Колич теплоты. Тема урока: "Количество теплоты. Единицы количества теплоты. Удельная теплоемкость. Расчет количества теплоты"


Внутренняя энергия тела может изменяться за счет работы внешних сил. Для характеристики изменения внутренней энергии при теплообмене вводится величина, называемая количеством теплоты и обозначаемая Q .

В международной системе единицей количества теплоты, также как работы и энергии, является джоуль: = = = 1 Дж.

На практике еще иногда применяется внесистемная единица количества теплоты – калория. 1 кал. = 4,2 Дж.

Следует отметить, что термин «количество теплоты» неудачен. Он был введен в то время, когда считалось, что в телах содержится некая невесомая, неуловимая жидкость – теплород. Процесс теплообмена, якобы, заключается в том, что теплород, переливаясь из одного тела в другое, переносит с собой и некоторое количество теплоты. Сейчас, зная основы молекулярно-кинетической теории строения вещества, мы понимаем, что теплорода в телах нет, механизм изменения внутренней энергии тела иной. Однако, сила традиций велика и мы продолжаем пользоваться термином, введенным на основе неверных представлений о природе теплоты. Вместе с тем, понимая природу теплообмена, не следует полностью игнорировать неверные представления о нем. Напротив, проводя аналогию между потоком тепла и потоком гипотетической жидкости теплорода, количеством теплоты и количеством теплорода, можно при решении некоторых классов задач наглядно представить протекающие процессы и верно решить задачи. В конце-концов, верные уравнения, описывающие процессы теплообмена, были в свое время получены на основе неверных представлений о теплороде, как носителе теплоты.

Рассмотрим более подробно процессы, которые могут протекать в результате теплообмена.

Нальем в пробирку немного воды и закроем ее пробкой. Подвесим пробирку к стержню, закрепленному в штативе, и подведем под нее открытое пламя. От пламени пробирка получает некоторое количество теплоты и температура жидкости, находящейся в ней, повышается. При повышении температуры внутренняя энергия жидкости увеличивается. Происходит интенсивный процесс ее парообразования. Расширяющиеся пары жидкости совершают механическую работу по выталкиванию пробки из пробирки.

Проведем еще один опыт с моделью пушки, изготовленной из отрезка латунной трубки, которая укреплена на тележке. С одной стороны трубка плотно закрыта эбонитовой пробкой, сквозь которую пропущена шпилька. К шпильке и трубке припаяны провода, оканчивающиеся клеммами, на которые может подаваться напряжение от осветительной сети. Модель пушки, таким образом, представляет собой разновидность электрического кипятильника.

Нальем в ствол пушки немного воды и закроем трубку резиновой пробкой. Подключим пушку к источнику тока. Электрический ток, проходя через воду, нагревает ее. Вода закипает, что приводит к ее интенсивному парообразованию. Давление водяных паров растет и, наконец, они совершают работу по выталкиванию пробки из ствола пушки.

Пушка, вследствие отдачи, откатывается в сторону, противоположную вылету пробки.

Оба опыта объединяют следующие обстоятельства. В процессе нагревания жидкости различными способами, температура жидкости и, соответственно, ее внутренняя энергия увеличивались. Для того, чтобы жидкость кипела и интенсивно испарялась, необходимо было продолжать ее нагревание.

Пары жидкости за счет своей внутренней энергии совершили механическую работу.

Исследуем зависимость количества теплоты, необходимой для нагревания тела, от его массы, изменения температуры и рода вещества. Для исследования данных зависимостей будем использовать воду и масло. (Для измерения температуры в опыте применяется электрический термометр, изготовленный из термопары, подключенной к зеркальному гальванометру. Один спай термопары опущен в сосуд с холодной водой для обеспечения постоянства его температуры. Другой спай термопары измеряет температуру исследуемой жидкости).

Опыт состоит из трех серий. В первой серии исследуется для постоянной массы конкретной жидкости (в нашем случае – воды) зависимость количества теплоты, необходимого для ее нагревания, от изменения температуры. О количестве теплоты, полученной жидкостью от нагревателя (электрической плитки), будем судить по времени нагревания, предполагая, что между ними существует прямо пропорциональная зависимость. Чтобы результат эксперимента соответствовал этому предположению, необходимо обеспечить стационарный поток тепла от электроплитки к нагреваемому телу. Для этого электроплитка была включена в сеть заранее, так чтобы к началу опыта температура ее поверхности перестала изменяться. Для более равномерного нагрева жидкости во время опыта, будем помешивать ее при помощи самой термопары. Будем фиксировать показания термометра через равные промежутки времени до тех пор, пока световой зайчик не дойдет до края шкалы.

Сделаем вывод: между количеством теплоты, необходимым для нагревания тела и изменением его температуры, существует прямая пропорциональная зависимость.

Во второй серии опытов будем сравнивать количества теплоты, необходимые для нагревания одинаковых жидкостей разной массы при изменении их температуры на одну и ту же величину.

Для удобства сравнения получаемых величин массу воды для второго опыта возьмем в два раза меньше, чем в первом опыте.

Вновь будем фиксировать показания термометра через равные промежутки времени.

Сравнивая результаты первого и второго опытов можно сделать следующие выводы.

В третьей серии опытов будем сравнивать количества теплоты, необходимые для нагревания равных масс различных жидкостей, при изменении их температуры на одну и ту же величину.

Будем нагревать на электроплитке масло, масса которого равна массе воды в первом опыте. Будем фиксировать показания термометра через равные промежутки времени.

Результат опыта подтверждает вывод о том, что количество теплоты, необходимое для нагревания тела, прямо пропорционально изменению его температуры и, кроме того, свидетельствует о зависимости этого количества теплоты от рода вещества.

Поскольку в опыте использовалось масло, плотность которого меньше плотности воды и для нагревания масла до некоторой температуры потребовалось меньшее количество теплоты, чем для нагревания воды, можно предположить, что количество теплоты, необходимое для нагревания тела, зависит от его плотности.

Чтобы проверить это предположение, будем одновременно нагревать на нагревателе постоянной мощности одинаковые массы воды, парафина и меди.

Через одно и то же время температура меди оказывается примерно в 10 раз, а парафина примерно в 2 раза выше температуры воды.

Но медь имеет большую, а парафин меньшую плотность, чем вода.

Опыт показывает, что величиной, характеризующей скорость изменения температуры веществ, из которых изготовлены тела, участвующие в теплообмене, является не плотность. Эта величина называется удельной теплоемкостью вещества и обозначается буквой c .

Для сравнения удельных теплоемкостей различных веществ служит специальный прибор. Прибор состоит из стоек, в которых крепится тонкая парафиновая пластинка и планка с пропущенными сквозь нее стержнями. На концах стержней укреплены алюминиевый, стальной и латунный цилиндры равной массы.

Нагреем цилиндры до одинаковой температуры, погрузив их в сосуд с водой, стоящий на горячей электроплитке. Закрепим горячие цилиндры на стойках и освободим их от крепления. Цилиндры одновременно прикасаются к парафиновой пластине и, плавя парафин, начинают погружаться в нее. Глубина погружения цилиндров одинаковой массы в парафиновую пластину, при изменении их температуры на одну и ту же величину, оказывается разной.

Опыт свидетельствует о том, что удельные теплоемкости алюминия, стали и латуни различны.

Проделав соответствующие опыты с плавлением твердых тел, парообразованием жидкостей, сгоранием топлива получаем следующие количественные зависимости.


Чтобы получить единицы удельных величин, их надо выразить из соответствующих формул и в полученные выражения подставить единицы теплоты – 1 Дж, массы – 1 кг, а для удельной теплоемкости – и 1 К.

Получаем единицы: удельной теплоемкости – 1 Дж/кг·К, остальных удельных теплот: 1 Дж/кг.

Внутренняя энергия тела изменяется при совершении работы или теплопередаче. При явлении теплопередачи внутренняя энергия передается теплопроводностью, конвекцией или излучением.

Каждое тело при нагревании или охлаждении (при теплопередаче) получает или теряет какое-то количество энергии. Исходя из этого, принято это количество энергии назвать количеством теплоты.

Итак, количество теплоты - это та энергия, которую отдает или получает тело в процессе теплопередачи.

Какое количество теплоты необходимо для нагревания воды? На простом примере можно понять, что для нагревания разного количества воды потребуется разное количество теплоты. Допустим, возьмем две пробирки с 1 литром воды и с 2-мя литрами воды. В каком случае потребуется большее количество теплоты? Во втором, там, где в пробирке 2 литра воды. Вторая пробирка будет нагреваться дольше, если мы подогреваем их одинаковым источником огня.

Таким образом, количество теплоты зависит от массы тела. Чем больше масса, тем большее количество теплоты требуется для нагрева и, соответственно, на охлаждение тела требуется большее время.

От чего еще зависит количество теплоты? Естественно, от разности температур тел. Но это еще не все. Ведь если мы попытаемся нагреть воду или молоко, то нам потребуется разное количество времени. Т.е получается, что количество теплоты зависит от вещества, из которого состоит тело.

В итоге получается, что количество теплоты, которое нужно для нагревания или количество теплоты, которое выделяется при остывании тела, зависит от его массы, от изменения температуры и от вида вещества, из которого состоит тело.

В чем измеряется количество теплоты

За единицу количества теплоты принято считать 1 Джоуль . До появления единицы измерения энергии ученые считали количество теплоты калориями. Сокращенно эту единицу измерения принято писать - “Дж”

Калория - это количество теплоты, которое необходимо для того, чтобы нагреть 1 грамм воды на 1 градус Цельсия. Сокращенно единицу измерения калории принято писать - “кал”.

1 кал = 4,19 Дж.

Обратите внимание, что в этих единицах энергии принято отмечать пищевую ценность продуктов питания кДж и ккал.

1 ккал = 1000 кал.

1 кДж = 1000 Дж

1 ккал = 4190 Дж = 4,19 кДж

Что такое удельная теплоемкость

Каждое вещество в природе имеет свои свойства, и для нагрева каждого отдельного вещества требуется разное количество энергии, т.е. количества теплоты.

Удельная теплоемкость вещества - это величина, равная количеству теплоты, которое нужно передать телу с массой 1 килограмм, чтобы нагреть его на температуру 1 0 C

Удельная теплоемкость обозначается буквой c и имеет величину измерения Дж/кг*

Например, удельная теплоемкость воды равна 4200 Дж/кг* 0 C. То есть это то количество теплоты, которое нужно передать 1 кг воды, чтобы нагреть ее на 1 0 C

Следует помнить, что удельная теплоемкость веществ в разных агрегатных состояниях различна. То есть для нагревания льда на 1 0 C потребуется другое количество теплоты.

Как рассчитать количество теплоты для нагревания тела

Например, необходимо рассчитать количество теплоты, которое нужно потратить для того, чтобы нагреть 3 кг воды с температуры 15 0 С до температуры 85 0 С. Нам известна удельная теплоемкость воды, то есть количество энергии, которое нужно для того, чтобы нагреть 1 кг воды на 1 градус. То есть для того, чтобы узнать количество теплоты в нашем случае, нужно умножить удельную теплоемкость воды на 3 и на то количество градусов, на которое нужно увеличить температуры воды. Итак, это 4200*3*(85-15) = 882 000.

В скобках мы рассчитываем точное количество градусов, отнимая от конечного необходимого результата начальное

Итак, для того, чтобы нагреть 3 кг воды с 15 до 85 0 С, нам потребуется 882 000 Дж количества теплоты.

Количество теплоты обозначается буквой Q, формула для его расчета выглядит следующим образом:

Q=c*m*(t 2 -t 1).

Разбор и решение задач

Задача 1 . Какое количество теплоты потребуется для нагрева 0,5 кг воды с 20 до 50 0 С

Дано:

m = 0,5 кг.,

с = 4200 Дж/кг* 0 С,

t 1 = 20 0 С,

t 2 = 50 0 С.

Величину удельной теплоемкость мы определили из таблицы.

Решение:

2 -t 1 ).

Подставляем значения:

Q=4200*0,5*(50-20) = 63 000 Дж = 63 кДж.

Ответ: Q=63 кДж.

Задача 2. Какое количество теплоты потребуется для нагревания алюминиевого бруска массой 0,5 кг на 85 0 С?

Дано:

m = 0,5 кг.,

с = 920 Дж/кг* 0 С,

t 1 = 0 0 С,

t 2 = 85 0 С.

Решение:

количество теплоты определяется по формуле Q=c*m*(t 2 -t 1 ).

Подставляем значения:

Q=920*0,5*(85-0) = 39 100 Дж = 39,1 кДж.

Ответ: Q= 39,1 кДж.

Как известно, при различных механических процессах происходит изменение механической энергии . Мерой изменения механической энергии является работа сил, приложенных к системе:

При теплообмене происходит изменение внутренней энергии тела. Мерой изменения внутренней энергии при теплообмене является количество теплоты.

Количество теплоты - это мера изменения внутренней энергии, которую тело получает (или отдает) в процессе теплообмена.

Таким образом, и работа, и количество теплоты характеризуют изменение энергии, но не тождественны энергии. Они не характеризуют само состояние системы, а определяют процесс перехода энергии из одного вида в другой (от одного тела к другому) при изменении состояния и существенно зависят от характера процесса.

Основное различие между работой и количеством теплоты состоит в том, что работа характеризует процесс изменения внутренней энергии системы, сопровождающийся превращением энергии из одного вида в другой (из механической во внутреннюю). Количество теплоты характеризует процесс передачи внутренней энергии от одних тел к другим (от более нагретых к менее нагретым), не сопровождающийся превращениями энергии.

Опыт показывает, что количество теплоты, необходимое для нагревания тела массой m от температуры до температуры , рассчитывается по формуле

где c - удельная теплоемкость вещества;

Единицей удельной теплоемкости в СИ является джоуль на килограмм-Кельвин (Дж/(кг·К)).

Удельная теплоемкость c численно равна количеству теплоты, которое необходимо сообщить телу массой 1 кг, чтобы нагреть его на 1 К.

Теплоемкость тела численно равна количеству теплоты, необходимому для изменения температуры тела на 1 К:

Единицей теплоемкости тела в СИ является джоуль на Кельвин (Дж/К).

Для превращения жидкости в пар при неизменной температуре необходимо затратить количество теплоты

где L - удельная теплота парообразования. При конденсации пара выделяется такое же количество теплоты.

Для того чтобы расплавить кристаллическое тело массой m при температуре плавления, необходимо телу сообщить количество теплоты

где - удельная теплота плавления. При кристаллизации тела такое же количество теплоты выделяется.

Количество теплоты, которое выделяется при полном сгорании топлива массой m,

где q - удельная теплота сгорания.

Единица удельных теплот парообразования, плавления и сгорания в СИ - джоуль на килограмм (Дж/кг).

В фокусе внимания нашей статьи - количество теплоты. Мы рассмотрим понятие внутренней энергии, которая трансформируется при изменении этой величины. А также покажем некоторые примеры применения расчетов в человеческой деятельности.

Теплота

С любым словом родного языка у каждого человека есть свои ассоциации. Они определяются личным опытом и иррациональными чувствами. Что обычно представляется при слове «теплота»? Мягкое одеяло, работающая батарея центрального отопления зимой, первый солнечный свет весной, кот. Или взгляд матери, утешительное слово друга, вовремя проявленное внимание.

Физики подразумевают под этим совершенно конкретный термин. И очень важный, особенно в некоторых разделах этой сложной, но увлекательной науки.

Термодинамика

Рассматривать количество теплоты в отрыве от простейших процессов, на которые опирается закон сохранения энергии, не стоит - ничего не будет понятно. Поэтому для начала напомним их читателям.

Термодинамика рассматривает любую вещь или объект как соединение очень большого количества элементарных частей - атомов, ионов, молекул. Ее уравнения описывают любое изменение коллективного состояния системы как целого и как части целого при изменении макропараметров. Под последними понимаются температура (обозначается как Т), давление (Р), концентрация компонентов (как правило, С).

Внутренняя энергия

Внутренняя энергия - довольно сложный термин, в смысле которого стоит разобраться прежде, чем говорить о количестве теплоты. Он обозначает ту энергию, которая изменяется при увеличении или уменьшении значения макропараметров объекта и не зависит от системы отсчета. Является частью общей энергии. Совпадает с ней в условиях, когда центр масс исследуемой вещи покоится (то есть отсутствует кинетическая составляющая).

Когда человек чувствует, что некоторый объект (скажем, велосипед) нагрелся или охладился, это показывает, что все молекулы и атомы, составляющие данную систему, испытали изменение внутренней энергии. Однако неизменность температуры не означает сохранение этого показателя.

Работа и теплота

Внутренняя энергия любой термодинамической системы может преобразоваться двумя способами:

  • посредством совершения над ней работы;
  • при теплообмене с окружающей средой.

Формула этого процесса выглядит так:

dU=Q-А, где U - внутренняя энергия, Q - теплота, А - работа.

Пусть читатель не обольщается простотой выражения. Перестановка показывает, что Q=dU+А, однако введение энтропии (S) приводит формулу к виду dQ=dSxT.

Так как в данном случае уравнение принимает вид дифференциального, то и первое выражение требует того же. Далее, в зависимости от сил, действующих в исследуемом объекте, и параметра, который вычисляется, выводится необходимое соотношение.

Возьмем в качестве примера термодинамической системы металлический шарик. Если на него надавить, подбросить вверх, уронить в глубокий колодец, то это значит совершить над ним работу. Чисто внешне все эти безобидные действия шарику никакого вреда не причинят, но внутренняя энергия его изменится, хоть и очень ненамного.

Второй способ - это теплообмен. Теперь подходим к главной цели данной статьи: описанию того, что такое количество теплоты. Это такое изменение внутренней энергии термодинамической системы, которое происходит при теплообмене (смотрите формулу выше). Оно измеряется в джоулях или калориях. Очевидно, что если шарик подержать над зажигалкой, на солнце, или просто в теплой руке, то он нагреется. А дальше можно по изменению температуры найти количество теплоты, которое ему было при этом сообщено.

Почему газ - лучший пример изменения внутренней энергии, и почему из-за этого школьники не любят физику

Выше мы описывали изменения термодинамических параметров металлического шарика. Они без специальных приборов не очень заметны, и читателю остается поверить на слово о происходящих с объектом процессах. Другое дело, если система - газ. Надавите на него - это будет видно, нагрейте - поднимется давление, опустите под землю - и это можно с легкостью зафиксировать. Поэтому в учебниках чаще всего в качестве наглядной термодинамической системы берут именно газ.

Но, увы, в современном образовании реальным опытам уделяется не так много внимания. Ученый, который пишет методическое пособие, отлично понимает, о чем идет речь. Ему кажется, что на примере молекул газа все термодинамические параметры будут нужным образом продемонстрированы. Но ученику, который только открывает для себя этот мир, скучно слушать про идеальную колбу с теоретическим поршнем. Если бы в школе существовали настоящие исследовательские лаборатории и на работу в них выделялись часы, все было бы по-другому. Пока, к сожалению, опыты только на бумаге. И, скорее всего, именно это становится причиной того, что люди считают данный раздел физики чем-то чисто теоретическим, далеким от жизни и ненужным.

Поэтому мы решили в качестве примера привести уже упоминаемый выше велосипед. Человек давит на педали - совершает над ними работу. Помимо сообщения всему механизму крутящего момента (благодаря которому велосипед и перемещается в пространстве), изменяется внутренняя энергия материалов, из которых сделаны рычаги. Велосипедист нажимает на ручки, чтобы повернуть, - и опять совершает работу.

Внутренняя энергия внешнего покрытия (пластика или металла) увеличивается. Человек выезжает на полянку под яркое солнце - велосипед нагревается, изменяется его количество теплоты. Останавливается отдохнуть в тени старого дуба, и система охлаждается, теряя калории или джоули. Увеличивает скорость - растет обмен энергией. Однако расчет количества теплоты во всех этих случаях покажет очень маленькую, незаметную величину. Поэтому и кажется, что проявлений термодинамической физики в реальной жизни нет.

Применение расчетов по изменению количества теплоты

Вероятно, читатель скажет, что все это весьма познавательно, но зачем же нас так мучают в школе этими формулами. А сейчас мы приведем примеры, в каких областях человеческой деятельности они нужны непосредственно и как это касается любого в его повседневности.

Для начала посмотрите вокруг себя и посчитайте: сколько предметов из металла вас окружают? Наверняка больше десяти. Но прежде чем стать скрепкой, вагоном, кольцом или флешкой, любой металл проходит выплавку. Каждый комбинат, на котором перерабатывают, допустим, железную руду, должен понимать, сколько требуется топлива, чтобы оптимизировать расходы. А рассчитывая это, необходимо знать теплоемкость металлосодержащего сырья и количество теплоты, которое ему необходимо сообщить, чтобы произошли все технологические процессы. Так как выделяемая единицей топлива энергия рассчитывается в джоулях или калориях, то формулы нужны непосредственно.

Или другой пример: в большинстве супермаркетов есть отдел с замороженными товарами - рыбой, мясом, фруктами. Там, где сырье из мяса животных или морепродуктов превращается в полуфабрикат, должны знать, сколько электричества употребят холодильные и морозильные установки на тонну или единицу готового продукта. Для этого следует рассчитать, какое количество теплоты теряет килограмм клубники или кальмаров при охлаждении на один градус Цельсия. А в итоге это покажет, сколько электричества потратит морозильник определенной мощности.

Самолеты, пароходы, поезда

Выше мы показали примеры относительно неподвижных, статичных предметов, которым сообщают или у которых, наоборот, отнимают определенное количество теплоты. Для объектов, в процессе работы движущихся в условиях постоянно меняющейся температуры, расчеты количества теплоты важны по другой причине.

Есть такое понятие, как "усталость металла". Включает оно в себя также и предельно допустимые нагрузки при определенной скорости изменения температуры. Представьте, самолет взлетает из влажных тропиков в замороженные верхние слои атмосферы. Инженерам приходится много работать, чтобы он не развалился из-за трещин в металле, которые появляются при перепаде температуры. Они ищут такой состав сплава, который способен выдержать реальные нагрузки и будет иметь большой запас прочности. А чтобы не искать вслепую, надеясь случайно наткнуться на нужную композицию, приходится делать много расчетов, в том числе и включающих изменения количества теплоты.

Обучающая цель: Ввести понятия количества теплоты и удельной теплоемкости.

Развивающая цель: Воспитывать внимательность; учить думать, делать выводы.

1. Актуализация темы

2. Объяснение нового материала. 50 мин.

Вам уже известно, что внутренняя энергия тела может изменяться как путем совершения работы, так и путем теплопередачи (без совершения работы).

Энергия, которую получает или теряет тело при теплопередаче, называют количеством теплоты. (запись в тетрадь)

Значит и единицы измерения количества теплоты тоже Джоули (Дж) .

Проводим опыт: два стакана в одном 300 г. воды, а в другом 150 г. и железный цилиндр массой 150 г. Оба стакана ставятся на одну и ту же плитку. Через некоторое время термометры покажут, что вода в сосуде, в котором находится тело, нагревается быстрее.

Это означает, что для нагревания 150 г. железо требуется меньше количество теплоты, чем для нагревания 150 г. воды.

Количество теплоты, переданное телу, зависит от рода вещества, из которого изготовлено тело. (запись в тетрадь)

Предлагаем вопрос: одинаковое ли количество теплоты требуется для нагревания до одной и той же температуры тел равной массы, но состоящих из разных веществ?

Проводим опыт с прибором Тиндаля по определению удельной теплоемкости.

Делаем вывод: тела из разных веществ, но одинаковой массы, отдают при охлаждении и требуют при нагревании на одно и то же число градусов разное количество теплоты.

Делаем выводы:

1. Для нагревания до одной и той же температуры тел равной массы, состоящих из разных веществ, требуется различное количество теплоты.

2.Тела равной массы, состоящие из разных веществ и нагретые до одинаковой температуры. При охлаждении на одно и тоже число градусов отдают различное количество теплоты.

Делаем заключение, что количество теплоты, необходимое для нагревания на один градус единицы масс разных веществ, будет различным.

Даем определение удельной теплоемкости.

Физическая величина, численно равная количеству теплоты, которое необходимо передать телу массой 1 кг для того, чтобы его температура изменилась на 1 градус, называется удельной теплоемкостью вещества.

Вводим единицу измерения удельной теплоемкости: 1Дж/кг*градус.

Физический смысл термина: удельная теплоемкость показывает, на какую величину изменяется внутренняя энергия 1г (кг.) вещества при нагревании или охлаждении его на 1 градус.

Рассматриваем таблицу удельных теплоемкостей некоторых веществ.

Решаем задачу аналитическим путем

Какое количество теплоты требуется, чтобы нагреть стакан воды (200 г.) от 20 0 до 70 0 С.

Для нагревания 1 г. на 1 г. Требуется - 4,2 Дж.

А для нагревания 200 г. на 1 г. потребуется в 200 больше - 200*4,2 Дж.

А для нагревания 200 г. на (70 0 -20 0) потребуется еще в (70-20) больше - 200 * (70-20) *4,2 Дж

Подставляя данные, получим Q = 200 * 50*4,2 Дж = 42000 Дж.

Запишем полученную формулу через соответствующие величины

4. От чего зависит количество теплоты, полученное телом при нагревании?

Обращаем внимании, что количество теплоты, необходимое для нагревания какого либо тела, пропорционально массе тела и изменению его температуры.,

Имеются два цилиндра одинаковой массы: железный и латунный. Одинаковое ли количество теплоты необходимо, чтобы нагреть их на одно и то же число градусов? Почему?

Какое количество теплоты необходимо, чтобы нагреть 250 г. воды от 20 о до 60 0 С.

Какая связь между калорией и джоулем?

Калория – это количество теплоты, которое необходимо для нагревания 1 г воды на 1 градус.

1 кал = 4.19=4.2 Дж

1ккал=1000кал

1ккал=4190Дж=4200Дж

3. Решение задач. 28 мин.

Если прогретые в кипящей воде цилиндры из свинца, олова и стали массой 1 кг поставить на лед, то они охладятся, и часть льда под ними растает. Как изменится внутренняя энергия цилиндров? Под каким из цилиндров растает больше льда, под каким – меньше?

Нагретый камень массой 5 кг. Охлаждаясь в воде на 1 градус, передает ей 2,1 кДж энергии. Чему равна удельная теплоемкость камня

При закалке зубила его сначала нагрели до 650 0 , потом опустили в масло, где оно стыло до 50 0 С. Какое при этом выделилось количество теплоты, если его масса 500 гр.

Какое количество теплоты пошло на нагревание от 20 0 до 1220 0 С. стальной заготовки для коленчатого вала компрессора массой 35 кг.

Самостоятельная работа

Какой вид теплопередачи?

Учащиеся заполняют таблицу.

  1. Воздух в комнате нагревается через стены.
  2. Через открытое окно, в которое входит теплый воздух.
  3. Через стекло, которое пропускает лучи солнца.
  4. Земля нагревается лучами солнца.
  5. Жидкость нагревается на плите.
  6. Стальная ложка нагревается от чая.
  7. Воздух нагревается от свечи.
  8. Газ двигается около тепловыделяющих деталей машины.
  9. Нагревание ствола пулемета.
  10. Кипение молока.

5. Домашнее задание: Перышкин А.В. “Физика 8” § §7, 8; сборник задач 7-8 Лукашик В.И. №№778-780, 792,793 2 мин.