно на видимое". В плане сакральных сил додекаэдр самый мощный многогранник. Не зря Сальвадор Дали для своей "Тайной вечере" выбрал эту фигуру. В ней от двенадацати пятиугольников - тоже сильной фигуре, силы концентрируются в одной точке - на Иисусе Христе.

Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) это правильный многогранник, составленный из двенадцати равносторонних пятиугольников.

Додекаэдр имеет 20 вершин и 30 ребер.
Вершина додекаэдра является вершиной трех пятиугольников, таким образом, сумма плоских углов при каждой вершине равна 324°.
Сумма длин всех ребер 30а.
Додекаэдр имеет центр симметрии и 15 осей симметрии.

Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии. Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра.

Правильные многогранники привлекают совершенством своих форм, полной симметричностью. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов.
Кристаллы - тела, имеющие многогранную форму. Вот один из примеров таких тел: кристалл пирита (сернистый колчедан FeS) - природная модель додекаэдра.
Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека и приматов. Это, в частности, означает, что заразиться полиомиелитом можно только от людей. Кроме того, многие вирусы передаются через переносчиков, роль которых нередко выполняют членистоногие (например, клещи). Такие вирусы могут иметь широкий спектр хозяев, включающий как позвоночных, так и беспозвоночных животных.

Водоросль вольвокс - один из простейших многоклеточных организмов - представляет собой сферическую оболочку, сложенную в основном семиугольными, шестиугольными и пятиугольными клетками (то есть клетками, имеющими семь, шесть или пять соседних; в каждой «вершине» сходятся три клетки).

Бывают экземпляры, у которых есть и четырехугольные, и восьмиугольные клетки, но биологи заметили, что если таких «нестандартных» клеток (менее, чем с пятью и более, чем с семью) сторонами нет, то пятиугольных клеток всегда ровно на двенадцать больше, чем семиугольных (всего клеток может быть несколько сотен и даже тысяч). Это утверждение следует из известной формулы Эйлера.
Фуллерены – одна из форм углерода. Они были открыты при попытке моделировать процессы, происходящие в космосе. Позже ученым в земных лабораториях удалось синтезировать и исследовать многочисленные производные этих шарообразных молекул. Возникла химия фуллеренов. Некоторые соединения включения в кристаллическую решетку фуллерена С60 оказались «горячими сверхпроводниками» с критической температурой до 117 К.
Ведутся попытки создать на основе фуллеренов материалы для зарождающейся молекулярной электроники. Все это интересно и важно. Но фуллерены, как выяснилось, есть и в земных породах. Сейчас с наличием в шунгитах фуллеренов некоторые энтузиасты связывают целебное действие открытых в 1714 г. марциальных вод, которыми лечился Петр Великий. А последние открытия геохимиков заставляют вернуться к проблеме происхождения фуллеренов. Возможно, что новые химические исследования земных фуллеренов приоткроют другие страницы богатой истории планеты Земля!
В алхимии обычно говорится только об этих элементах: огонь, земля, воздух и вода; редко упоминается эфир,потому что это настолько священно. В Пифагорейской школе, стоило бы вам только лишь упомянуть за стенами школы слово «додекаэдр», как вас убили бы на месте. Настолько священной считалась эта фигура. О ней даже не говорили. Спустя двести лет, при жизни Платона, о ней говорили, но только очень осторожно. Почему? Потому, что додекаэдр расположен у внешнего края вашего энергетического поля и является высшей формой сознания. Когда вы достигаете 55-футового предела своего энергетического поля, то оно будет иметь форму сферы. Но самая близкая к сфере внутренняя фигура – это додекаэдр (в действительности, додекаэдро-икосаэдральная взаимосвязь). Вдобавок к этому, мы живём внутри большого додекаэдра, который содержит в себе вселенную. Когда ваш ум достигает предела пространства космоса – а предел тут есть – то он натыкается на додекаэдр, замкнутый в сфере. Додекаэдр есть завершающая фигура геометрии и она очень важна.
На микроскопическом уровне, додекаэдр и икосаэдр являются относительными параметрами ДНК, по которым построена вся жизнь. Можно увидеть также, что молекула ДНК представляет собой вращающийся куб. При повороте куба последовательно на 72 градуса по определённой модели, получается икосаэдр, который, в свою очередь, составляет пару додекаэдру.
Таким образом, двойная нить спирали ДНК построена по принципу двухстороннего соответствия: за икосаэдром следует додекаэдр, затем опять икосаэдр, и так далее. Это вращение через куб создаёт молекулу ДНК.
В основе структуры ДНК лежит священная геометрия, хотя, могут обнаружиться ещё и другие скрытые взаимосвязи.
В книге Дана Уинтера «Математика Сердца» (Dan Winter, Heartmath) показано, что молекула ДНК составлена из взаимоотношений двойственности додекаэдров и икосаэдров.

Платону принадлежит разработка некоторых важных методологических проблем математического познания: аксиоматическое построение математики, исследование отношений между математическими методами и диалектикой, анализ основных форм математического знания. Так, процесс доказательства необходимо связывает набор доказанных положений в систему, в основе которой лежат некоторые недоказуемые положения. Тот факт, что начала математических наук "суть предположения", может вызвать сомнение в истинности всех последующих построений. Платон считал такое сомнение необоснованным. Согласно его объяснению, хотя сами математические науки, "пользуясь предположениями, оставляют их в неподвижности и не могут дать для них основания", предположения находят основания посредством диалектики. Платон высказал и ряд других положений, оказавшихся плодотворными для развития математики. Так, в диалоге "Пир" выдвигается понятие предела; идея выступает здесь как предел становления вещи.

ТЕЛА ПЛАТОНА.

Тела Платона-это выпуклые многогранники, все грани которых правильные многоугольники. Все многогранные углы правильного многогранника конгруэнтны. Как это следует уже из подсчета суммы плоских углов при вершине, выпуклых правильных многогранников не больше пяти. Указанным ниже путем можно доказать, что существует именно пять правильных многогранников (это доказал Евклид). Они - правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

ТАБЛИЦА№1

ТАБЛИЦА№2

Название: Радиус описанной сферы Радиус вписанной сферы Объем
Тетраэдр а\/6 4 a\/6 12 a3\/2 12
Куб а\/3 2 a 2 a3
Октаэдр а\/2 2 a\/6 6 a3\/2 12
Додекаэдр a 4 \/18+6\/5 1 2 25+11\/5 10 a3 4 (15+7\/5)
Икосаэдр a 12(3+\/5)\/3 5 12 a3(3+\/5)

Тетраэдр-четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками; один из пяти правильных многоугольников. (рис.1).

Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами. (рис.2).

Октаэдр-восьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников. (рис.3).

Додекаэдр-двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник; один из пяти правильных многогранников. (рис.4).

Икосаэдр-двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками; один из пяти правильных многогранников. (рис.5).

Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен- ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена заключительная, XII книга знаменитых начал Евклида. Эти многогранники часто называют также платоновыми телами в идеалистической картине мира, данной великим древнегреческим мыслителем Платоном. Четыре из них олицетворяли четыре стихии: тетраэдр-огонь, куб-землю, икосаэдр-воду и октаэдр-воздух; пятый же многогранник, додекаэдр, символизировал все мироздание его по латыни стали называть quintaessentia («пятая сущность»). Придумать правильный тетраэдр, куб, октаэдр, по-видимому, было не трудно, тем более что эти формы имеют природные кристаллы, например: куб-монокристалл поваренной соли (NaCl), октаэдр-монокристалл алюмокалиевых квасцов ((KalSO4)2*12H2O). Существует предположение, что форму додекаэдра древние греки получили, рассматривая кристаллы пирита (сернистого колчедана FeS). Имея же додекаэдр нетрудно построить и икосаэдр: его вершинами будут центры двенадцати граней додекаэдра.


Список литературы

1.«Советская Энциклопедия» Москва 1979г.

2.Математический энциклопедический словарь/ «Советская Энциклопедия», 1988г.

3.Математика: Школьная энциклопедия /Гл. ред. М 34 С.М. Никольский. - М.: Научное издательство «Большая Российская энциклопедия», 1996,-527 С.: ил

Правильные многогранники называются Платоновыми телами, они занимают видное место в философской картине мира, разработанной великим мыслителем Древней Греции Платоном.

Итак, правильных многогранников Платон знал пять, а число стихий (огонь, воздух, вода и земля) было ровно четыре. Следовательно, из пяти многогранников надо выбрать четыре, которые можно было бы сопоставить со стихиями.

Какими соображениями руководствовался при этом Платон? Прежде всего тем, что некоторые элементы, как он считал, могли перейти друг в друга. Преобразование одних многогранников в другие могли быть осуществлены путем перестройки их внутренней структуры. Но для этого в данных телах нужно было найти такие структурные элементы, которые были бы для них общими. Из внешнего вида правильных многогранников явствует, что грани трех многогранников - тетраэдра, октаэдра, икосаэдра - имеют форму равностороннего треугольника. Два оставшихся многогранника - куб и додекаэдр - построены: первый - из квадратов, а второй - из правильных пятиугольников, поэтому они не могут преобразовываться ни друг в друга, ни в рассмотренные три тела. Это значит, что если мы придадим частицам трех стихий формы тетраэдра, октаэдра и икосаэдра, то частицы четвертой стихии будем считать кубами или додекаэдрами, но эта четвертая стихия не сможет переходить в три других, а всегда будет оставаться сама собой. Платон решил, что такой стихией может быть только земля и что мельчайшие частицы, из которых земля состоит, должны быть кубами. Тетраэдру, октаэдру и икосаэдру были сопоставлены соответственно огонь, воздух и вода.

Что касается пятого многогранника - додекаэдра, то он остается не у дел. По поводу него Платон ограничивается в «Тимее» замечанием, что «его бог определил для Вселенной и прибегнул к нему, когда разрисовывал ее и украшал».

Возникает вопрос «какими соображениями руководствовался Платон, приписывая частицам огня форму тетраэдра, частицам земли - форму куба и т.д.?». Здесь он учитывает чувственно-воспринимаемые свойства соответствующих стихий. Огонь - наиболее подвижная стихия, он обладает разрушительным действием, проникая в другие тела (сжигая или расплавляя, или испаряя их); при соприкосновении с ним мы испытываем чувство боли, как если бы мы укололись или порезались.

Какие частицы могли бы обусловить все эти свойства и действия? Очевидно, наиболее подвижные и легкие частицы, и притом обладающие режущими гранями и колющими углами. Из четырех многогранников, о которых может идти речь, в наибольшей степени удовлетворяет тетраэдр. Поэтому, говорит Платон, образ пирамиды (т.е. тетраэдра) и должен быть в согласии с правильным рассуждением и с правдоподобием, первоначалом и семенем огня, наоборот, земля выступает в нашем опыте как самая неподвижная и устойчивая из всех стихий. Поэтому частицы, из которых она состоит, должны иметь самые устойчивые основания. Из всех четырех тел этим свойством в максимальной мере обладает куб. Поэтому мы не нарушим правдоподобия, если припишем частицам земли кубическую форму. Аналогичным образом с двумя прочими стихиями мы соотнесем частицы, обладающие промежуточными свойствами. Икосаэдр, как самый обтекаемый, представляет частичку воды, октаэдр - частицу воздуха.

Пятый многогранник - додекаэдр - воплощал в себе «все сущее», символизировал весь мир и почитался главнейшим.

Мы видим, каким образом принцип правдоподобия сочетается у Платона с использованием данных повседневного опыта. Любопытно, что Платон почти не касается других, чисто спекулятивных, мотивов (например, связанных с теорией пропорций), которые играли решающую роль в построении его космологической концепции и которые могли оказать влияние и на некоторые аспекты его теории строения вещества.

Правда, сам Тимей, выступающий в данном случае в качестве профессора, читающего лекцию об устройстве мира, является, по всем данным, представителем пифагорейской школы. Однако до сих пор не ясно, существовал ли Тимей как историческая личность или же был фиктивным персонажем, придуманным Платоном для того, чтобы не делать автором космологических и физических теорий его обычного героя - Сократа, ибо это слишком не вязалось бы с образом последнего.

Платон «правдоподобно» систематизировал картину мира. Это была одна из первых попыток ввести в науку саму идею систематизации, которая оказалась очень плодотворной. Она помогла отделить одни области знаний от других, сделав научные исследования более целенаправленными.