Типы гибридизации. Гибридизация электронных орбиталей и геометрия молекул


Гибридизация атомных орбиталей – процесс, позволяющий понять, как атомы видоизменяют свои орбитали при образовании соединений. Так, что же такое гибридизация, и какие ее типы существуют?

Общая характеристика гибридизации атомных орбиталей

Гибридизация атомных орбиталей – это процесс, при котором смешиваются различные орбитали центрального атома, в результате чего образуются одинаковые по своим характеристикам орбитали.

Гибридизация происходит в процессе образования ковалентной связи.

Гибридная орбиталь имеет фору знака бесконечности или несимметричной перевернутой восьмерки, вытянутой в сторону от атомного ядра. Такая форма обусловливает более сильное, чем в случае чистых атомных орбиталей, перекрывание гибридных орбиталей с орбиталями (чистых или гибридных) других атомов и приводит к образованию более прочных ковалентных связей.

Рис. 1. Гибридная орбиталь внешний вид.

Впервые идею о гибридизации атомных орбиталей выдвинул американский ученый Л. Полинг. Он считал, что у вступающего в химическую связь атома имеются разные атомные орбитали (s-, p-, d-, f-орбитали), то в результате происходит гибридизация этих орбиталей. Суть процесса заключается в том, что из разных орбиталей образуются эквивалентные друг другу атомные орбитали.

Типы гибридизации атомных орбиталей

Существует несколько видов гибридизации:

  • . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и одна p-орбиталь. В результате образуются две полноценных sp-орбиталей. Эти орбитали расположены к атомному ядру таким образом, что угол между ними составляет 180 градусов.

Рис. 2. sp-гибридизация.

  • sp2-гибридизация . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и две p-орбитали. В результате происходит образование трех гибридных орбиталей, которые расположены в одной плоскости под углом 120 градусов друг к другу.
  • . Этот вид гибридизации происходит, когда смешиваются одна s-орбиталь и три p-орбитали. В результате происходит образование четырех полноценных sp3-орбиталей. Эти орбитали направлены к вершине тетраэдра и располагаются друг к другу под углом 109,28 градусов.

sp3-гибридизация характерна для многих элементов, например, атома углерода и других веществ IVА группы (CH 4 , SiH 4 , SiF 4 , GeH 4 и др.)

Рис. 3. sp3-гибридизация.

Возможны также и более сложные виды гибридизации с участием d-орбиталей атомов.

Что мы узнали?

Гибридизация – сложный химический процесс, когда разные орбитали атома образуют одинаковые (эквивалентные) гибридные орбитали. Первым теорию гибридизации озвучил американец Л. Полинг. Выделяют три основных вида гибридизации: sp-гибридизация, sp2-гибридизация, sp3-гибридизация. Существуют также более сложные виды гибридизации, в которых участвуют d-орбитали.

Одна из задач химии - это изучение строения вещества, в том числе выяснение механизма образования различных соединений из простых веществ, образуемых атомами одного химического элемента. Особенности взаимодействия атомов, точнее, их разноименно заряженных компонентов - электронных оболочек и ядер, - описываются как различные типы химической связи. Так, вещества, образуются посредством ковалентной связи, для описания которой в 1931 году американским химиком Л. Полингом была предложена модель гибридизации атомных орбиталей.

Понятие о ковалентной связи

В тех случаях, когда в процессе взаимодействия происходит образование общей для двух атомов пары валентных электронных облаков, говорят о ковалентной связи. В результате ее возникновения формируется мельчайшая частица простого или сложного вещества - молекула.

Одной из особенностей ковалентной связи является ее направленность - следствие сложной формы электронных орбиталей p, d и f, которые, не обладая сферической симметрией, имеют определенную пространственную ориентацию. Еще одна важная особенность данного типа химической связи - насыщаемость, обусловленная ограниченным количеством внешних - валентных - облаков в атоме. Именно поэтому существование молекулы, например, H 2 O, возможно, а H 5 O - нет.

Типы ковалентной связи

Образование общих электронных пар может происходить различными способами. В механизме образования ковалентной связи важную роль играет характер перекрытия облаков и пространственная симметрия результирующего облака. По данному критерию Л. Полинг предложил различать следующие типы:

  • Сигма-связь (σ) отличается наибольшей степенью перекрытия по оси, проходящей через атомные ядра. Здесь плотность облака будет максимальной.
  • Пи-связь (π) образуется при боковом перекрывании, и электронное облако, соответственно, имеет наибольшую плотность вне соединяющей ядра оси.

Эти пространственные характеристики имеют большое значение постольку, поскольку они коррелируют с энергетическими параметрами ковалентной связи.

Особенности многоатомных молекул

Концепция гибридизации была введена Полингом для объяснения одной из особенностей ковалентных связей в многоатомных молекулах. Известно, что связи, образуемые центральным атомом в таких молекулах, оказываются одинаковыми по пространственным и энергетическим характеристикам. Это происходит вне зависимости от того, какие орбитали (s, p или d) участвуют в формировании общей электронной пары.

Очень удобным и наглядным примером для иллюстрации этого явления служит атом углерода. При вступлении в химическую связь атом в возбужденном состоянии имеет 4 валентных орбитали: 2s, 2p x , 2p y и 2p z . Три последних отличаются от орбитали 2s по энергии и форме. Тем не менее в молекуле, например, метана CH 4 все четыре связи совершенно равноценны и имеют валентные углы 109,5° (в то время как p-орбитали расположены под углами 90°). В других соединениях углерода встречаются валентные углы 120° и 180°; в молекулах, содержащих азот (аммиак NH 3) и кислород (вода H 2 O) эти углы составляют 107,5° и 104,5°. Возникновение подобных валентных углов также потребовало объяснения.

Суть явления

Идея гибридизации состоит в образовании усредненных орбиталей путем перекрывания электронных облаков разного типа с близкими значениями энергии - s, p, иногда d. Количество результирующих - гибридных - орбиталей соответствует числу перекрывающихся облаков. Поскольку орбиталь - это определяющая вероятность нахождения электрона в той или иной точке атома, гибридная орбиталь представляет собой наложение волновых функций, происходящее в результате электронных переходов при возбуждении атома. Оно приводит к возникновению равнозначных волновых функций, различающихся только направленностью.

Гибридные орбитали эквивалентны по энергии и имеют одинаковую форму в виде объемной восьмерки, имеющей сильную асимметрию относительно ядра. На гибридизацию затрачивается меньше энергии, чем выделяется при образовании прочной ковалентной связи с гибридными орбиталями, поэтому такой процесс энергетически выгоден, то есть наиболее вероятен.

гибридизации орбиталей и геометрия молекул

Возможны различные варианты перекрывания (смешения) внешних электронных облаков в атоме. Самыми распространенными являются следующие виды наложения орбиталей:

  • Sp 3 -гибридизация. Данный вариант реализуется при наложении одной s- и трех p-орбиталей. Результатом его становятся четыре гибридные орбитали, оси которых направлены для любой пары под углами 109,5°, соответствующим минимальному взаимному отталкиванию электронов. При вступлении этих орбиталей в σ-связи с другими атомами, формируется молекула тетраэдрической конфигурации, например, метан, этан C 2 H 6 (комбинация двух тетраэдров), аммиак, вода. В молекуле аммиака одна, а в молекуле воды - две из вершин тетраэдра заняты неподеленными электронными парами, что приводит к уменьшению валентного угла.
  • Sp 2 -гибридизация возникает при комбинации одной s- и двух p-орбиталей. В этом случае тройка гибридных орбиталей располагается под углами 120° в одной плоскости. Подобную треугольную форму имеют, например, молекулы трихлорида бора BCl 3 , находящего применение в различных технологиях. Другой пример - молекула этилена - формируется за счет дополнительной π-связи между атомами углерода, в которых по одной p-орбитали негибридные и ориентированы перпендикулярно плоскости, образуемой двумя треугольниками.
  • Sp-гибридизация происходит, когда смешиваются одна s- и одна p-орбиталь. Два гибридных облака располагаются под углом 180°, а молекула имеет линейную конфигурацию. Примерами могут служить молекулы хлорида бериллия BeCl 2 или ацетилена C 2 H 2 (в последней две негибридные p-орбитали углерода образуют дополнительные π-связи).

Существуют и более сложные варианты гибридизации атомных орбиталей: sp 3 d, sp 3 d 2 и другие.

Роль модели гибридизации

Концепция Полинга дает хорошее качественное описание строения молекул. Она удобна и наглядна, успешно объясняет некоторые особенности ковалентных соединений, такие как величина валентных углов или выравнивание длины химической связи. Однако количественная сторона модели не может считаться удовлетворительной, поскольку не позволяет делать многие важные предсказания, касающиеся физических эффектов, связанных с особенностями строения молекул, - например, молекулярных фотоэлектронных спектров. Сам автор концепции гибридизации уже в начале 1950-х годов отмечал ее недостатки.

Тем не менее в становлении современных представлений о строении вещества модель гибридизации атомных орбиталей сыграла большую роль. На основе ее были разработаны более адекватные концепции, например, теория отталкивания электронных пар. Поэтому, безусловно, модель гибридизации явилась важным этапом в развитии теоретической химии, а при описании некоторых аспектов электронной структуры молекул она вполне применима и в настоящее время.

Метод валентных связей позволяет наглядно объяснить пространственные характеристики многих молекул. Однако, привычного представления о формах орбиталей не достаточно для ответа на вопрос, почему при наличии у центрального атома разных – s , p , d – валентных орбиталей, образованные им связи в молекулах с одинаковыми заместителями оказываются эквивалентными по своим энергетическим и пространственным характеристикам. В двадцатые годы XIX века Лайнусом Полингом была предложена концепция гибридизации электронных орбиталей. Под гибридизацией понимают абстрактную модель выравнивания атомных орбиталей по форме и энергии.

Примеры формы гибридных орбиталей представлены в таблице 5.

Таблица 5. Гибридные sp, sp 2 , sp 3 орбитали

Концепцию гибридизации удобно использовать при объяснении геометрической формы молекул и величины валентных углов (примеры заданий 2– 5).

Алгоритм определения геометрии молекул методом ВС:

а. Определить центральный атом и количество σ-связей с концевыми атомами.

б. Составить электронные конфигурации всех атомов, входящих в состав молекулы и графические изображения внешних электронных уровней.

в. Согласно принципам метода ВС на образование каждой связи нужна пара электронов, в общем случае, по одному от каждого атома. Если неспаренных электронов центральному атому недостаточно, следует предположить возбуждение атома с переходом одного из пары электронов на более высокий энергетический уровень.

г. Предположить необходимость и тип гибридизации с учетом всех связей и, для элементов первого периода, неспаренных электронов.

д. Опираясь на вышеизложенные умозаключения изобразить электронные орбитали (гибридные или нет) всех атомов в молекуле и их перекрывание. Сделать вывод о геометрии молекулы и приблизительной величине валентных углов.

е. Определить степень полярности связи исходя из значений электроотрицательностей атомов (табл.6) Определить наличие дипольного момента исходя из расположения центров тяжести положительного и отрицательного зарядов и/или симметрии молекулы.

Таблица 6. Значения электроотрицательности некоторых элементов по Полингу


Примеры заданий

Задание 1 . Опишите методом ВС химическую связь в молекуле СО.

Решение (рис.25)

а. Составить электронные конфигурации всех атомов, входящих в состав молекулы.

б. Для образования связи необходимо создать обобществленные электронные пары

Рисунок 25. Схема образования связи в молекуле СО (без гибридизации орбиталей)

Вывод: В молекуле СО – тройная связь С≡О

Для молекулы СО можно предположить наличие sp -гибридизации орбиталей обоих атомов (рис.26). Спаренные электроны, не участвующие в образовании связи находятся на sp -гибридной орбитали.

Рисунок 26. Схема образования связи в молекуле СО (с учетом гибридизации орбиталей)

Задание 2. На основе метода ВС предположить пространственное строение молекулы BeH 2 и определить является ли молекула диполем.

Решение задачи представлено в таблице 7.

Таблица 7. Определение геометрии молекулы BeH 2

Электронная конфигурация Примечания
а. Центральный атом – бериллий. Ему необходимо образовать две ϭ-связи с атомами водорода
б. H: 1s 1 Be: 2s 2 У атома водорода есть неспаренный электрон, у атома бериллия все электроны спарены, его необходимо перевести в возбужденное состояние
в. H: 1s 1 Be*: 2s 1 2p 1 Если бы один атом водорода связывался с бериллием за счет 2s -электрона бериллия, а другой – за счет 2p -электрона бериллия, то молекула не обладала бы симметрией, что энергетически не оправдано, а связи Be–Н не были бы равноценными.
г. H: 1s 1 Be*: 2(sp ) 2 Следует предположить наличие sp -гибридизации
д. Две sp -гибридные орбитали располагаются под углом 180°, молекула BeH 2 – линейная
е. Электроотицательности χ Н =2,1, χ Be =1,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому водорода, на нем появляется небольшой отрицательный заряд δ–. На атоме бериллия δ+. Так как центры тяжести положительного и отрицательного заряда совпадают (она симметрична), молекула не является диполем.

Аналогичные рассуждения помогут описать геометрию молекул с sp 2 - и sp 3 -гибридными орбиталями (табл.8).

Таблица 8. Геометрия молекул BF 3 и СН 4

Задание 3. На основе метода ВС предположить пространственное строение молекулы H 2 О и определить является ли молекула диполем. Возможно два решения, они представлены в таблицах 9 и 10.

Таблица 9. Определение геометрии молекулы H 2 O (без гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а.
б. H: 1s 1 O: 2s 2 2p 4
в. Неспаренных электронов достаточно для образования двух ϭ-связей с атомами водорода.
г. Гибридизацией можно пренебречь
д.
е.

Таким образом, молекула воду, должна иметь валентный угол около 90°. Однако угол между связями примерно 104°.

Это можно объяснить

1) отталкиванием, близко расположенных друг к другу водородных атомов.

2) Гибридизацией орбиталей (табл. 10).

Таблица 10. Определение геометрии молекулы H 2 O (с учетом гибридизации орбиталей)

Электронная конфигурация Графическое изображение орбиталей внешнего уровня Примечания
а. Центральный атом – кислород. Ему необходимо образовать две ϭ-связи с атомами водорода.
б. H: 1s 1 O: 2s 2 2p 4 У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
в. У атома водорода есть неспаренный электрон, у атома кислорода два неспаренных электрона.
г. Угол в 104° позволяет предположить наличие sp 3 -гибридизации.
д. Две sp 3 -гибридные орбитали располагаются под углом примерно 109°, молекула H 2 O по форме близка к тетраэдру, уменьшение валентного угла объясняется влиянием электронной не связывающей пары.
е. Электроотицательности χ Н =2,1, χ О =3,5, следовательно связь ковалентная полярная, электронная плотность смещена к атому кислорода, на нем появляется небольшой отрицательный заряд 2δ– На атоме водорода δ+. Так как центры тяжести положительного и отрицательного заряда не совпадают (она не симметрична), молекула является диполем.

Аналогичные рассуждения позволяют объяснить валентные углы в молекуле аммиака NH 3 . Гибридизацию с участием неподеленных электронных пар, обычно предполагают только для орбиталей атомов элементов II периода. Валентные углы в молекулах H 2 S = 92°, H 2 Se = 91°, H 2 Te = 89°. То же самое наблюдается в ряду NH 3 , РH 3 , AsH 3 . При описании геометрии этих молекул, традиционно, или не прибегают к представлениям о гибридизации, или объясняют уменьшение тетраэдрического угла возрастающим влиянием неподеленной пары.

Гибридизация атомных орбиталей и геометрия молекул

Важной характеристикой молекулы, состоящей более чем из двух атомов, является ее геометрическая конфигурация. Она определяется взаимным расположением атомных орбиталей, участвующих в образовании химических связей.

Перекрывание электронных облаков возможно только при определенной взаимной ориентации электронных облаков; при этом область перекрывания располагается в определенном направлении по отношению к взаимодействующим атомам.

Таблица 1 Гибридизация орбиталей и пространственная конфигурация молекул

Возбужденный атом бериллия имеет конфигурацию 2s 1 2p 1 , возбужденный атом бора - 2s 1 2p 2 и возбужденный атом углерода - 2s 1 2p 3 . Поэтому можно считать, что в образовании химических связей могут участвовать не одинаковые, а различные атомные орбитали. Например, в таких соединениях как BeCl 2 , BeCl 3 ,CCl 4 должны быть неравноценные по прочности и направлению связи, причем σ-связи из p-орбиталей должны быть более прочными, чем связи из s-орбиталей, т.к. для p-орбиталей имеются более благоприятные условия для перекрывания. Однако опыт показывает, что в молекулах, содержащих центральные атомы с различными валентными орбиталями (s, p, d), все связи равноценны. Объяснение этому дали Слейтер и Полинг. Они пришли к выводу, что различные орбитали, не сильно отличающиеся по энергиям, образуют соответствующее число гибридных орбиталей. Гибридные (смешанные) орбитали образуются из различных атомных орбиталей. Число гибридных орбиталей равно числу атомных орбиталей, участвующих в гибридизации. Гибридные орбитали одинаковы по форме электронного облака и по энергии. По сравнению с атомными орбиталями они более вытянуты в направлении образования химических связей и поэтому обусловливают лучшее перекрывание электронных облаков.

Гибридизация атомных орбиталей требует затрат энергии, поэтому гибридные орбитали в изолированном атоме неустойчивы и стремятся превратиться в чистые АО. При образовании химических связей гибридные орбитали стабилизируются. Вследствие более прочных связей, образованных гибридными орбиталями, из системы выделяется больше энергии, и поэтому система становится более стабильной.

sp–гибридизация имеет место, например, при образовании галогенидов Be, Zn, Co и Hg (II). В валентном состоянии все галогениды металлов содержат на соответствующем энергетическом уровне s и p-неспаренные электроны. При образовании молекулы одна s- и одна р-орбиталь образуют две гибридные sp-орбитали под углом 180 о.



Рис.3 sp-гибридные орбитали

Экспериментальные данные показывают, что все галогениды Be, Zn, Cd и Hg (II) линейны и обе связи имеют одинаковую длину.

sp 2 -гибридизация

В результате гибридизации одной s-орбитали и двух p-орбиталей образуются три гибридные sp 2 -орбитали, расположенные в одной плоскости под углом 120 о друг к другу. Такова, например, конфигурация молекулы BF 3:

Рис.4 sp 2 -гибридизация

sp 3 -гибридизация

sp 3 -гибридизация характерна для соединений углерода. В результате гибридизации одной s-орбитали и трех

р-орбиталей образуются четыре гибридные sp 3 -орбитали, направленные к вершинам тетраэдра с углом между орбиталями 109,5 о. Гибридизация проявляется в полной равноценности связей атома углерода с другими атомами в соединениях, например, в CH 4 , CCl 4 , C(CH 3) 4 и др.

Рис.5 sp 3 -гибридизация

Если все гибридные орбитали связаны с одинаковыми атомами, то связи ничем не отличаются друг от друга. В других случаях встречаются небольшие отклонения от стандартных валентных углов. Например, в молекуле воды H 2 O кислород - sp 3 -гибридный, находится в центре неправильного тетраэдра, в вершины которого "смотрят" два атома водорода и две неподеленные пары электронов (рис. 2). Форма молекулы угловая, если смотреть по центрам атомов. Валентный угол HОН составляет 105 о, что довольно близко к теоретическому значению 109 о.

Рис.6 sp 3 -гибридизация атомов кислорода и азота в молекулах а) H 2 O и б) NCl 3 .

Если бы не происходило гибридизации (“выравнивания” связей O-H), валентный угол HOH был бы равен 90°, потому что атомы водорода были бы присоединены к двум взаимно перпендикулярным р-орбиталям. В этом случае наш мир выглядел бы, вероятно, совершенно по-другому.

Теория гибридизации объясняет геометрию молекулы аммиака. В результате гибридизации 2s и трёх 2p орбиталей азота образуются четыре гибридные орбитали sp 3 . Конфигурация молекулы представляет из себя искажённый тетраэдр, в котором три гибридных орбитали участвуют в образовании химической связи, а четвёртая с парой электронов – нет. Углы между связями N-H не равны 90 о как в пирамиде, но и не равны 109,5 о, соответствующие тетраэдру.

Рис.7 sp 3 - гибридизация в молекуле аммиака

При взаимодействии аммиака с ионом водорода в результате донорно-акцепторного взаимодействия образуется ион аммония, конфигурация которого представляет собой тетраэдр.

Гибридизация объясняет также отличие угла между связями О-Н в угловой молекуле воды. В результате гибридизации 2s и трёх 2p орбиталей кислорода образуются четыре гибридных орбитали sp 3 , из которых только две участвуют в образовании химической связи, что приводит к искажению угла, соответсвующего тетраэдру.

Рис.8 sp 3 -гибридизация в молекуле воды

В гибридизацию могут включаться не только s- и р-, но и d- и f-орбитали.

При sp 3 d 2 -гибридизации образуется 6 равноценных облаков. Она наблюдается в таких соединениях как 4- , 4- . При этом молекула имеет конфигурацию октаэдра:

Рис. 9 d 2 sp 3 -гибридизация в ионе 4-

Представления о гибридизации дают возможность понять такие особенности строения молекул, которые не могут быть объяснены другим способом.

Гибридизация атомных орбиталей (АО) приводит к смещению электронного облака в направлении образования связи с другими атомами. В результате области перекрывания гибридных орбиталей оказываются больше, чем для чистых орбиталей и прочность связи увеличивается.

Ковалентная связь наиболее распространена в мире органических веществ, она характеризуется насыщаемостью, поляризуемостью и направленностью в пространстве.

Насыщаемость ковалентной связи состоит в том, что число общих электронных пар, которые способен образовать тот или иной атом, ограничено. Благодаря этому ковалентные соединения имеют строго определенный состав. Поэтому, например, существуют молекулы Н 2 , N 2 , СН 4 , но нет молекул Н 3 , N 4 , СН 5 .

Поляризуемость ковалентной связи заключается в способности молекул (и отдельных связей в них) изменять свою полярность под действием внешнего электрического поля - поляризоваться.

В результате поляризации неполярные молекулы могут стать полярными, а полярные - превратиться в еще более полярные вплоть до полного разрыва отдельных связей с образованием ионов:

Направленность ковалентной связи обусловлена тем, что р-, d- и f-облака определенным образом ориентированы в пространстве. Направленность ковалентной связи влияет на форму молекул веществ, их размеры, межатомные расстояния, валентный угол, т. е. на геометрию молекул.

Более полное представление о форме молекул органических и неорганических веществ можно составить на основе гипотезы о гибридизации атомных орбиталей. Она была предложена Л. Полингом (США) для объяснения установленного с помощью физических методов исследования веществ факта равноценности всех химических связей и симметричного расположения их относительно центра молекул СН 4 , BF 3 , ВеСl 2 . В образовании σ-связей в каждом случае от центрального атома (С, В, Be) должны были участвовать электроны, находящиеся в разных состояниях (s и р), поэтому они не могли быть равноценными. Теория оказалась неспособной объяснить факты, возникло противоречие, которое было разрешено с помощью новой гипотезы. Это один из примеров, показывающих путь развития познания человеком окружающего мира, возможность все более глубокого проникновения в сущность явлений.

С гипотезой гибридизации атомных орбиталей вы знакомились в курсе органической химии на примере атома углерода. Напомним об этом еще раз.

При образовании молекулы метана СН 4 атом углерода из основного состояния переходит в возбужденное:

Внешний электронный слой возбужденного атома углерода содержит один s- и три неспаренных р-электрона, которые и образуют четыре σ-связи с четырьмя s-электронами атомов водорода. При этом следует ожидать, что три связи С--Н, образованные за счет спаривания трех р-электронов атома углерода с тремя s-электронами трех атомов водорода (s-р σ-связь), должны бы отличаться от четвертой(s-s) связи прочностью, длиной, направленностью. Изучение электронной плотности в молекулах метана показывает, что все связи в его молекуле равноценны и направлены к вершинам тетраэдра (рис. 10). Согласно гипотезе о гибридизации атомных орбиталей четыре ковалентные связи молекулы метана образуются с участием не «чистых» s- и р-облаков атома углерода, а с участием так называемых гибридных, т. е. усредненных, равноценных электронных облаков.


Рис. 10. Шаростержневая модель молекулы метана

Согласно этой модели, число гибридных атомных орбиталей равно числу исходных «чистых» орбиталей. Соответствующие гибридные облака выгоднее по геометрической форме, чем s- и р-облака, их электронная плотность распределена иначе, что обеспечивает более полное перекрывание с s-облаками атомов водорода, чем было бы у «чистых» s- и р-облаков.

В молекуле метана и в других алканах, а также во всех молекулах органических соединений по месту одинарной связи атомы углерода находятся в состоянии sp 3 -гибридизации, т. е. у атома углерода гибридизации подверглись одно s- и три р-атомные облака и образовались четыре одинаковые гибридные sp 3 -атомные орбитали облака.

В результате перекрывания соответствующих четырех гибридных sр 3 -облаков атома углерода с s-облаками четырех атомов водорода образуется тетраэдрическая молекула метана с четырьмя одинаковыми σ-связями, расположенными под углом 109°28" (рис. 11).

Рис. 11.
Схемы sр 3 -гибридизации валентных электронных облаков (а) и образования связей в молекуле метана (б)

Этот тип гибридизации атомов и, следовательно, тетраэдрическое строение будут характеризовать также молекулы соединений аналога углерода - кремния: SiH 4 , SiCl 4 .

При образовании молекул воды и аммиака также происходит sр 3 -гибридизация валентных атомных орбиталей атомов кислорода и азота. Однако если у атома углерода все четыре гибридные sр 3 -облака заняты общими электронными парами, то у атома азота одно sр 3 -облако занято неподеленной электронной парой, а у атома кислорода ими заняты уже два sр 3 -облака (рис. 12).

Рис. 12.
Формы молекул аммиака, воды и фтороводорода

Наличие неподеленных электронных пар приводит к уменьшению углов связей (табл. 8) по сравнению с тетраэдрическими (109°28").

Таблица 8
Взаимосвязь числа неподеленных электронных пар и угла связи в молекулах

sр 3 -Гибридизация наблюдается не только у атомов в сложных веществах, но и у атомов в простых веществах. Например, у атомов такой аллотропной модификации углерода, как алмаз.

В молекулах некоторых соединений бора имеет место sp 2 -гибридизация валентных атомных орбиталей атома бора.

У атома бора в возбужденном состоянии в гибридизации участвуют одна s- и две р-орбитали, в результате чего образуются три sp 2 -гибридные орбитали, оси соответствующих гибридных облаков расположены в плоскости под углом 120° друг к другу (рис. 13).

Рис. 13.
Схемы 8р 2 -гибридизации и расположения sр 2 -облаков в пространстве

Поэтому молекулы таких соединений, например BF3, имеют форму плоского треугольника (рис. 14).

Рис. 14.
Строение молекулы BF3

В органических соединениях, как вы знаете, sp 2 -гибридизация характерна для атомов углерода в молекулах алкенов по месту двойной связи, чем и объясняется плоскостное строение этих частей молекул, а также молекул диенов и аренов. sp 2 -Гибридизация наблюдается также у атомов углерода и в такой аллотропной модификации углерода, как графит.

В молекулах некоторых соединений бериллия наблюдается sр-гибридизация валентных орбиталей атома бериллия в возбужденном состоянии.

Два гибридных облака ориентируются друг относительно друга под углом 180° (рис. 15), и поэтому молекула хлорида бериллия ВеСl 2 имеет линейную форму.

Рис. 15.
Схемы sp-гибридизации и расположения sp-облаков в пространстве

Аналогичный тип гибридизации атомных орбиталей существует у атомов углерода в алкинах - углеводородах ряда ацетилена - по месту тройной связи.

Такая гибридизация орбиталей характерна для атомов углерода в еще одной его аллотропной модификации - карбине:

В таблице 9 приведены виды геометрических конфигураций молекул, соответствующие некоторым типам гибридизации орбиталей центрального атома А с учетом влияния числа свободных (несвязывающих) электронных пар.

Таблица 9
Геометрические конфигурации молекул, соответствующие различным типам гибридизации внешних электронных орбиталей центрального атома

Вопросы и задания к § 7

  1. В молекулах водородных соединений углерода, азота и кислорода, формулы которых СН 4 , NH 3 и Н 2 O, валентные орбитали центральных атомов неметаллов находятся в состоянии sр 3 -гибридизации, но валентные углы между связями разные - 109°28" 107°30" и 104°27" соответственно. Чем это можно объяснить?
  2. Почему графит электропроводен, а алмаз нет?
  3. Какую геометрическую форму будут иметь молекулы двух фторидов - бора и азота (BF 3 и NF 3 соответственно)? Дайте обоснованный ответ.
  4. Молекула фторида кремния SiF 4 имеет тетраэдрическое строение, а молекула хлорида брома ВСl 3 - форму треугольника - плоскостное. Почему?