Основные правила приема антидотов. Яды и их противоядия. Основные вопросы антидотной терапии. Общие сведения об антидотах при отравлении


Антидотом называется лекарство, применяемое при лечении отравлений и способствующее обезвреживанию яда или предупреждению и устранению вызываемого ими токсического эффекта.

Антидоты бывают прямого и непрямого действия.

(I)Прямого действия – осуществляется непосредственное химическое или физико – химическое взаимодействие яда и противоядия. Основные варианты – сорбентные препараты и химические реагенты. Сорбентные препараты – защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат – снижение концентрации яда, взаимодействующего с биоструктурами, что приводит к ослаблению токсичного эффекта. Сорбция происходит за счет неспецифических межмолекулярных взаимодействий – водородных и Ван – дер – Ваальсовых связей (не ковалентных!). Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция), из крови (гемосорбция, плазмосорбция). Если яд уже проник в ткани, то применение сорбентов не эффективно. Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn, ионообменные смолы.

При отравлении цианидами (солями синильной кислоты HCN) применяются глюкоза и тиосульфат натрия, которые связывают HCN. Ниже приведена реакция с глюкозой:

Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов- Ме2+ ). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (-SH) группами белков:

Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.
Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH-групп). Механизм их действия представлен на нижней схеме. Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

Еще один класс антидотов прямого действия - антидоты – комплексоны (комплексообразователи ).Они образуют прочные комплексные соединения с токсичными катионами Hg, Co, Cd, Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

II)Антидоты непрямого действия .
Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).
1) Защита рецепторов от токсичного воздействия.
Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы. Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. При избытке ацетилхолина происходит беспорядочное сокращение мышц – судороги, которые часто приводят к смерти. Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина.
2) Восстановление или замещение поврежденной ядом биоструктуры.
При отравлениях фторидами и HF, при отравлениях щавелевой кислотой H2C2O4 происходит связывание ионов Са2+ в организме. Противоядие – CaCl2.
3) Антиоксиданты. Отравление четыреххлористым углеродом CCl4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты – вещества, связывающие свободные радикалы (антиоксиданты), например альфа -токоферол (витамин Е).



4) Конкуренция с ядом за связывание с ферментом. При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза. Летальный синтез – превращение в орг-ме в процессе метаболизма менее токсичных соед-ний в более токсичные.

Этиловый спирт C2H5OH лучше связывается с ферментом алкоголь-дегидрогеназой. Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH3OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

Тема занятия: Медицинские средства профилактики и оказания помощи при химических радиационных поражениях

Цели занятия:

1. Дать представление об антидотах, радиопротекторах и механизме их действия.

2. Ознакомить с принципами оказания неотложной помощи при острых интоксикациях, при лучевых поражениях в очаге и на этапах медицинской эвакуации.

3. Показать достижения отечественной медицины по изысканию и разработке новых антидотов и радиопротекторов.

Вопросы к практическому занятию:

6. Средства профилактики общей первичной реакции на облучение, ранней преходя-

7. Основные принципы оказания первой, доврачебной и первой врачебной помощи при острых отравлениях и лучевых поражениях.

Вопросы для конспектирования в рабочей тетради

1. Антидоты, механизмы антидотного действия.

2. Характеристика современных антидотов.

3.Общие принципы оказания неотложной помощи при острых интоксикациях.

Порядок применения противоядий.

4. Радиопротекторы. Показатели защитной эффективности радиопротекторов.

5. Механизмы радиозащитного действия. Краткая характеристика и порядок примене-

ния. Средства длительного поддержания повышенной радиорезистентности организма.

7. Средства профилактики общей первичной реакции на облучение, ранней преходя-

щей недееспособности. Средства догоспитального лечения ОЛБ.

Антидоты, механизмы антидотного действия

Антидотом (от греч. Antidotum – даваемое против) называются лекарственные вещества, применяемые при лечении отравлений и способствующее обезвреживанию яда или предупреждению и устранению вызываемого им токсического эффекта.

Более расширенное определение дают эксперты международной программы химической безопасности ВОЗ (1996 г.). Они считают, что антидотом является препарат, способный устранить или ослабить специфическое действие ксенобиотиков за счет его иммобилизации (хелатообразователи), уменьшения проникновения яда к эффекторным рецепторам путем снижения его концентрации (адсорбенты) или противодействия на уровне рецептора (физиологические и фармакологические антагонисты).

Антидоты по своему действию подразделяются на неспецифические и специфические. Неспецифические антидоты – это соединения, которые обезвреживают многие ксенобиотики путем физического или физико-химического воздействия. Специфические антидоты действуют на определенные мишени, вызывая тем самым обезвреживание яда или устраняя его эффекты.


Специфические антидоты существуют для небольшого количества высокотоксичных химических веществ и они различны по механизмам своего действия. Следует отметить, что их назначение является далеко не безопасным мероприятием. Некоторые антидоты вызывают серьезные побочные реакции, поэтому риск их назначения должен быть сопоставлен с вероятной пользой от их применения. Период полувыведения многих из них меньше, чем яда (опиаты и налоксон), поэтому после первоначального улучшения состояния больного может наступить повторное его ухудшение. Отсюда ясно, что даже после применения антидотов необходимо продолжать тщательное наблюдение за больными. Эти антидоты более эффективно применять в начальной токсикогенной стадии отравления, чем в более поздний период. Однако некоторые из них оказывают прекрасное действие и в соматогенной стадии отравления (антитоксическая сыворотка «антикобра»).

В токсикологии, как и в других областях практической медицины, для оказания помощи используют этиотропные, патогенетические и симптоматические средства. Поводом для введения этиотропных препаратов является знание непосредственной причины отравления, особенностей токсикокинетики яда. Симптоматические и патогенетические вещества назначают ориентируясь на проявления интоксикации.

Антидоты представляют собой лекарственные средства или особые составы, применение которых в профилактике и лечении отравлений обусловлено их специфическим антитоксическим действием.

Применение антидотов лежит в основе профилактических или терапевтических мер по нейтрализации токсических эффектов химических веществ. Поскольку многие химические вещества обладают множественными механизмами токсического действия, в некоторых случаях приходится одновременно вводить различные антидоты и вместе с тем применять терапевтические средства, устраняющие не причины, а только отдельные симптомы отравления. Более того, поскольку глубинные механизмы действия большинства химических соединений изучены недостаточно, лечение отравлений часто ограничивается симптоматической терапией. Опыт, накопленный в клинической токсикологии, показывает, что некоторые препараты, в частности витамины и гормоны, можно отнести к универсальным антидотам благодаря положительному профилактическому и терапевтическому действию, которое они оказывают при различных отравлениях. Объясняется это тем, что в основе отравлений лежат общие патогенетические механизмы. Общепризнанной классификации антидотов до сих пор не существует. Наиболее рациональная система классификации основывается на сведении антидотов в основные группы в зависимости от механизма их антитоксического действия – физического, химического, биохимического или физиологического. Исходя из условий, при которых антидоты вступают в реакцию с ядом, проводят разграничение между антидотами местного действия, реагирующими с ядом до его всасывания тканями организма, и антидотами резорбтивного действия, реагирующими с ядом после его поступления в ткани и физиологические жидкости.

Следует отметить, что антидоты физического действия применяются исключительно для профилактики интоксикации, а антидоты резорбтивного действия служат как для профилактики, так и для лечения отравлений.

^

2.6.1. Антидоты физического действия

Эти антидоты оказывают защитное действие главным образом за счет адсорбции яда. Благодаря своей высокой поверхностной активности адсорбенты связывают молекулы твердого вещества и препятствуют его поглощению окружающей тканью. Однако молекулы адсорбированного яда могут позже отделиться от адсорбента и вновь попасть на ткани желудка. Это явление отделения называется десорбцией. Поэтому при применении антидотов физического действия исключительно важно сочетать их с мерами, направленными на последующее выведение адсорбента из организма. Этого можно добиться промыванием желудка или применением слабительных, если адсорбент уже попал в кишечник. Предпочтение здесь следует отдавать солевым слабительным (например, сульфату натрия), являющимся гипертоническими растворами, стимулирующими поступление жидкости в кишечник, что практически исключает поглощение твердого вещества тканями. Жировые слабительные (например, касторовое масло) могут способствовать адсорбции жирорастворимых химических веществ, в результате чего возрастает количество яда, поглощенного организмом. В тех случаях, когда характер химического вещества точно неизвестен, рекомендуется применять солевые слабительные. Наиболее типичными антидотами этой группы являются активированный уголь и каолин. Они дают большой эффект при остром отравлении алкалоидами (органические вещества растительного происхождения, например, атропин) или солями тяжелых металлов.

^

2.6.2. Антидоты химического действия

В составе механизма их действия лежит непосредственная реакция между ядом и антидотом. Химические антидоты могут быть как местного, так и резорбтивного действия.

Местное действие. Если физические антидоты оказывают малоспецифический антидотный эффект, то химические обладают довольно высокой специфичностью, что связано с самим характером химической реакции. Местное действие химических антидотов обеспечивается в результате реакций нейтрализации, образования нерастворимых соединений, окисления, восстановления, конкурентного замещения и образования комплексов. Первые три механизма действия имеют особую важность и изучены лучше других.

Хорошим примером нейтрализации ядов служит использование щелочей для противодействия случайно проглоченным или попавшим на кожу сильным кислотам. Нейтрализующие антидоты применяются и для осуществления реакций, в результате которых образуются соединения, имеющие низкую биологическую активность. Например, в случае попадания в организм сильных кислот рекомендуется провести промывание желудка теплой водой, в которую добавлен оксид магния (20 г/л). В случае отравления плавиковой или лимонной кислотой больному дают проглотить кашицеобразную смесь хлорида кальция и оксида магния. При попадании едких щелочей следует провести промывание желудка 1 % раствором лимонной или уксусной кислоты. Во всех случаях попадания в организм едких щелочей и концентрированных кислот следует иметь в виду, что рвотные средства противопоказаны. При рвоте происходят резкие сокращения желудочных мышц, а поскольку эти агрессивные жидкости могут поразить желудочную ткань, возникает опасность прободения.

Антидоты, образующие нерастворимые соединения, которые не могут проникнуть через слизистые оболочки или кожу, обладают избирательным действием, т. е. эффективны только в случае отравления определенными химическими веществами. Классическим примером антидотов такого типа могут служить 2,3–димеркаптопропанол, образующий нерастворимые, химически инертные сульфиды металлов. Он дает положительный эффект при отравлении цинком, медью, кадмием, ртутью, сурьмой, мышьяком.

Таннин (дубильная кислота) образует нерастворимые соединения с солями алкалоидов и тяжелых металлов. Токсиколог должен помнить, что соединения таннина с морфином, кокаином, атропином или никотином обладают различной степенью стабильности.

После приема любых антидотов этой группы необходимо производить промывание желудка для выведения образовавшихся химических комплексов.

Большой интерес представляют антидоты комбинированного действия, в частности состав, в который входят 50 г таннина, 50 г активированного угля и 25 г оксида магния. В этом составе сочетаются антидоты как физического, так и химического действия.

В последние годы привлекает к себе внимание местное применение тиосульфата натрия. Он используется в случаях отравления мышьяком, ртутью, свинцом, цианистым водородом, солями брома и йода.

Тиосульфат натрия применяется внутрь в виде 10 %-го раствора (2–3 столовые ложки).

Местное применение антидотов при указанных выше отравлениях следует сочетать с подкожными, внутримышечными или внутривенными инъекциями.

В случаях попадания в организм опия, морфина, аконита или фосфора широко применяется окисление твердого вещества. Наиболее распространенным антидотом для этих случаев является перманганат калия, который применяется для промывания желудка в виде 0,02–0,1 %-го раствора. Этот препарат не дает эффекта при отравлении кокаином, атропином и барбитуратами.

Резорбтивное действие. Резорбтивные антидоты химического действия можно подразделить на две основные подгруппы:


  1. антидоты, вступающие во взаимодействие с некоторыми промежуточными продуктами, образующимися в результате реакции между ядом и субстратом;
б) антидоты, непосредственно вмешивающиеся в реакцию между ядом и определенными биологическими системами или структурами. В этом случае химический механизм часто бывает связан с биохимическим механизмом антидотного действия.

Антидоты первой подгруппы применяются в случае отравления цианидами. До настоящего времени не существует антидота, который подавлял бы взаимодействие между цианидом и подверженной его влиянию ферментной системой. После всасывания в кровь цианид переносится кровотоком к тканям, где взаимодействует с трехвалентным железом окисленной цитохром-оксидазы одного из ферментов, необходимых для тканевого дыхания. В результате кислород, поступающий в организм, прекращает реагировать с ферментной системой, что вызывает острое кислородное голодание. Однако комплекс, образуемый цианидом с железом цитохромоксидазы, нестабилен и легко диссоциирует.

Следовательно, лечение антидотами протекает в трех основных направлениях:

1) нейтрализация яда в кровотоке немедленно после его поступления в организм;

2) фиксация яда в кровотоке с целью ограничения количества яда, поступающего в ткани;

3) нейтрализация яда, поступающего в кровь, после диссоциации цианометгемоглобина и комплекса цианида и субстрата.

Прямую нейтрализацию цианидов можно обеспечить путем введения глюкозы, реагирующей с синильной кислотой, в результате чего образуется слаботоксичный циангидрид. Более активным антидотом является ß-оксиэтил-метилендиамин. Оба антидота следует вводить внутривенно в течение нескольких минут или секунд после попадания яда в организм.

Более распространенным является метод, при котором ставится задача фиксации яда, циркулирующего в кровотоке. Цианиды не взаимодействуют с гемоглобином, но активно сочетаются с метгемоглобином, образуя цианометгемоглобин. Хотя он не отличается высокой стабильностью, но некоторое время может сохраниться. Поэтому в данном случае необходимо вводить антидоты, способствующие образованию метгемоглобина. Осуществляется это путем вдыхания паров амилнитрита или внутривенного введения раствора нитрита натрия. В результате свободный цианид, присутствующий в плазме крови, связывается в комплекс с метгемоглобином, теряя в значительной степени свою токсичность.

Необходимо иметь в виду, что антидоты, образующие метгемоглобин, могут влиять на артериальное давление: если амилнитрит вызывает выраженное, кратковременное падение давления, то нитрит натрия оказывает продолжительное гипотоническое действие. При введении веществ, образующих метгемоглобин, следует учитывать, что он не только принимает участие в переносе кислорода, но и сам может стать причиной кислородного голодания. Поэтому применение антидотов, образующих метгемоглобин, должно подчиняться определенным правилам.

Третий метод лечения антидотами заключается в нейтрализации цианидов, высвобожденных из комплексов с метгемоглобином и цитохром-оксидазой. С этой целью производится внутривенное взбрызгивание тиосульфата натрия, преобразующего цианиды в нетоксические тиоцианаты.

Специфичность химических антидотов ограничена, поскольку они не влияют на прямое взаимодействие между ядом и субстратом. Однако воздействие, которое такие антидоты оказывают на определенные звенья механизма токсического действия, имеет несомненное терапевтическое значение, хотя применение этих антидотов требует высокой врачебной квалификации и предельной осторожности.

Химические антидоты, непосредственно взаимодействующие с токсичным веществом, отличаются высокой специфичностью, позволяющей им связывать токсические соединения и выводить их из организма.

Комплексообразующие антидоты образуют стабильные соединения с двух- и трехвалентными металлами, которые затем легко выводятся с мочой.

В случаях отравления свинцом, кобальтом, медью, ванадием большой эффект дает двунатриевокальциевая соль этилендиаминтетрауксусной кислоты (ЭДТА). Кальций, содержащийся в молекуле антидота, реагирует только с металлами, образующими более стабильный комплекс. Эта соль не реагирует с ионами бария, стронция и некоторых других металлов с более низкой константой устойчивости. Имеется несколько металлов, с которыми этот антидот образует токсичные комплексы, поэтому его следует применять с большой осторожностью; в случае отравления кадмием, ртутью и селеном применение этого антидота противопоказано.

При острых и хронических отравлениях плутонием и радиоактивными йодом, цезием, цинком, ураном и свинцом применяется пентамил. Данный препарат применяется также в случаях отравления кадмием и железом. Его применение противопоказано лицам, страдающим нефритом и сердечно-сосудистыми заболеваниями. Комплексообразующие соединения в целом включают также антидоты, молекулы которых содержат свободные меркаптогруппы – SH. Большой интерес в этом плане представляют димеркаптопром (БАЛ) и 2,3-димер­каптопропансульфат (унитиол). Молекулярная структура этих антидотов сравнительна проста:

H 2 C – SH H 2 C – SH | |

HC – SH HC – SH

H 2 C – OH H 2 C – SO 3 Na

БАЛ Унитиол

В обоих этих антидотах имеются две SH-группы, близкие друг к другу. Значение данной структуры раскрывается в приводимом ниже примере, где антидоты, содержащие SH-группы, реагируют с металлами и неметаллами. Реакцию димеркаптосоединений с металлами можно описать следующим образом:

Фермент + Me → фермент Ме

HSCH 2 S – CH 2

HSCH + фермент Me → фермент + Me– S – CH

HOCH 2 OH–CH 2

Здесь можно выделить следующие фазы:

А) реакция ферментных SH-групп и образование малоустойчивого комплекса;

Б) реакция антидота с комплексом;

В) высвобождение активного фермента благодаря образованию комплекса металл-антидот, выводящегося с мочой. Унитиол менее токсичен, чем БАЛ. Оба препарата применяются при лечении острых и хронических отравлений мышьяком, хромом, висмутом, ртутью и некоторыми другими металлами, но не свинцом. Не рекомендуется при отравлении селеном.

Для лечения отравлений никелем, молибденом и некоторыми другими металлами эффективных антидотов не существует.

^

2.6.3. Антидоты биохимического действия

Эти препараты отличаются высокоспецифичным антидотным эффектом. Для этого класса типичны антидоты, применяемые при лечении отравлений фосфорорганическими соединениями, являющимися основными компонентами инсектицидов. Даже очень небольшие дозы фосфорорганических соединений подавляют функцию холинэстеразы в результате ее фосфорилирования, что приводит к накоплению ацетилхолина в тканях. Поскольку ацетилхолин имеет огромное значение для передачи импульсов как в центральной, так и в периферической нервной системе, его чрезмерное количество ведет к нарушению нервных функций, и, следовательно, к серьезным патологическим изменениям.

Антидоты, восстанавливающие функцию холинэстеразы, принадлежат к производным гидроксамовых кислот и содержат оксимную группу R – CH = NOH. Практическое значение имеют оксимные антидоты 2–ПАМ (пралидоксим), дипироксим (ТМБ – 4) и изонитрозин. При благоприятных условиях эти вещества могут восстановить функцию фермента холинэстеразы, ослабляя или ликвидируя клинические признаки отравления, предотвращая отдаленные последствия и способствуя успешному выздоровлению.

Практика, однако, показала, что наилучшие результаты достигаются в тех случаях, когда биохимические антидоты применяются в сочетании с антидотами физиологического действия.

^

2.6.4. Антидоты физиологического действия

п ример отравления фосфорорганическими соединениями показывает, что подавление функции холинэстеразы приводит, прежде всего, к накоплению ацетилхолина в синапсах. Существует две возможности нейтрализации токсического действия яда:

А) восстановление функции холинэстеразы;

Б) защита физиологических систем, чувствительных к ацетилхолину, от чрезмерного действия этого медиатора нервных импульсов, которое приво-

Дит первоначально к острому возбуждению, а затем к функциональному параличу.

Примером препарата, подавляющего чувствительность к ацетилхолину, является атропин. Класс физиологических антидотов включает множество лекарственных средств. В случае острого возбуждения ЦНС, наблюдающегося при многих отравлениях, рекомендуется вводить наркотики или противосудорожные средства. В то же время при остром подавлении дыхательного центра в качестве антидотов применяются стимуляторы ЦНС. В первом приближении можно утверждать, что к антидотам физиологического (или функционального) действия относятся все лекарственные средства, вызывающие физиологические реакции, противодействующие яду.

Поэтому трудно провести четкое разграничение между антидотами и лекарственными средствами, применяемыми в симптоматической терапии.

Контрольные вопросы


  1. Как классифицируются токсичные вещества по цели применения?

  2. Какие виды отравлений Вы знаете?

  3. Перечислите экспериментальные параметры токсикометрии.

  4. Назовите производные параметры токсикометрии.

  5. В чем суть теории рецепторов токсичности?

  6. Какими путями поступают вредные вещества в организм?

  7. Что такое биотрансформация токсичных веществ?

  8. Пути выведения чужеродных веществ из организма.

  9. Каковы особенности острых и хронических отравлений?

  10. Перечислите основные и дополнительные факторы, определяющие развитие отравлений.

  11. Назовите виды комбинированного действия ядов.

  12. Что такое антидоты?
^ ЧАСТЬ 3. ПРОФПРИГОДНОСТЬ И ПРОФЕССИОНАЛЬНЫЕ

Ядовитые вещества, которыми можно отравиться, подстерегают на каждом шагу – они содержатся в растениях, животных, лекарствах и различных веществах, которые окружают людей в быту. Большинство ядов являются смертельными . Чтобы нейтрализовать их воздействие, используются антидоты при отравлениях, таблица с классификацией которых представлена в данной статье.

Общие сведения об антидотах при отравлении

Как любое сильное лекарство, антидоты, даваемые при отравлении, имеют свои фармакологические свойства, которые оценивают разную специфику препаратов. К ним в частности относятся:

  • время приема;
  • эффективность;
  • доза применения;
  • побочные эффекты.

В зависимости от периода и остроты заболевания значение антидотной терапии может разниться. Таким образом, лечение отравления антидотами эффективно только на ранней стадии , называемой токсикогенной.

Длительность стадии различна и зависит от вещества, вызвавшего отравление. Наибольшее время действия этой фазы составляет 8-12 суток и относится к воздействию на организм тяжелых металлов. Наименьшее время относится к отравлению цианидами, хлорированными углеводородами и другими высокотоксичными и быстрометаболизируемыми соединениями.

Не следует применять антидотную терапию, если есть сомнения в достоверности диагноза и вида отравления , так как из-за определенной специфичности такого рода лечения можно оказать двойной вред организму, ведь часто антидот – это не менее токсичное средство, чем сам предмет интоксикации.

Если упущена первая стадия болезни и развиваются тяжелые нарушения в системе кровообращения, то, помимо антидотной терапии, эффективность которой будет теперь снижена, необходимо мероприятие по срочным реанимационным действиям.

Антидоты незаменимы при состояниях необратимости отсроченных или острых отравлений, но во вторую фазу болезни, называемую соматогенной, перестают оказывать лечебное влияние.

Все антидоты по механизму воздействия можно разделить на три группы:

  • этиотропные – ослабляют или устраняют все проявления интоксикации;
  • патогенетические – ослабляют или устраняют те проявления отравления, которые соответствуют конкретному патогенетическому феномену;
  • симптоматические – ослабляют или устраняют некоторые проявления отравления, такие как боль, судороги, психомоторное возбуждение.

Таким образом, эффективные антидоты, которые более всего помогают при отравлении, имеют высокий уровень токсичности . И наоборот – чем безопаснеt противоядие, тем менее оно эффективно.

Классификация антидотов

Виды антидотов разработал С. Н. Голиков – именно его вариант классификации часто используется современной медициной:

  • местное действие антидотов, при котором происходит впитывание действующего вещества тканью организма и обезвреживание яда;
  • общерезорбтивное действие основано на эффекте химического конфликта между антидотом и ядом;
  • конкурентное действие антидотов, при котором яд вытесняется и связывается безвредными соединениями на основании химической идентичности между антидотом и ферментами, а также другими элементами организма;
  • физиологическое действие основано на противоположности между поведением яда и противоядия в организме, что позволяет удалить нарушения и вернуть нормальное состояние;
  • иммунологическое действие заключается в вакцинировании и использовании специфической сыворотки, действующей при конкретном отравлении.

Антидоты классифицируются и разделяются также по своей природе. Отдельно различают противоядия:

  • от животного/бактериального отравления;
  • от токсинов грибов;
  • от растительного и алкалоидного;
  • при лекарственном отравлении.

В зависимости от вида яда, отравления могут быть пищевыми и непищевыми . Любые отравления, приводящие к ухудшению состояния больного, должны быть нейтрализованы антидотами. Они препятствуют распространению и отравлению ядами в органах, системе, биологических процессах, а также затормаживают функциональные нарушения, вызванные интоксикацией.

Пищевые отравления

Состояние с острым расстройством пищеварения, возникшим после употребления в пищу некачественных продуктов или питья, называют пищевым отравлением. Оно возникает при приеме порченой еды, зараженной вредоносными организмами, или в состав которой попали опасные химические соединения. Главными симптомами являются тошнота, рвота, диарея .

Бывают инфекционные и токсические отравления: источниками первого являются всевозможные бактерии, микробы, вирусы и простейшие одноклеточные организмы, попадающие в организм вместе с пищей. Токсическими отравлениями называют попавшие в организм яды тяжелых металлов, несъедобных растений и прочих продуктов с критическим содержанием токсинов.

Проявления заболевания развиваются уже через 2-6 часов после заражения и характеризуются резким развитием симптомов. Среди инфекционных отравлений наибольшую опасность для заражения представляют мясные и молочные продукты, которые, если они имеют заражение и прошли недостаточную термообработку, могут причинить серьезный вред, так как представляют собой идеальную среду для размножения бактерий и других организмов.

Способы определения опасных продуктов

Внешне свежий и вкусный продукт тоже может быть опасен, так как изначально попавшие в него микроорганизмы размножаются постепенно, но уже само их наличие грозит испортить функциональность ЖКТ. Поэтому первым и самым главным правилом потребления продуктов является контроль безопасности . Пищевые продукты можно покупать только в специально отведенных для этого местах, они должны продаваться людьми, у которых есть медкнижки. Еду нужно содержать в помещениях, прошедших санитарную проверку, зарегистрированных в системе и имеющих право на соответствующую деятельность. Конечно же, различные закусочные с шаурмой , уличными пирожками и прочие сомнительные пищевые точки в этот список не входят.


Инфекционные отравления крайне опасны для окружающих и могут привести к их заражению
. Свежеприготовленные продукты имеют минимальные шансы быть зараженными, но полежавшая пища становится потенциально опасной уже через несколько часов.

Помимо срока годности, который следует всегда проверять, даже если покупка совершается в крупной торговой сети, к признакам, которые могут свидетельствовать, что пища лежала больше положенного срока, можно отнести следующие:

  • нарушенная упаковка, следы дефектов на пачке, которые привели к нарушению ее целостности;
  • нетипичный, слишком резкий запах или, наоборот, – его отсутствие;
  • расслаивание консистенции, ее неоднородность;
  • любые пузырьки при размешивании, если это не минералка;
  • цвет и запах не соответствует должному – особенно, если это мясо, яйца, молоко;
  • наличие осадка, непрозрачность, любые подозрительные изменения привычного вида товара.

Наличие этих характеристик должно остановить от покупки подобного продукта и выбрать тот, который не вызывает сомнений.

Симптомы

Токсин или микроб, попавший в организм, может действовать по-разному, но есть характерные общие симптомы, которые встречаются наиболее часто. Это температура, общая слабость, нарушение работы ЖКТ . Также врачи часто отмечают потерю у пациента аппетита, тошноту, боли и вздутие в животе. Пациент ослаблен, выглядит бледным, у него может выступить холодный пот и снизиться давление.

При токсическом отравлении симптомы и нарушения более серьезны: у больного видны признаки обезвоживания, нарушается зрение – он видит раздвоение предметов, может наступить временная слепота. Возможны слюноотделение, галлюцинации, паралич, потеря сознания, судороги, кома.

Группа риска – маленькие дети, беременные женщины и пожилые люди. Для них признаки могут быть более резкими, болезнь имеет неблагоприятный прогноз.

Первичные симптомы отравления при некоторых токсинах могут появляться уже через час и нарастать вплоть до нескольких суток. Важно как можно раньше выявить недуг и начать лечение.

Лечение

Необходимо немедленно вызвать скорую помощь и начать оказывать пострадавшему первую неотложную помощь: промывание желудка содой или марганцовкой, применение энтеросорбентов, прием большого количества жидкости . В таком состоянии необходимо дождаться скорой помощи и не предпринимать другого лечения. Антибиотики, бифидобактерии, любые противорвотные или спиртосодержащие препараты, а также любые лекарства, которые будут даны без подтвержденного диагноза и при подозрении на отравление, могут пагубно сказаться на человеке и существенно затруднить лечение.

Все дальнейшие меры должны проводиться в стационаре под наблюдением специалистов. При своевременном обращении прогноз часто благоприятен.

Антидоты, применяемые при острых отравлениях

При первых признаках острого отравления в первую очередь необходимо диагностировать характер интоксикации. Для этого понадобятся данные анамнеза, различные вещественные доказательства – остатки емкостей со следами использования ядовитой жидкости и иное. Также стоит обратить внимание на наличие специфического запаха, который может определить характер вещества, вызвавшего отравление . Следует немедленно зафиксировать и передать медикам все данные о клиническом проявлении симптомов отравившегося.

Токсикогенная фаза отравления – самая первая стадия интоксикации, при которой яд еще не успел поразить весь организм, и еще не достигнута его максимальная концентрация в крови. Но уже на этом этапе происходит поражение организма токсинами с характерными проявлениями токсического шока.

Лечение важно начать как можно быстрее. Как правило, врач применят помощь в первую токсикогенную фазу на месте, до госпитализации пациента. Так как именно на этом этапе оказания или неоказания помощи решается весь дальнейший прогноз.

В первую очередь применяют промывание желудка, вводят энтеросорбенты и слабительные средства, затем вводят антидоты .

При определенных видах отравления промывать желудок следует только через зонд, поэтому подобные вопросы следует обсудить с врачом.

Симптоматическое лечение заключается в поддержании и контроле функций жизнеобеспечения человека. Если нарушена проходимость дыхательных путей, следует освободить ее необходимым способом. Используются анальгетики для обезболивания, но только перед процессом промывания желудка, вводится глюкоза и аскорбиновая кислота.

Таблица наиболее распространенных отравлений с антидотами

При остром отравлении необходима срочная госпитализация в отделение интенсивной терапии и реанимации. Врач продолжает промывание желудочно-кишечного тракта, осуществляется искусственная вентиляция легких, лечение диуретиками, антидотами и антагонистами.

Но наиболее эффективные результаты достигаются с помощью искусственной детоксикации, состоящей из гемосорбции, гемодиализа, плазмафереза, перитонеального диализа. С помощью этих шагов происходит более интенсивное выведение ядов и токсинов.

Общая таблица антидотов при отравлении токсинами и ядами

Необходимо принимать антидоты, не только чтобы воспрепятствовать поражению организма ядовитыми веществами, но и чтобы приостановить те или иные симптомы, которые развиваются на фоне отравления. Нужно разработать и применять правильную схему, которая будет эффективна в каждом индивидуальном случае, для предотвращения интоксикации. Некоторые виды отравлений имеют отсроченный старт и их проявления могут быть внезапными и сразу перейти в клиническую картину .

Группа токсинов Антидоты
Цианиды, синильная кислота Амилнитрит, пропилнитрит, антициан, дикобольтовая соль ЭДТА, метиленовый синий, натрия нитрит, натрия тиосульфат
Соли железа Десфериоксамин (десферал)
Наркотические анальгетики Налоксон
Медный купорос Унитиол
Йод Тиосульфат натрия
Опиаты, морфин, кодеин, промедол Налмефен, налоксон, леварфанол, налорфин
Мышьяк Унитиол, тиосульфат натрия, купренил, динатриевая соль
Нитрат серебра Хлорид натрия
Пары ртути Унитиол, купренил, тиосульфат натрия, пентацин
Этиловый спирт Кофеин, атропин
Цианистый калий Амилнитрит, хромоспан, тиосульфат натрия, метиленовый синий
Сероводород Метиленовый синий, амилнитрит

Способ применения, лекарственные формы и дозировку антидотов при отравлениях следует согласовывать с лечащим врачом , также необходимо подтвердить диагноз с помощью анализов, чтобы правильно вести терапию.

Любой антидот – это такое же химическое вещество, неосторожное обращение с которым способно также навредить организму. Эффект противоядия достигается благодаря химической реакции, которая происходит при взаимодействии его с источником отравления.

Таблица антидотов при отравлении веществами с различной природой

От животной/бактериальной интоксикации

При лекарственном отравлении

Антидоты растительные и алкалоидные

Противоядия от токсинов грибов

Детали терапии при некоторых отравлениях

Рассмотрим терапию антидотами при самых распространенных и опасных отравлениях подробно:

  1. Хлор. Его пары способны рефлекторно остановить дыхание, вызвать химический ожог и отек легких. При тяжелом отравлении смерть наступает через несколько минут. Если поражение токсином имеет среднюю или легкую форму тяжести, назначают эффективную терапию. В первую очередь пострадавшего выносят на свежий воздух , в тяжелых случаях делают кровопускание, промывают глаза новокаином, дают антибиотики пенициллиновой группы, сердечно-сосудистые средства. Лечат морфином, атропином, эфедрином, кальцием хлорида, димедролом, гидрокортизоном.
  2. Соли тяжелых металлов. Необходимы обильное питье, мочегонные препараты, энтеросорбенты. При промывании желудка использовать зонд, ввести через него унитиол. Использовать слабительное.
  3. Фосфорорганические соединения. Это бытовые и медицинские ядохимикаты, которые используются повсеместно как класс ФОСов. При отравлении этими токсинами поражаются в первую очередь кожные покровы и слизистая. Антидотом служат кальция глюконат, лактат. Применима смесь из белка яйца и молока. Необходимо промыть желудок солевым или содовым раствором.

Заключение

На сегодняшний день разработаны неотложные мероприятия для своевременного реагирования при отравлениях разной степени, чтобы эффективно устранять все последствия. Помимо применения антидота, меры, направленные на предупреждение и лечение интоксикации, классифицируются следующим образом:

  1. Экстренные меры, которые заключаются в промывании желудочно-кишечного тракта, слизистой, кожных покровов .
  2. Ускоренные меры, при которых используется разного рода мочегонные препараты, впитывающие токсины, сорбенты и прочие процессы, направленные на выведение токсинов из организма.
  3. Восстановительные меры, направленные на терапию жизнедеятельности систем организма и отдельных органов.
  4. Процесс кислородного насыщения, необходимый для отравленного организма.

При соблюдении правил гигиены, внимательном отношении к потребляемой пище и воде, бдительности относительно химических средств и бытовой утвари, профилактика отравлений наиболее эффективна. Но если отравление все-таки произошло, необходимо немедленно принимать меры, первое из которых – вызов бригады скорой помощи . Следует помнить, что эффективность лечения увеличивается в разы при своевременном и грамотном подходе.

Антидоты или противоядия это такие лечеб­ные препараты, которые при введении в организм в условиях инток­сикации способны обезвредить (инактивировать) яд, циркулирую­щий в кровяном русле или даже уже связавшийся с каким-либо био­логическим субстратом, либо устранить токсический эффект яда, а также ускорить его выведение из организма. К антидотам также относят такие средства, которые способны препятствовать проникно­вению яда в организм.

По механизму лечебного действия существующие антидоты мож­но разделить на следующие основные группы.

1. Физико-химические - действие основано на физико-химиче­ских процессах (адсорбция, растворение) в пищевом канале. К ним относятся адсорбенты, которые бывают если не универсальными, то поливалентными. Наиболее распространенным противоядием этого типа является активированный уголь, который, обладая большой поверхностью, способен адсорбировать яд, попавший в желудок. Однако активность его ограничивается тем, что он способен взять яд «в плен» только до его резорбции. Следовательно, такие антидо­ты можно применять только перорально.

2. Химические - действие основано на специфическом химиче­ском взаимодействии с ядом, в результате чего последний инакти-вируется. При этом антидот путем связывания, осаждения, вытес­нения и конкурентных или других реакций превращает яд в без­вредное вещество, выделяемое с мочой или калом из организма.

3. Физиологические, или функциональные - действие направ­лено на устранение токсического эффекта яда. В отличие от преды­дущих такие антидоты не реагируют непосредственно с ядом и не изменяют его физико-химического состояния, а вступают во взаимо­действие с биологическим субстратом, на который яд отрицательно влияет. Действие физиологических антидотов основано на принципе функционального антагонизма.

Деление антидотов на указанные группы условно, так как мно­гие из них могут быть препаратами смешанного типа, действие кото­рых более сложно, чем каждой приведенной группы отдельно. Анти­дот может представлять собой также смесь нескольких лечебных средств, вводимых в определенной последовательности или же одно­временно. При этом, оказывая лечебное действие в различных на­правлениях, отдельные ингредиенты дополняют друг друга или же усиливают эффект путем суммирования либо потенцирования анти-дотного действия. Наиболее эффективными антидотами являются те, которые способны дезактивировать яд в точках его приложения.

Важным обстоятельством, обеспечивающим высокую активность антидота, являются сроки его введения после отравления. Чем рань­ше применено противоядие, тем эффективнее проявляется его поло­жительное действие.

В настоящее время медицинская практика для борьбы с раз­личными отравлениями располагает пока небольшим числом лечеб­ных средств антидотного действия. Для лечения отравления различ­ными соединениями мышьяка - органическими и неорганическими, 3-, 5-валентными (мышьяковистый ангидрид, арсениты и арсенаты натрия и кальция, парижская зелень, осарсол, новарсенол), а также тяжелыми металлами, в том числе и радиоактивными (ртуть, медь, полоний, кадмий и др.), широко зарекомендовали себя меркапто-соединения, например, отечественный препарат унитиол (А. И. Черкес, В. Е. Петрунькин и соавт., 1950).

По строению он представляет собой дитиол, то есть соединение, содержащее две сульфгидрильные группы, и относится к антидотам химического типа действия.

Унитиол обладает большой широтой терапевтического действия; его можно вводить парентерально, через рот. Препарат стоек при хранении как в кристаллическом состоянии, так и в виде растворов. Создание данного антидота оказалось возможным благодаря раскрытию механизма токсического действия мышьяксодержащих соединений. Токсическое действие последних обусловлено блокирую­щим влиянием на меркаптогруппы тиобелков ферментных систем, играющих жизненно важную роль. При этом сульфгидрильные груп­пы ферментов, легко взаимодействуя с тиоловыми ядами, образуют прочный токсичный комплекс (белок - яд), в результате чего тио-белки теряют свою реактивную способность.

Унитиол , попадая в организм, отравленный мышьяк- и металлсо­держащими веществами, благодаря высокой реакционной способно­сти сульфгидрильных групп, легко вступает в реакцию с мышьяком или металлом, предотвращая этим связывание ядов с меркаптогруппами ферментных белков. При этом дитиолы с мышьяком или метал­лом образуют малотоксичные, водорастворимые комплексные соеди­нения - циклические тиоарсениты или меркаптиды металлов, которые затем выводятся с мочой из организма. Тиоарсениты по прочности превосходят те, которые образуются при взаимодействии ядов. с 5Н-группами ферментов, а по токсичности уступают последним. Поэтому при лечении унитиолом в моче пострадавших обнаружи­вается больше мышьяка или металла, чем у нелеченных. Указанные антидоты используются в качестве активных средств элиминации ядов, что является важным как при остром, так и хроническом отравлении.

Необходимо отметить, что унитиол реагирует не только со сво­бодными мышьяк- и металлсодержащими соединениями, но и с ядом, который уже успел вступить в реакцию с тиоферментами. Поэтому антидот способен не только защитить ферменты от блоки­рующего влияния ядов, но и реактивировать меркаптогруппы фер­ментных систем, уже угнетенных ядом. Тиоловые препараты обла­дают как профилактическим, так и выраженным терапевтическим эффектом.

Препарат обладает однотипным действием с унитиолом и реко­мендуется при отравлении тиоловыми ядами, в частности, свинцом и ртутью. Сукцимер более равномерно выводит их из организма и меньше чем унитиол влияет на выведение микроэлементов из орга­низма (О. Г. Архипова и соавт., 1975).

Оксатиол (Л. А. Ильин, 1976), являющийся аналогом унитиола, оказался более эффективным элиминатором радиоактивного полония. Оксатиол уменьшает степень внутреннего облучения организма этим излучателем.

Из монотиояов известен пеницилламин , который обладает комплексообразующими свойствами и поэтому рекомендуется при отрав­лении ртутью, свинцом (при сатурнизме) и их солями (С. И. Ашбель с соавт., 1974).

Комплексообразующие свойства пеницилламина зависят не толь­ко от наличия активной сульфгидрильной группы, но и связаны со стереохимическим строением его молекулы, а также наличием атома азота и карбоксильной группы, обеспечивающих возможность обра­зования координационных связей. Благодаря этому пеницилламин образует стабильные комплексы со свинцом, чего нельзя сказать об унитиоле.

Последний, будучи мощным антидотом целого ряда тиоловых ядов, оказался неэффективным по отношению к мышьяковистому водороду. Это обусловлено тем, что механизм токсического действия этого арсина отличается бт других мышьяксодержащих веществ.

Совместные усилия химиков и токсикологов завершились созда­нием антидота мекаптида , который оказался эффективным при отравлении мышьяковистым водородом.

Липоидотропные свойства, а также высокая капиллярная актив­ность способствуют проникновению антидота в эритроциты. Обладая легкой окисляемостью препарат образует соединения, содержащие дисульфидные группы, которые окисляют мышьяковистый водород и его метаболиты - гидраты мышьяка. Восстановленный затем дитиол и продукты окисления мышьяковистого водорода образуют ма­лотоксичные циклические тиоарсениты, которые выводятся из орга­низма с мочой.

Унитиол, являясь водорастворимым дитиолом и обладая восста­новительными свойствами, не может окислять мышьяковистый водород. Поэтому, примененный в ранние сроки интоксикации по­следним, он даже ухудшает течение и исход отравления. В более поздние сроки (через 5-7 дней после отравления), когда процесс окисления арсина в основном закончился и образовались мышьяксодержащие вещества, унитиол можно рекомендовать в качестве элиминатора, ускоряющего выведение мышьяка из организма.

При отравлении многими металлами наряду с тиоловыми пре­паратами (унитиолом, сукцимером) эффективными антидотолечебными свойствами обладают комплексоны (хелатообразователи ) - группа соединений, способных образовывать стойкие, малодиссоции­рующие комплексы со многими тяжелыми металлами, которые отно­сительно быстро выводятся из организма. Из них наиболее распро­странены тетацин-кальций (кальций-динатриевая соль этилендиамин-тетрауксусной кислоты, ЭДТА), пентацин и др.

Тетацин-кальций вводят внутривенно капельно по 20 мл 10% раствора (в изотоническом растворе натрия хлорида или в 5% ра­створе глюкозы), а также внутрь в таблетках по 0,5 г. Разовая доза 2 г, суточная - 4г.

Комплексоны чаще используются в медицинской практике в качестве элиминаторов из организма многих токсических металлов, щелочно- и редкоземельных элементов, а также радиоактивных изо­топов.

При отравлении препаратами железа (сульфат, глюконат и лактат железа) наиболее эффективен дефероксамин (десферол) - производное гидроксамовой кислоты. Этот комплексообразователь спо­собен выводить железо с мочой из организма, не влияя при этом на содержание других металлов и микроэлементов. Следовательно, тиоловые антидоты являются не единственными активными детоксицирующими средствами по отношению к мышьяксодержащим соедине­ниям и некоторым тяжелым металлам.

Принимая во внимание, что обезвреживание многих производ­ных галоидуглеводородов в организме происходит главным образом путем их конъюгации с меркаптогруппами биосубстратов (глутатион, цистеин), в качестве возможных противоядий были изучены та­кие монотиолы, как цистеин и ацетилцистеин.

Цистеин является эффективным специфическим средством лече­ния при интоксикации моногалоидуглеводородами алифатического ряда; бромистым метилом, металлилхлоридом, хлористым этилом, йодистым метилом, эпихлоргидрином и другими препаратами (И. Г. Мизюкова, Г. Н. Бахишев, 1975).

Важно отметить, что цистеин оказывает положительное дей­ствие при приеме внутрь. Это дает возможность использовать его в качестве профилактического средства, что имеет важное практиче­ское значение при проведении фумигационных работ с такими токсическими веществами, как бромистый метил, метилаллилхлорид и др.

Механизм лечебного действия цистеина при отравлении монога-лоидалкилами рассматривается в основном как результат конку­рентного действия сульфгидрильных групп препарата и белков, а также аминокислот организма по отношению к галоидалкилу как высокореакционному алкилирующему агенту. В результате этого образуются малотоксические соединения в виде предшественников меркаптуровых кислот (5-метилцистеин и 5-метилглутатион), кото­рые с мочой выводятся из организма.

Цистеин обладает антидотным действием при отравлении мно­гими моногалоидуглеводородами алифатического ряда. С увеличени­ем количества атомов галоида в молекуле вещества (например, ди­хлорэтан, дибромэтан, четыреххлористый углерод) действие цистеи­на уменьшается или исчезает.

Ацетилцистеин - высокоэффективное лечебное средство не толь­ко при отравлениях моногалоидпроизводными углеводородов али­фатического ряда, но и дигалоидпроизводными. Так, впервые пока­зана детоксицирующая способность ацетилцистеина при отравлениях дихлор- и дибромэтаном (И. Г. Мизюкова, М. Г. Кокаровцева, 1978). При этом обезвреживанию подвергаются в основном токсич­ные метаболиты дихлорэтана (хлорэтанол, монохлоруксусный аль­дегид, монохлоруксусная кислота), которые образуются в орга­низме.

Лечебное действие ацетилцистеина осуществляется двумя путя­ми: химической конъюгацией токсического вещества или его метабо­литов с цистеином (образующимся в организме из ацетилцистеина), а также увеличением объема ферментативной конъюгации с восста­новленным глутатионом печени.

Ацетилцистеин устойчивее цистеина, находящегося как в кри­сталлическом состоянии, так и в виде растворов.

Примером комплексной антидотной терапии могут служить спе­цифические средства, применяемые при отравлении синильной кисло­той и цианистыми соединениями.

Антидотная терапия отравлений цианистыми соединениями за­ключается в последовательном применении метгемоглобинобразователей и серусодержащих соединений, а также углеводов.

Метгемоглобинобразующие препараты (амилнитрит, пропилнит-рит, нитрит натрия и др.) превращают гемоглобины в метгемогло-бин путем окисления двухвалентного железа в трехвалентное. Циан-ион, в свою очередь, быстро и прочно реагирует с трехвалент­ным железом метгемоглобина и образует цианметгемоглобин, пре­пятствуя взаимодействию яда с цнтохромоксидазой, то есть предот­вращает блокаду фермента.

Образующийся цианметгемоглобин - соединение непрочное, и отщепление циан-группы может вновь оказывать токсическое влия­ние. Но этот процесс протекает уже медленно. Поэтому наряду с метгемоглобинобразователями нужно применять такие средства, ко­торые способны реагировать с цианионом. К ним относятся серусодержащие вещества (тиосульфат натрия) и углеводы (хромосмон или глюкоза).

В качестве противоядий используют антиоксиданты, особенно в тех случаях, когда при воздействии того или иного химического агента в условиях организма в результате окисления яда образуют­ся более токсичные продукты, чем исходное вещество. Стабилизи­рующее действие антиоксидантов заключается в том, что они всту­пают в конкурентные отношения с окислителем либо вместе с по­следним за ферменты, участвующие в процессах окисления.

В первом варианте антиоксидант препятствует окислению яда и тем самым понижает количество циркулирующих в организме токси­ческих продуктов его превращения.

Например, этиловый спирт препятствует окислению метанола и, следовательно, тормозит образование формальдегида и муравьиной кислоты, которые обусловливают токсическое действие метилового спирта.

Во втором варианте антиоксиданты, разрывая окислительную цепь, могут подавлять образование свободных радикалов или на­правлять превращение перекисей в сторону образования стабильных продуктов.

В качестве антиоксидантов могут быть использованы некоторые витамины и аминокислоты. Так, в эксперименте на животных полу­чены положительные результаты при применении токоферола ацета­та в условиях интоксикации такими хлорорганическимн пестицида­ми, как гептахлор и гамма-изомер гексахлорана, а также цистина, цистамина и метионина при отравлении бензолом.

Наряду с противоядиями, направленными на нейтрализацию или связывание яда, широкое использование в медицинской практи­ке находят лечебные препараты, назначение которых состоит в пред­упреждении или устранении вредных проявлений действия ядов,- это физиологические или функциональные антидоты.

Впервые в качестве физиологического антидота был применен атропина сульфат при отравлении мухоморами . Было установлено, что препарат устраняет эффекты различных холиномиметических (ацетилхолин, карбахолин, пилокарпина гидрохлорид, ареколин, мускарин и др.) и антихолинэстеразных веществ (физостигмина салицилат, прозерин, галантамина гидробромид, фосфорорганические соединения). Таким же действием, но в меньшей степени, чем атро­пина сульфат, обладают и другие холинолитические препараты (скополамина гидробромид, платифиллина гидротартрат, апрофен, дипрофен, тропацин и др.).

Исследование механизма антагонизма между холиномиметическими и холинолитическими веществами показало, что последние обладают большей тропностью к холинорецепторам по сравнению с холиномиметическимн веществами. Так, атропина сульфат может снять эффект даже нескольких смертельных доз холиномиметиче­ских и антихолинэстеразных веществ, в то время как последние не устраняют всех симптомов отравления атропина сульфатом.

Известно, что органические соединения фосфора, которые ис­пользуются во многих отраслях народного хозяйства, в том числе и сельского, в качестве пестицидов (тиофос, метафос, хлорофос, метилмеркаптофос, карбофос, метилнитрофос и др.), являются сильны­ми ингибиторами холинэстеразы.

Благодаря фосфорилированию наступает инактивация холин­эстеразы и потеря способности гидролизовать ацетилхолин. В ре­зультате этого происходит избыточное накопление ацетилхолина в местах его образования, что и обусловливает токсическое действие фосфорорганических соединений (ФОС), которое проявляется в воз­буждении нервной системы, спастическом состоянии гладкой муску­латуры, судорогами поперечнополосатой мускулатуры.

В механизме токсического действия ФОС угнетение холинэстера­зы играет важную, а иногда и определяющую роль, но этот процесс не _ является единственным. Наряду с ним происходит прямое воз­действие яда на ряд важнейших систем и органов.

Использование холинолитических средств явилось основой для антидотной терапии отравлений фосфорорганическими веществами. Из них наиболее широкое применение получил атропина сульфат, который блокирует М-холинореактивные системы организма, и они становятся нечувствительными к ацетилхолину. Являясь антагони­стом ацетилхолина, препарат вступает в конкурентные отношения с ним за обладание одним и тем же рецептором и снимает мускари-ноподобный эффект ФОС (в частности бронхоспазм, уменьшает се­крецию желез и слюноотделение).

Атропина сульфат более эффективен при введении с целью про­филактики. Для лечения его нужно применять в больших дозах а повторно, потому что действие препарата исчезает быстрее, чем эф­фект ФОС. В условиях интоксикации ФОС толерантность катропина сульфату резко возрастает, поэтому его можно вводить в больших количествах (20 мг и более в сутки).

Отравление ФОС сопровождается также рядом никотиноподобных явлений. В связи с тем что атропина сульфат обладает более выраженными свойствами устранять мускариноподобный эффект, в дальнейшем были предложены другие холинолитические препараты (тропацин, апрофен, спазмолитик), способные уменьшать никотино-подобыые эффекты. Для усиления антидотного действия атропина сульфата как периферического холинолитика рекомендуется исполь­зовать центральные холинолитики (амизил и др.). Такое сочетание холинолитиков нашло практическое применение при лечении отрав­лений фосфорорганическими инсектицидами.

При взаимодействии ФОС с холинэстеразами фосфорилируется сериновый гидроксил эстеразного центра фермента по тому же меха­низму, по которому происходит его ацетилирование при взаимодей­ствии с ацетилхолином. Отличие состоит в том, что дефосфорилирование проходит значительно медленнее, чем деацетилирование. Это навело на мысль о возможности ускорения дефосфорилирования ингибированной холинэстеразы с помощью нуклеофильных агентов.

Процесс реактивации холинэстеразы, ингибированный фосфор-органическими соединениями, наступает под влиянием производных гидроксамовых кислот. Эти данные дали возможность в качестве специфических средств лечения отравлений ФОС применять реактиваторы, способные восстанавливать активность холинэстеразы, угне­тенной ядом.

Реактиваторы вытесняют ФОС из соединений с холинэстеразой и тем самым восстанавливают ее активность. В результате такого влияния активируется холинэстераза, возобновляется ферментатив­ный гидролиз ацетилхолина и, следовательно, нормализуется процесс химической передачи нервных импульсов.

В настоящее время получены более активные реактиваторы, чем гидроксамовые кислоты,- ТМБ-4, получивший в Советском Союзе название дипироксим (изонитрозин), а также соли 2-ПАМ (прали-доксим), МИНА (моноизонитрозоацетон) и токсогонин (обидоксим). Препараты способны не только реактивировать угнетенную холин-эстеразу, но и непосредственно реагировать с ФОС, образуя при этом нетоксичные продукты гидролиза. К сожалению, широкому приме­нению реактиваторов холинэстеразы в медицинской практике в зна­чительной мере препятствует высокая их токсичность.

Дальнейшие исследования позволили получить менее токсичные и более эффективные реактиваторы - диэтиксим, который по своей структуре близок к ацетилцистеину (В. Е. Кривенчук, В. Е. Петрунь-кин, 1973; Ю. С. Каган и соавт., 1975; Н. В. Кокшарева, ^1975), а также диалкоб - комплексное соединение кобальта (В. Н. Евреев и соавт., 1968).

Следовательно, антидотная терапия отравлений ФОС осущест­вляется в двух направлениях - использование холинолитиков и при­менение реактиваторов холинэстеразы. Наиболее эффективно холиколитики сочетать с реактиваторами.

Другим примером физиологического антагонизма , используемого с терапевтической целью, могут служить также конкурентные вза­имоотношения между окисью углерода и кислородом. Окись углеро­да обладает значительно большим сродством к гемоглобину по сравне­нию с кислородом. Поэтому при наличии в воздухе более низких концентраций окиси углерода по сравнению с кислородом в крови происходит постепенное накопление карбоксигемоглобина и содер­жание оксигемоглобина уменьшается.

Для успешного применения кислорода в условиях отравления окисью углерода необходимо, чтобы его концентрация в воздухе в тысячи раз превышала концентрацию ядовитого газа. Кислород при высоких концентрациях может вытеснять СО из образовавшегося карбоксигемоглобина НЬсо. Применение кислорода при интоксика­ции окисью углерода рассматривается как специфическая терапия.

По принципу функционального антагонизма действуют бемегрид, налорфина гидрохлорид и протамина сульфат.

Бемегрид является антагонистом барбитуратов, поэтому исполь­зуется при лечении острых отравлений этими веществами и снотвор­ными средствами. Налорфина гидрохлорид применяется как антидот в условиях острого отравления анальгетическими препаратами (мор­фина гидрохлоридом, промедолом, и др.).

Протамина сульфат - антагонист гепарина, применяется как антидот при отравлениях указанным антикоагулянтом.

Лечение различных отравлений химическими веществами не мо­жет ограничиваться применением только специфических антидотов, хотя во многих случаях они играют решающую роль.

Только комплексная терапия с использованием методов усиле­ния естественной и искусственной детоксикации организма, суще­ствующих антидотов, а также патогенетических и симптоматических средств, направленных на защиту тех органов и функций организма, которые избирательно поражаются токсическим веществом, будет способствовать быстрейшему выздоровлению пострадавшего.

Лечение острых отравлений, 1982 г.