В каком производстве используется омега 3. Гипотеза о влиянии омега-з полиненасыщенных жирных кислот на снижение заболеваемости ишемической болезнью сердца


Называют диссимиляцией. Он представляет собой совокупность органических соединений, при которых выделяется определенное количество энергии.

Диссимиляция проходит в два или три этапа, что зависит от вида живых организмов. Так, у аэробов состоит из подготовительного, бескислородного и кислородного этапов. У анаэробов (организмы, которые способны функционировать в бескислородной среде) диссимиляция не требует последнего этапа.

Конечная стадия энергетического обмена у аэробов заканчивается полным окислением. При этом происходит расщепление молекул глюкозы с образованием энергии, которая частично идет на образование АТФ.

Стоит отметить, что синтез АТФ происходит в процессе фосфорилирования, когда к АДФ присоединяется неорганический фосфат. При этом синтезируется в митохондриях при участии АТФ-синтазы.

Какая реакция происходит при образовании данного энергетического соединения?

Аденозиндифосфат и фосфат соединяются с образованием АТФ и на образование которой затрачивается около 30,6 кДж / моль. Аденозинтрифосфат поскольку значительное его количество высвобождается при гидролизе именно макроэргических связей АТФ.

Молекулярной машиной, которая отвечает за синтез АТФ, является специфическая синтаза. Она состоит из двух частей. Одна из них находится в мембране и представляет собой канал, по которому протоны попадают внутрь митохондрии. При этом высвобождается энергия, которая улавливается другой структурной частью АТФ под названием F1. Она содержит статор и ротор. Статор в мембране размещается неподвижно и состоит из дельта-области, а также альфа- и бета-субъединиц, которые отвечают за химический синтез АТФ. Ротор содержит гамма-, а также эпсилон-субъединицы. Эта часть крутится, используя энергию протонов. Данная синтаза обеспечивает синтез АТФ, если протоны с внешней мембраны направлены к середине митохондрий.

Необходимо отметить, что в клетке свойственна пространственная упорядоченность. Продукты химических взаимодействий веществ распределяются асимметрично (положительно заряженные ионы идут в одну сторону, а отрицательно заряженные частицы направляются в другую сторону), создавая на мембране электрохимический потенциал. Он состоит из химической и электрической компоненты. Следует сказать, что именно этот потенциал на поверхности митохондрий становится универсальной формой запасания энергии.

Данная закономерность была обнаружена английским ученым П. Митчеллом. Он предположил, что вещества после окисления имеют вид не молекул, а положительно и отрицательно заряженных ионов, которые размещаются на противоположных сторонах мембраны митохондрий. Данное предположение позволило выяснить природу образования макроэргических связей между фосфатами в процессе синтеза аденозинтрифосфата, а также сформулировать хемиосмотическую гипотезу этой реакции.


Световая фаза


Схема 5


Превращение веществ и энергии в процессе диссимиляции включает в себя следующие этапы:

I этап - подготовительный: сложные органические вещества под действием пищеварительных ферментов распадаются на простые, при этом выделяется только тепловая энергия.
Белки ® аминокислоты

Жиры ® глицерин и жирные кислоты

Крахмал ® глюкоза

II этап - гликолиз (бескислородный): осуществляется в гиало­плазме, с мембранами не связан; в нем участвуют ферменты; расщеплению подвергается глюкоза:



III этап - кислородный: осуществляется в митохондриях, свя­зан с матриксом митохондрий и внутренней мембраной, в нем участвуют ферменты, расщеплению подвергается пировино­градная кислота

СО 2 (диоксид углерода) выделяется из митохондрий в окружаю­щую среду. Атом водорода включается в цепь реакций, конеч­ный результат которых - синтез АТФ. Эти реакций идут в та­кой последовательности:

1. Атом водорода Н,с помощью ферментов-переносчиков посту­пает во внутреннюю мембрану митохондрии, образующую кристы, где он окисляется:

2. Протон Н + (катион водорода) выносится переносчиками на наружную поверхность мембраны крист. Для протонов эта мем­брана, так же как и наружная мембрана митохондрии, непрони­цаема, поэтому они накапливаются в межмембранном пространстве, образуя протонный резервуар.

3. Электроны водорода переносятся на внутреннюю поверх­ность мембраны крист и тут же присоединяются к кислороду с помощью фермента оксидазы, образуя отрицательно заряжен­ный активный кислород (анион):

4. Катионы и анионы по обе стороны мембраны создают разноименно заряженное электрическое поле, и когда разность потен­циалов достигнет 200 мВ, начинает действовать протонный канал. Он возникает в молекулах ферментов АТФ-синтетаз, которые встроены во внутреннюю мембрану, образующую кристы.

5. Через протонный канал протоны Н + устремляются внутрь митохондрии, создавая высокий уровень энергии, большая часть которой идет на синтез АТФ из АДФ и Ф (), а сами протоны Н + взаимодействуют с активным кислородом, образуя во­ду и молекулярный О 2:



Таким образом, О 2 , поступающий в митохондрии в процессе ды­хания организма, необходим для присоединения протонов Н + . При его отсутствии весь процесс в митохондриях прекращается, так как электронно-транспортная цепь перестает функциониро­вать. Общая реакция III этапа:

В результате расщепления одной молекулы глюкозы образуются 38 молекул АТФ: на II этапе - 2 АТФ и на III этапе - 36 АТФ. Об­разовавшиеся молекулы АТФ выходят за пределы митохондрии и участвуют во всех процессах клетки, где необходима энергия. Расщепляясь, АТФ отдает энергию (одна фосфатная связь заключает 46 кДж) и в виде АДФ и Ф (фосфата) возвращается в митохондрии.

Работа дыхательных ферментов регулируется с помощью эффекта, который получил название дыхательный контроль .

– это прямое влияние электрохимического градиента на скорость движения электронов по дыхательной цепи (т.е. на величину дыхания). В свою очередь, величина градиента напрямую зависит от соотношения АТФ / АДФ , количественная сумма которых в клетке практически постоянна ([АТФ] + [АДФ] = const). Реакции катаболизма направлены на поддержание постоянно высокого уровня АТФ и низкого АДФ.

Возрастание протонного градиента возникает при снижении количества АДФ и накоплении АТФ (состояние покоя ), т.е. когда АТФ-синтаза лишена своего субстрата и ионы Н + не проникают в матрикс митохондрии . При этом ингибирующее влияние градиента усиливается и продвижение электронов по цепи замедляется . Ферментные комплексы остаются в восстановленном состоянии. Следствием является уменьшение окисления НАДН и ФАДН 2 на I и II комплексах, ингибирование ферментов ЦТК при участии НАДН и замедление катаболизма в клетке.

Зависимость электрохимического градиента от скорости движения электронов

Снижение протонного градиента возникает при исчерпании резервов АТФ и избытке АДФ, т.е. при работе клетки . В этом случае активно работает АТФ-синтаза и через канал F о проходят в матрикс ионы Н + . При этом протонный градиент, естественно, снижается, поток электронов по цепи возрастает, и в результате повышается выкачивание ионов Н + в межмембранное пространство и снова их быстрое "проваливание" через АТФ-синтазу внутрь митохондрий с синтезом АТФ. Ферментные комплексы I и II усиливают окисление НАДН и ФАДН 2 (как источников электронов) и снимается ингибирующее влияние НАДН на цикл лимонной кислоты и пируватдегидрогеназный комплекс. Как итог – активируются реакции катаболизма углеводов и жиров.

Механизм синтеза АТФ при гликолизе относительно прост и может быть без большого труда воспроизведён в пробирке. Однако никогда не удавалось лабораторно смоделировать дыхательный синтез АТФ. В 19б1 г. английский биохимик Питер Митчел высказал предположение, что ферменты - соседи по дыхательной цепи - соблюдают не только строгую очерёдность вступления в реакцию, но и чёткий порядок в пространстве клетки. Дыхательная цепь, не меняя своего порядка, закрепляется во внутренней оболочке (мембране) митохондрии и несколько раз "прошивает" её будто стежками. Попытки воспроизвести дыхательный синтез АТФ потерпели неудачу, потому что роль мембраны исследователями недооценивалась. А ведь в реакции участвуют ещё ферменты, сосредоточенные в грибовидных наростах на внутренней стороне мембраны. Если эти наросты удалить, то АТФ синтезироваться не будет.

Окислительное фосфорилирование, синтез АТФ из аденозиндифосфата и неорганического фосфата, осуществляющийся в живых клетках, благодаря энергии, выделяющейся при окислении орг. веществ в процессе клеточного дыхания. В общем виде окислительное фосфорилирование и его место в обмене веществ можно представить схемой:

АН2 - органические вещества, окисляемые в дыхательные цепи (так называемые субстраты окисления, или дыхания), АДФ-аденозиндифосфат, Р-неорганический фосфат.

Поскольку АТФ необходим для осуществления многих процессов, требующих затраты энергии (биосинтез, совершение механической работы, транспорт веществ и др.), окислительное фосфорилирование играет важнейшую роль в жизнедеятельности аэробных организмов. Образование АТФ в клетке происходит также благодаря др. процессам, например в ходе гликолиза и различных типов брожения. протекающих без участия кислорода. Их вклад в синтез АТФ в условиях аэробного дыхания составляет незначительную часть от вклада окислительного фосфорилирования (около 5%).

У животных, растений и грибов окислительное фосфорилирование протекает в специализированных субклеточных структурах-митохондриях (рис. 1); у бактерий ферментные системы, осуществляющие этот процесс, находятся в клеточной мембране.

Митохондрии окружены белково-фосфолипидной мембраной. Внутри митохондрий (в так называемом матриксе) идет ряд метаболических процессов распада пищевых веществ, поставляющих субстраты окисления АН2 для окислительное фосфорилирование Наиб. важные из этих процессов -трикарбоновых кислот цикл и т. наз. -окисление жирных кислот (окислит. расщепление жирной кислоты с образованием ацетил-кофермента А и кислоты, содержащей на 2 атома С меньше, чем исходная; вновь образующаяся жирная кислота также может подвергаться -окислению). Интермедиаты этих процессов подвергаются дегидрированию (окислению) при участии ферментов дегидрогеназ; затем электроны передаются в дыхательную цепь митохондрий-ансамбль окислительно-восстановительных ферментов, встроенных во внутреннюю митохондриальную мембрану. Дыхательная цепь осуществляет многоступенчатый экзэргонический перенос электронов (сопровождается уменьшением свободной энергии) от субстратов к кислороду, а высвобождающаяся энергия используется расположенным в той же мембране ферментом АТФ-синтетазой, для фосфорилирования АДФ до АТФ. В интактной (неповрежденной) митохондриальной мембране перенос электронов в дыхательной цепи и фосфорилирование тесно сопряжены между собой. Так, например, выключение фосфорилирования по исчерпании АДФ либо неорганического фосфата сопровождается торможением дыхания (эффект дыхательного контроля). Большое число повреждающих митохондриальную мембрану воздействий нарушает сопряжение между окислением и фосфорилированием, разрешая идти переносу электронов и в отсутствие синтеза АТФ (эффект разобщения).


Механизм окислительного фосфорилирования можно представить схемой: Перенос электронов (дыхание) А ~ В АТФ А ~ В-высокоэнергетический интермедиат. Предполагалось, что А ~ В - химическое соединение с макроэргической связью, например фосфорилированный фермент дыхательной цепи (химическая гипотеза сопряжения), или напряженная конформация какого-либа белка, участвующего в окислительное фосфорилирование (конформационная гипотеза сопряжения). Однако эти гипотезы не получили экспериментального подтверждения. Наибольшим признанием пользуется хемиосмотическая концепция сопряжения, предложенная в 1961 П. Митчеллом (за развитие этой концепции в 1979 ему присуждена Нобелевская премия). Согласно этой теории, свободная энергия транспорта электронов в дыхательной цепи затрачивается на перенос из митохондрий через митохондриальную мембрану на ее наружную сторону ионов Н+ (рис. 2, процесс 1). В результате на мембране возникает разность электрич. потенциалов и разность хим. активностей ионов Н+ (внутри митохондрий рН выше, чем снаружи). В сумме эти компоненты дают трансмембранную разность электрохимических потенциалов ионов водорода между матриксом митохондрий и внешней водной фазой, разделенными мембраной:

где R-универсальная газовая постоянная, T-абсолютная температура, F- число Фарадея. Величина обычно составляет около 0,25 В, причем основная часть (0,15-0,20 В) представлена электрической составляющей. Энергия, выделяющаяся при движении протонов внутрь митохондрий по электрическому полю в сторону меньшей их концентрации (рис. 2, процесс 2), используется АТФ-синтетазой для синтеза АТФ. Т. обр., схему окислительное фосфорилирование, согласно этой концепции, можно представить в следующем виде:

Перенос электронов (дыхание) АТФ

Сопряжение окисления и фосфорилирования через позволяет объяснить, почему окислительное фосфорилирование, в отличие от гликолитического ("субстратного") фосфорилирования, протекающего в растворе, возможно лишь в замкнутых мембранных структурах, а также почему все воздействия, снижающие электрическое сопротивление и увеличивающие протонную проводимость мембраны, подавляют ("разобщают") окислительное фосфорилирование Энергия, помимо синтеза АТФ, может непосредственно использоваться клеткой для др. целей - транспорта метаболитов, движения (у бактерий), восстановления никотинамидных коферментов и др.

В дыхательной цепи имеется несколько участков, которые характеризуются значительным перепадом окислительно-восстановительного потенциала и сопряжены с запасанием энергии (генерацией). Таких участков, называемых пунктами или точками сопряжения, обычно три: НАДН: убихинон-редуктазное звено (0,35-0,4 В), убихинол: цитохром-c-редуктазное звено (~ ~ 0,25 В) и цитохром-с-оксидазный комплекс (~ 0,6 В)-пункты сопряжения 1, 2 и 3 соотв. (рис. 3). Каждый из пунктов сопряжения дыхательной цепи может быть выделен из мембраны в виде индивидуального ферментного комплекса, обладающего окислительно-восстановительной активностью. Такой комплекс, встроенный в фосфолипидную мембрану, способен функционировать как протонный насос.

Обычно для характеристики эффективности окислительное фосфорилирование используют величины Н+/2е или q/2e, указывающие сколько протонов (либо электрических зарядов) переносится через мембрану при транспорте пары электронов через данный участок дыхательной цепи, а также отношение Н+/АТФ, показывающее, сколько протонов нужно перенести снаружи внутрь митохондрий через АТФ-синтетазу для синтеза 1 молекулы АТФ. Величина q/2e составляет для пунктов сопряжения 1, 2 и 3 соотв. 3-4, 2 и 4. Величина Н+/АТФ при синтезе АТФ внутри митохондрий равна 2; однако еще один Н+ может тратиться на вынос синтезированного АТФ4- из матрикса в цитоплазму переносчиком адениновых нуклеотидов в обмен на АДФ -3. Поэтому кажущаяся величина Н+ / АТФнаружн равна 3.

В организме окислительное фосфорилирование подавляется многими токсичными веществами, которые по месту их действия можно разделить на три группы: 1) ингибиторы дыхательной цепи, или так называемые дыхательные яды. 2) Ингибиторы АТФ-синтетазы. Наиболее распространенные ингибиторы этого класса, употребляемые в лабораторных исследованиях, - антибиотик олигомицин и модификатор карбоксильных групп белка дициклогексилкарбодиимид. 3) Так называемые разобщители окислительного фосфорилирования Они не подавляют ни перенос электронов, ни собственно фосфорилирование АДФ, но обладают способностью уменьшать величину на мембране, благодаря чему нарушается энергетическое сопряжение между дыханием и синтезом АТФ. Разобщающее действие проявляет большое число соединений самой разнообразной химической структуры. Классические разобщители - вещества, обладающие слабыми кислотными свойствами, способные проникать через мембрану как в ионизованной (депротонированной), так и в нейтральной (протонированной) формах. К таким веществам относят, например, 1-(2-дицианометилен)гидразино-4-трифтор-метоксибензол, или карбонилцианид-n-трифторметокси-фенилгидразон, и 2,4-динитрофенол (соответственно формулы I и II; показаны протонированная и депротонированная формы).

Двигаясь через мембрану в электрическом поле в ионизованной форме, разобщитель уменьшает; возвращаясь обратно в протонированном состоянии, разобщитель понижает (рис. 4). Т. обр., такой "челночный" тип действия разобщителя приводит к уменьшению

Разобщающим действием обладают также ионофоры (например, грамицидин), повышающие электропроводность мембраны в результате образования ионных каналов или вещества, разрушающие мембрану (например, детергенты).

Окислительное фосфорилирование открыто В. А. Энгельгардтом в 1930 при работе с эритроцитами птиц. В 1939 В. А. Белицер и Е. Т. Цыбакова показали, что окислительное фосфорилирование сопряжено с переносом электронов в процессе дыхания; к такому же заключению несколько позднее пришел Г. М. Калькар.

Механизм синтеза АТФ. Сопряжение диффузии протонов назад через внутреннюю мембрану митохондрии с синтезом АТФ осуществляется с помощью АТФазного комплекса, получившего название фактора сопряжения F,. На электронно- микроскопических снимках эти факторы выглядят глобулярными образованиями грибовидной формы на внутренней мембране митохондрий, причем их «головки» выступают в матрикс. F1 - водорастворимый белок, состоящий из 9 субъединиц пяти различных типов. Белок представляет собой АТФазу и связан с мембраной через другой белковый комплекс F0, который перешнуровывает мембрану. F0 не проявляет каталитической активности, а служит каналом для транспорта ионов Н+ через мембрану к Fx.

Механизм синтеза АТФ в комплексе Fi~ F0 до конца не выяснен. На этот счет имеется ряд гипотез.

Одна из гипотез, объясняющих образование АТФ посредством так называемого прямого механизма, была предложена Митчеллом.

По этой схеме на первом этапе фосфорилирования фосфатный ион и АДФ связываются с г компонентом ферментного комплекса (А). Протоны перемещаются через канал в F0-компоненте и соединяются в фосфате с одним из атомов кислорода, который удаляется в виде молекулы воды (Б). Атом кислорода АДФ соединяется с атомом фосфора, образуя АТФ, после чего молекула АТФ отделяется от фермента (В).

Для косвенного механизма возможны различные варианты. АДФ и неорганический фосфат присоединяются к активному центру фермента без притока, свободной энергии. Ионы Н + , перемещаясь по протонному каналу по градиенту своего электрохимического потенциала, связываются в определенных участках Fb вызывая конформационныё. изменения фермента (П. Бойер), в результате чего из АДФ, и Рi синтезируется АТФ. Выход протонов в матрикс сопровождается возвратом АТФ-синтетазного комплекса в исходное конформационное состояние и освобождением АТФ.

В энергизованном виде F1 функционирует как АТФ-синтетаза. При отсутствии сопряжения между электрохимическим потенциалом ионов Н+ и синтезом АТФ энергия, освобождающаяся в результате обратного транспорта ионов Н+ в матриксе, может превращаться в теплоту. Иногда это приносит пользу, так как повышение температуры в клетках активирует работу ферментов.