Антигены а в типа что. Иммунология. Гуморальные факторы адаптивного иммунитета


Антигенами называют чужеродные для организма вещества коллоидной структуры, которые при попадании в его внутреннюю среду способны вызывать ответную специфическую иммунологическую реакцию, проявляющуюся, в частности, в образовании специфических антител, появлении сенсибилизированных лимфоцитов или в возникновении состояния толерантности к этому веществу.

Таблица 12

Показатели основных гуморальных факторов здоровых людей

Вещества, являющиеся антигенами, должны быть чужеродны для организма, макромолекулярны, находиться в коллоидном состоянии, поступать в организм парентерально, т.е. минуя желудочно-кишечный тракт, в котором обычно происходит расщепление вещества и потеря его чужеродности. Под чужеродностью антигенов следует понимать определенную степень химического различия между антигеном и макромолекулами организма, во внутреннюю среду которого, но попадает.

Простые элементы (железо, медь, сера и др.), простые и сложные неорганические соединения (кислоты, соли и др.), а также простые органические молекулы, такие как моносахара, дисахара, аминокислоты не являются антигенами. Биосинтез этих молекул заканчивается построением химически однотипных молекул независимо от того, в животной, растительной или микробной клетке он осуществляется, т.е. эти вещества специфичностью не обладают, специфичность проявляется на более высоком уровне организации биологических макромолекул. Так, аминокислоты, соединенные в полимерную цепь, приобретают антигенность, если в эту цепь входит более 8 аминокислот. Термином «антигенность» обычно обозначают не только способность чужеродного вещества индуцировать образование антител в организме, но и вступать с ними в специфическую связь.

Антигенные свойства связаны с величиной молекулярной массы макромолекулы – она должна быть не менее 10 тыс. дальтон. Чем выше молекулярная масса вещества, тем выше его антигенность. Вместе с тем неверно считать, что высокая молекулярная масса является обязательным свойством антигена. Так, глюкогон (гормон поджелудочной железы, мм 3800) вазопрессин – ангиотензин (мм 1000) также обладают антигенными свойствами.

Принято различать полноценные антигены, неполноценные антигены (гаптены) и полугаптены. Полноценными антигенами называют такие, которые вызывают образование антител или сенсибилизацию лимфоцитов и способны реагировать с ними как в организме, так и в лабораторных реакциях. Свойствами полноценных антигенов обладают белки, полисахариды, высокомолекулярные нуклеиновые кислоты и комплексные соединения этих веществ.

Неполноценные антигены, или гаптены, сами по себе не способны вызывать образование антител или сенсибилизацию лимфоцитов. Это свойство появляется лишь при добавлении к ним полноценных антигенов («проводников»), а среди образующихся антител или сенсибилизированных лимфоцитов часть специфична к «проводнику», а часть – к гаптену, с которым они и могут реагировать как in vivo, так и in vitro.

Полугаптенами называют сравнительно простые вещества, которые при поступлении во внутреннюю среду организма могут химически соединяться с белками этого организма и придавать им свойства антигенов. К этим веществам могут принадлежать и некоторые лекарственные препараты (йод, бром, антипирин и др.).

Молекула антигена состоит из двух неравных частей. Активная (малая часть) с молекулярной массой около 350-1000 дальтон носит название антигенной детерминанты (эпитоп) и определяет антигенную специфичность. Антигенные детерминанты расположены в тех местах молекулы антигена, которые находятся в наибольшей связи с микроокружением. В белковой молекуле, например, они могут располагаться не только на концах полипептидной цепи, но и в других ее частях. Антигенные детерминанты содержат в своем составе по крайней мере три аминокислоты с жесткой структурой (тирозин, триптофан, фенилаланин). Специфичность антигена связана также с порядком чередования аминокислот полипептидной цепи и комбинацией их положений по отношению друг к другу. Примерно на каждые 5000 дальтон относительной молекулярной массы молекулы антигена приходится одна антигенная детерминанта (эпитоп). Количество антигенных детерминант у молекулы антигена определяет его валентность. Она тем выше, чем больше относительная молекулярная масса молекулы антигена. Так, у дифтерийного токсина 8 валентностей, гемоцианина – 231 и т.д.

Остальная (неактивная) часть молекулы антигена, как полагают, играет роль носителя детерминанты и способствует проникновению антигена во внутреннюю среду организма, его пиноцитозу или фагоцитозу, клеточной реакции на проникновение антигена, образование медиаторов межклеточного взаимодействия в иммунном ответе (Т-лимфоциты имеют рецепторы к носителю, В- к антигенной детерминанте). Антигенные детерминанты некоторых антигенов получены искусственным путем. Их введение в организм животных без носителя, против ожидания, приводит к низкому иммунному ответу. В настоящее время ведутся разработки по созданию синтетических носителей для синтетических антигенных детерминант.

Для проявления антигенности большое значение имеет путь введения антигена в организм и его доза. Для большинства антигенов бактерий и вирусов наиболее результативно внутрикожное и подкожное введение их. Оба пути значительно эффективнее внутримышечного или внутривенного. Энтеральный путь поступления для многих антигенов малоэффективен. Передозировка медленно выводящихся антигенов может вызвать иммунологический паралич. Введение антигена в эмбрион приводит к возникновению толерантности после рождения животного. В зависимости от пути поступления наблюдается преимущественное накопление антигена в том или ином органе: при внутривенном – в селезенке, костном мозге, печени; при подкожном – в регионарных лимфатических узлах. В клетке организма антигены поступают в результате фаго- или пиноцитоза. Сохранение антигена в организме зависит при прочих равных условиях от размеров и химической структуры его молекул. Наиболее длительное пребывание его в организме (несколько сот дней) наблюдается при соединении антигена с веществом, имеющим длительный период полураспада. Выделяется антиген из организма, в основном, с мочой и (меньше) с фекалиями.

Белки и углеводы крови и внутренних органов обычно не антигенны для организма, в котором они синтезируются, и в то же время антигенны для других особей того же вида (изоантигены). Эта закономерность не распространяется на так называемые забарьерные органы, т.е. органы, отделенные от кровотока особым барьером (гематоэнцефалический, гематотестикулярный и др.), белки которых в норме не поступают в кровь и являются антигенами для собственного организма. В число таких органов входят мозг, хрусталик глаза, паращитовидные железы, семенник.

Различные микробы в связи со сложностью их структуры и химического состава содержат различные антигены: белки (полноценные антигены), углеводы, липоидные соединения (гаптены) и их комплексы.

Соответственно анатомическим структурам бактериальной клетки различают Н-антигены (жгутиковые, если бактерия их имеет), К-антигены (поверхностные, антигены клеточной стенки – полисахариды, липополисахариды, белки), О-антигены (соматический, внутриклеточные – белки, нуклеопротеины, ферменты бактерий), антигены экскретируемые бактериями в окружающую их среду (белки-экзотоксины, полисахариды капсул).

Среди многочисленных антигенов микробной клетки различают такие, которые присущи только данному типу микробов (типовые антигены), данному виду (видовые антигены), а также общие для группы (семейства) микроорганизмов (групповые антигены). Такие антигены извлекают из дезинтегрированных микробов, иммунизируют ими животных и получают, соответственно типовые, видовые, групповые антисыворотки. Такие сыворотки применяют с целью идентификации выделенных из организма больного (или окружающей среды) неизвестных бактерий, определяя не только вид, но и серотип внутри вида.

Таким образом, бактериальная клетка (как и микроорганизмы других царств микробов – вирусы, простейшие, грибки) представляют собой сложный комплекс многочисленных антигенов. При ее попадании во внутреннюю среду макроорганизма на многие из этих антигенов будут образовываться свои специфические антитела. Одни антигены индуцируют образование едва заметного количества антител (титр), другие – быстрое и значительное антителообразование. Соответственно этому различают «слабые» и «сильные» антигены.

Не все антигены бактериальной клетки в равной степени участвуют в индукции невосприимчивости (иммунитета) к повторному попаданию в макроорганизм патогенных микробов того же вида. Способность антигена индуцировать иммунитет называют иммуногенностью, а такой антиген – иммуногеном. Установлено также, что определенные антигены некоторых микроорганизмов могут вызывать развитие различных типов гиперчувствительности (аллергии). Такие антигены называют аллергенами.

Антигены бактериальных клеток получают двумя путями: препаративным – выделением клеточных структур после дезинтеграции микробов (физический метод) или извлечением антигенных фракций химическими веществами (химический метод).

Что такое антигены

Это любые вещества, содержащиеся в микроорганизмах и других клетках (или выделяемые ими), которые несут в себе признаки генетически чужеродной информации и которые потенциально могут быть распознаны иммунной системой организма. При введении во внутреннюю среду организма эти генетически чужеродные вещества способны вызывать иммунный ответ различных типов.

Каждый микроорганизм, как бы примитивно он ни был устроен, содержит несколько антигенов. Чем сложнее его структура, тем больше антигенов можно обнаружить в его составе.

Антигенными свойствами обладают различные элементы микроорганизма - жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплазмы, а также различные продукты белковой природы, выделяемые бактериями во внешнюю среду, в том числе токсины и ферменты.

Различают экзогенные антигены (поступающие в организм извне) и эндогенные антигены (аутоантигены - продукты собственных клеток организма), а также антигены, вызывающие аллергические реакции, - аллергены.

Что такое антитела

Организм непрерывно встречается с разнообразными антигенами. Он подвергается атаке как извне - со стороны вирусов и бактерий, так и изнутри - со стороны клеток организма, приобретающих антигенные свойства.

– белки сыворотки крови, которые вырабатываются плазматическими клетками в ответ на проникновение антигена в организм. Антитела вырабатываются клетками лимфоидных органов, и циркулируют в плазме крови, лимфе и других жидкостях организма.

Главная важная роль антител - это распознавание и связывание чужеродного материала (антигена), а также запуск механизма уничтожения этого чужеродного материала. Существенным и уникальным свойством антител служит их способность связывать антиген непосредственно в том виде, в каком он проникает в организм.

Антитела обладают способностью отличать один антиген от другого. Они способны к специфическому взаимодействию с антигеном, но взаимодействуют только с тем антигеном (за редким исключением), который индуцировал их образование и подходит к ним по пространственной структуре. Эта способность антитела получила название комплементарности .

Полного понимания молекулярного механизма образования антител пока не существует. Не изучены молекулярные и генетические механизмы, лежащие в основе распознавания миллионов различных антигенов, встречающихся в окружающей среде.

Антитела и иммуноглобулины

В конце 30-х годов XX века началось изучение молекулярной природы антител. Одним из способов исследования молекул являлся электрофорез, который был введен в практику в эти же годы. Электрофорез позволяет разделить белки по их электрическому заряду и молекулярной массе. При электрофорезе белков сыворотки обычно получается 5 основных полос, которые соответствуют (от + к -) фракциям альбумина, альфа1-, альфа2-, бета- и гамма-глобулинов.

В 1939 году шведский химик Арне Тиселиус и американский иммунохимик Элвин Кэбет (Tiselius, Kabat) использовали электрофорез, чтобы разделить на фракции сыворотку крови иммунизированных животных. Ученые показали, что антитела содержатся в определённой фракции белков сыворотки. А именно - антитела относятся, в основном, к гамма-глобулинам. Так как часть попадала также в область бета-глобулинов, то для антител был предложен лучший термин - иммуноглобулины.

В соответствии с международной классификацией, совокупность сывороточных белков, обладающих свойствами антител, называют иммуноглобулинами и обозначают символом Ig (от слова «Immunoglob­ulin»).

Термин «иммуноглобулины» отражает химическую структуру молекул этих белков. Термин «антитело» определяет функциональные свойства молекулы и учитывает способность антитела реагировать только с определенным антигеном.

Раньше предполагалось, что иммуноглобулины и антитела – синонимы. В настоящее время существует мнение, что все антитела являются иммуноглобулинами, но не все иммуноглобулиновые молекулы обладают функцией антител.

Мы говорим об антителах только относительно антигена, т.е. если антиген известен. Если мы не знаем антиген, комплементарный некоему иммуноглобулину, который оказался у нас «в руках», то мы имеем только иммуноглобулин. В любой антисыворотке, кроме антител против данного антигена, имеется большое количество иммуноглобулинов, антительную активность которых не удалось обнаружить, однако это не означает, что данные иммуноглобулины не являются антителами к каким-либо другим антигенам. Вопрос о существовании молекул иммуноглобулинов, изначально не обладающих свойствами антител, пока остается открытым.

Антитела (АТ, иммуноглобулины, ИГ, Ig) являются центральной фигурой гуморального иммунитета. Основную роль в иммунной защите организма играют лимфоциты, которые подразделяются на две основные категории – Т-лимфоциты и В-лимфоциты.

Антитела или иммуноглобулины (Ig) синтезируются В-лимфоцитами, а точнее антителообразующими клетками (АОК). Синтез антител начинается в ответ на попадание во внутреннюю среду организма антигенов. Для синтеза антител B-клеткам необходим контакт с антигеном и вызванное им созревание B-клеток в антителообразующие клетки. Значительное число антител вырабатывают образовавшиеся из В-лимфоцитов так называемые плазматические клетки - АОК, выявляемые в крови и тканях. Иммуноглобулины содержатся в большом количестве в сыворотке, в межклеточной жидкости и других секретах, обеспечивая гуморальный ответ.

Классы иммуноглобулинов


Иммуноглобулины (Ig) различаются по структуре и по выполняемым функциям. У человека обнаружены 5 различных классов иммуноглобулинов: IgG , IgA , IgM , IgE , IgD , часть из которых ещё подразделяется на подклассы. Подклассы есть у иммуноглобулинов классов G (Gl, G2, G3, G4), А (А1, А2) и M (M1, M2).

Классы и подклассы, вместе взятые, называют изотипами иммуноглобулинов.

Антитела разных классов различаются по размерам молекул, заряду белковой молекулы, аминокислотному составу и содержанию углеводного компонента. Наиболее изученным классом антител является IgG.

В сыворотке крови человека в норме преобладают иммуноглобулины класса IgG. Они составляют приблизительно 70–80% от общего количества сывороточных антител. Содержание IgA - 10-15%, IgM - 5-10%. Содержание иммуноглобулинов класса IgE и IgD очень мало - около 0.1% для каждого из этих классов.

Не следует думать, что антитела против того или иного антигена принадлежат только к какому-то одному из пяти классов иммуноглобулинов. Наоборот, антитела против одного и того же антигена могут быть представлены разными классами Ig.

Важнейшую диагностическую роль играет определение антител классов М и G, так как после инфицирования человека первыми появляются антитела класса М, затем класса G, и последними иммуноглобулины А и Е.

Иммуногенность и антигенность антигенов

В ответ на попадание антигенов в организм начинается целый комплекс реакций, направленный на освобождение внутренней среды организма от продуктов чужеродной генетической информации. Такая совокупность защитных реакций иммунной системы называется иммунным ответом .

Иммуногенностью называется способность антигена вызывать иммунный ответ, то есть индуцировать специфическую защитную реакцию иммунной системы. Иммуногенность также можно описать, как способность создавать иммунитет.

Иммуногенность в значительной степени зависит от природы антигена, его свойств (молекулярного веса, подвижности молекул антигена, формы, структуры, способности к изменению), от пути и режима попадания антигена в организм, а также дополнительных воздействий и генотипа реципиента.

Как упомянуто выше, одной из форм реагирования иммунной системы в ответ на внедрение в организм антигена является биосинтез антител. Антитела способны связывать антиген, вызвавший их образование, и тем самым защищать организм от возможного вредного действия чужеродных антигенов. В связи с этим, вводится понятие антигенности.

Антигенность – это способность антигена специфически взаимодействовать с факторами иммунитета, а именно вступать во взаимодействие с продуктами вызванного именно этим веществом иммунного ответа (антителами и Т- и В-антиген-распознающими рецепторами).

Некоторый термины молекулярной биологии

Липиды (от др.-греч. λίπος - жир) - обширная группа довольно разнообразных природных органических соединений, включающая жиры и жироподобные вещества. Липиды содержатся во всех живых клетках и являются одним из основных компонентов биологических мембран. Они нерастворимы в воде и хорошо растворимы в органических растворителях. Фосфолипиды - сложные липиды, содержащие в себе высшие жирные кислоты и остаток фосфорной кислоты.

Конформация молекул (от лат. conformatio - форма, построение, расположение) - геометрические формы, которые могут принимать молекулы органических соединений при вращении атомов или групп атомов (заместителей) вокруг простых связей при сохранении неизменными порядка химической связи атомов (химического строения), длины связей и валентных углов.

Органические соединения (кислоты) особой структуры. В их молекулах одновременно содержатся аминогруппы (NH 2) и карбоксильные группы (СООН). Все аминокислоты состоят всегоиз 5 химических элементов: С, H, O, N, S.


Пептиды (греч. πεπτος - питательный) - семейство веществ, молекулы которых построены из двух и более остатков аминокислот, соединённых в цепь пептидными (амидными) связями. Пептиды, последовательность которых длиннее примерно 10-20 аминокислотных остатков, называются полипептидами .

В полипептидной цепи различают N-конец , образованный свободной α-аминогруппой и С-конец , имеющий свободную α-карбоксильную группу. Пептиды пишутся и читаются с N-конца к С-концу- с N-концевой аминокислоты к С-концевой аминокислоте.

Аминокислотные остатки - это мономеры аминокислот, входящих в состав пептидов. Аминокислотный остаток, имеющий свободную аминогруппу, называется N-концевым и пишется слева, а имеющий свободную α-карбоксильную группу - С-концевым и пишется справа.

Белками обычно называют полипептиды, содержащие примерно от 50 аминокислотных остатков. В качестве синонима термина «белки» также используется термин «протеины» (от греч. protos - первый, важнейший). Молекула любого белка имеет четко определенную, достаточно сложную, трехмерную структуру.

Аминокислотные остатки в белках принято обозначать с помощью трёх-буквенного или одно-буквенного кода. Трёх-буквенный код представляет собой аббревиатуру от английских названий аминокислот и часто используется в научной литературе. Одно-буквенный код по большей части не имеет интуитивно понятной связи с названиями аминокислот и используется в биоинформатике для представления последовательности аминокислот в виде текста, удобного для компьютерного анализа.

Пептидный остов. В полипептидной цепи многократно повторяется последовательность атомов -NH-CH-CО- .Эта последовательность и формирует пептидный остов. Полипептидная цепь состоит из полипептидного остова (скелета), имеющего регулярную, повторяющуюся структуру, и отдельных боковых групп (R-групп).

Пептидные связи соединяют аминокислоты в пептиды. Пептидные связи образуются при взаимодействии α-карбоксильной группы одной аминокислоты и α-аминогруппы от последующей аминокислоты. Пептидные связи очень прочны и самопроизвольно не разрываются при нормальных условиях, существующих в клетках.

Многократно повторяющиеся в молекулах пептидов группы атомов -СО-NH- называются пептидными группами . Пептидная группа обладает жесткой планарной (плоской) структурой.

Конформация белков - расположение полипептидной цепи в пространстве. Пространственная структура, характерная для молекулы белка, образуется за счет внутримолекулярных взаимодействий. Линейные полипептидные цепи индивидуальных белков за счёт взаимодействия функциональных групп аминокислот приобретают определённую трёхмерную структуру, которая и называется «конформацией белков».

Процесс формирования функционально активной конформации белка носит название фолдинг . Жёсткость пептидной связи уменьшает количество степеней свободы полипептидной цепи, что играет большую роль в процессе фолдинга.

Глобулярные и фибриллярные белки. Изученные к настоящему времени белки можно разделить на два больших класса по способности принимать в растворе определенную геометрическую форму: фибриллярные (вытянyтые в нить) и глобулярные (свернутые в клубок). Полипептидные цепи фибриллярных белков вытянуты, расположены параллельно друг другу и образуют длинные нити или слои. В глобулярных белках полипептидные цепи плотно свернyты в глобулы - компактные структуры сферической формы.

Следует отметить условность деления белков на фибриллярные и глобулярные, так как существует большое число белков с промежуточной структурой.

Первичная структура белка (primary structure of protein) - это линейная последовательность аминокислот, составляющих белок, в полипептидной цепи. Аминокислоты соединены между собой пептидными связями. Последовательность аминокислот записывают, начиная от С-конца молекулы, в направлении к N-концу полипептидной цепочки.

П.с.б - это простейший уровень структурной организации белковой молекулы. Первая П.с.б. была установлена Ф. Сенгером для инсулина (Нобелевская премия за 1958 г.).

(secondary structure of protein)- укладка полипептидной цепи белка в результате взаимодействия между близкорасположенными аминокислотами в составе одной и той же пептидной цепочки - между аминокислотами расположенными через считанные остатки друг от друга.

Вторичная структура белков - это пространственная структура, которая образуется в результате взаимодействий между функциональными группами, входящими в состав пептидного остова.

Вторичная структура белков обусловлена способностью групп пептидной связи к водородным взаимодействиям-между функциональными группами -С=О и - NH- пептидного остова. При этом пептид стремится принять конформацию с образованием максимального числа водородных связей. Однако возможность их образования ограничивается характером пептидной связи. Поэтому пептидная цепь приобретает не произвольную, а строго определенную конформацию.

Вторичная структура образуется из сегментов полипептидной цепи, которые участвуют в формировании регулярной сетки водородных связей.

Другими словами, под вторичной структурой полипептида понимают конформацию его основной цепи (остова) без учета конформации боковых групп.

Полипептидная цепь белка, складываясь под действием водородных связей в компактную форму, может образовывать некоторое количество регулярных структур. Таких структур известно несколько: α (альфа)-спираль, β (бета)-структура (другое название - β-складчатый слой или β-складчатый лист), беспорядочный клубок и поворот. Редким видом вторичной структуры белков являются π-спирали. Первоначально исследователи считали, что данный вид спирали в природе не встречается, однако позже эти спирали были открыты в белках.

α -спираль и β-структура являются энергетически наиболее выгодными конформациями, поскольку обе они стабилизированы водородными связями. Кроме того, и α-спираль, и β-структура дополнительно стабилизируются благодаря плотной упаковке атомов основной цепи, которые подогнаны друг к другу, как кусочки одной картинки-головоломки.

Эти фрагменты и их сочетание в некотором белке, если они имеются, также принято называть вторичной структурой этого белка.

В структуре глобулярных белков могут встречаться фрагменты регулярного строения всех типов в любой комбинации, но может не быть и ни одного. В фибриллярных белках все остатки принадлежат какому-то одному типу: например, шерсть содержит α-спирали, а шелк - β-структуры.

Таким образом, чаще всего вторичная структура белка - это укладка полипептидной цепи белка в α-спиральные участки и β-структурные образования (слои) с участием водородных связей. Если водородные связи образуются между участками изгиба одной цепи, то их называют внутрицепочечными, если между цепями – межцепочечные. Водородные связи располагаются перпендикулярно полипептидной цепи.


α-спираль -образуется внутрицепочечными водородными связями между NH группой одного остатка аминокислоты и CO-группой четвертого от нее остатка. Средняя длина α-спиралей в белках - 10 аминокислотных остатков

В α-спирали водородные связи образуются между атомом кислорода карбонильной группы и водородом амидного азота 4-й от него аминокислоты. В образовании этих водородных связей вовлечены все группы C=O и N-H основной полипептидной цепи. Боковые цепи аминокислотных остатков располагаются по периферии спирали и не участвуют в образовании вторичной структуры.

β-структуры формируются между линейными областями пептидного остова одной полипептидной цепи, образуя при этом складчатые структуры (несколько зигзагообразных полипептидных цепей).

β-структура формируется за счет образования множества водородных связей между атомами пептидных групп линейных цепей. В β-структурах водородные связи образуются между относительно удалёнными друг от друга в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали.

В некоторых белках β-структуры могут формироваться за счет образования водородных связей между атомами пептидного остова разных полипептидных цепей.

Полипептилные цепи или их части могут формировать параллельные или антипараллельные β-структуры. Если связанные несколько цепей полипептида направлены противоположно, а N- и С-концы не совпадают, то возникает антипараллельная β–структура, если совпадают – параллельная β-структура.

Другое название β-структур - β-листы (β-складчатые слои, β-sheets). β-лист формируется из двух или более β-структурных участков полипептидной цепи, называемых β-тяжами (β-strands). Обычно β-листы встречаются в глобулярных белках и содержат не более, чем 6 β-тяжей.

β-тяжи (β- strands)- это участки молекулы белка, в которых связи пептидного остова нескольких идущих подряд полипептидов организованы в плоской конформации. На иллюстрациях, β-тяжи белков иногда изображаются в виде плоских "лент со стрелками", чтобы подчеркнуть направление полипептидной цепи.

Основная часть β-тяжей расположена по соседству с другими тяжами и образует с ними обширную систему водородных связей между C=O и N-H группами основной белковой цепи (пептидного остова). β-тяжи могут быть упакованы , будучи стабилизированными поперечно двумя или тремя водородными связями между последовательными тяжами. Такой способ укладки и называется β-листом.

Беспорядочный клубок - это участок пептидной цепи, который не имеет какой-либо правильной, периодической пространственной организации. Такие участки в каждом белке имеют свою фиксированную конформацию, которая определяется аминокислотным составом этого участка, а также вторичной и третичной структурами смежных областей, окружающих «беспорядочный клубок». В областях беспорядочного клубка пептидная цепь может сравнительно легко изгибаться, изменять конформацию, в то время как α-спирали и β-складчатый слой представляют собой достаточно жесткие структуры

Еще одна форма вторичной структуры обозначается как β-поворот . Эту структуру образуют 4 или больше аминокислотных остатка с водородной связью между первым и последним, причем таким образом, что пептидная цепь меняет направление на 180°. Петлевая структура такого поворота стабилизирована водородной связью между карбонильным кислородом аминокислотного остатка в начале поворота и N-H группой третьего по ходу цепи остатка в конце поворота.

Если к β-повороту с двух концов подходят антипараллельные β-тяжи, то образуется вторичная структура, называемая β-шпилькой (β-hairpin)

Третичная структура белка (tertiary structure of protein) - В растворе при физиологических условиях полипептидная цепь сворачивается в компактное образование, имеющее определенную пространственную структуру, которую называют третичной структурой белка. Она образуется в результате самоукладки за счет взаимодействия между радикалами (ковалентные и водородные связи, ионные и гидрофобные взаимодействия). Впервые Т.с.б. была установлена для белка миоглобина Дж. Кендрю и М. Перуцем в 1959 г. (Нобелевская премия за 1962 г.). Т.с.б. практически полностью определяется первичной структурой белка. В настоящее время с помощью методов рентгеноструктурного анализа и ядерной магнитной спектроскопии (ЯМР-спектроскопия) определены пространственные (третичные) структуры большого числа белков.

Четвертичная структура белка. Белки, состоящие из одной полипептидной цепи, имеют только третичную структуру. Однако некоторые белки построены из нескольких полипептидных цепей, каждая из которых имеет третичную структуру. Для таких белков введено понятие четвертичной структуры, которая представляет собой организацию нескольких полипептидных цепей с третичной структурой в единую функциональную молекулу белка. Такой белок с четвертичной структурой называется олигомером, а его полипептидные цепи с третичной структурой - протомерами или субъединицами.


Конъюгат (conjugate, лат. conjugatio - соединение) - искусственно синтезированная (химически или путем рекомбинации in vitro) гибридная молекула, в которой соединены (объединены) две молекулы с разными свойствами; широко используется в медицине и экспериментальной биологии.

Гаптены

Гаптены - это «неполноценные антигены» (термин предложен иммунологом К. Ландштейнером). При введении в организм в нормальных условиях гаптены не способны индуцировать в организме иммунный ответ, так как обладают крайне низкой иммуногенностью.

Чаще всего гаптенами являются низкомолекулярные соединения (молекулярная масса меньше 10 кДа). Они распознаются организмом реципиента как генетически чужеродные (т.е. обладают специфичностью), но в силу низкой молекулярной массы сами по себе не вызывают иммунных реакций. Однако свойство антигенности они не утратили, что позволяет им специфически взаимодействовать с уже готовыми факторами иммунитета (антителами, лимфоцитами).

При определенных условиях удается за­ ставить иммунную систему макроорганизма специфически реагировав на гаптен как на полноценный антиген. Для этого необходимо ис­кусственно укрупнить молекулу гаптена - соединить ее прочной связью с достаточно большой белковой молекулой или другим полимером-носителем. Синтезированный таким образом конъюгат будет обладать всеми свойствами полноценного антигена и вызы­вать иммунный ответ при введении в организм.

Эпитопы (антигенные детерминанты)

Организм способен образовать антитела почти к любой части молекулы антигена, но при нормальном иммунном ответе этого обычно не происходит. Комплексные антигены (белки, полисахариды) имеют особые участки, на которые собственно и формируется специфический иммунный ответ. Такие участки получили название эпитопы (epitope), от греч. epi - на, над, сверх и topos - место, местность. Синоним - антигенная детерминанта .

Эти участки состоят из немногих аминокислот или углеводов, каждый участок - это группа аминокислотных остатков белкового антигена или участок полисахаридной цепи. Эпитопы способны взаимодействовать как со специфическими рецепторами лимфоцитов, индуцируя тем самым иммунный ответ, так и с антигенсвязывающими центрами специфических антител.


Эпитопы разнообразны по своей структуре. Антигенной детерминантой (эпитопом) может быть участок поверхности белка, образованный радикалами аминокислот, гаптен или простетическая группа белка (связанный с белком небелковый компонент), особенно часто - полисахаридные группы гликопротеинов.

Антигенные детерминанты или эпитопы - это определенные участки трехмерной структуры антигенов. Существуют разные типы эпитопов - линейные и конформационные .

Линейные эпитопы образованы линейной последовательностью аминокислотных остатков.

В результате изучения строения белков было выяснено, что белковые молекулы имеют сложную пространственную структуру. При свертывании (в клубок) макромолекулы белка могут сближаться остатки, отдаленные друг от друга в линейной последовательности, образуя конформационную антигенную детерминанту.

Кроме того, сушествуют кон­цевые эпитопы (расположенные на концевых участках молекулы антигена) и центральные. Определяют также «глубинные», или скрытые, антигенные детерминанты, которые проявляются при разрушении антигена.

Молекулы большинства антигенов имеют довольно большие размеры. Одна макромолекула белка (антиген), состоящая из нескольких сот аминокислот, может содержать много различных эпитопов. Некоторые белки могут иметь одну и ту же антигенную детерминанту в нескольких экземплярах (повторные антигенные детерминанты).

Против одного эпитопа образуется широкий спектр разных антител. Каждый из эпитопов способен стимулировать продукцию различных специфичных антител. К каждому из эпитопов могут вырабатываться специфические антитела.

Существует явление иммунодоминантности , которое проявляется в том, что эпитопы различают­ся по способности индуцировать иммунный ответ.

Не все эпитопы в составе белка характеризуются равной антигенностью. Как правило, некоторые эпитопы антигена обладают особой антигенностью, что проявляется в преимущественном образовании антител против этих эпитопов. Устанавливается иерархия в спектре эпитопов молекулы белка - некоторые из эпитопов являются доминирующими и большинство антител образуется именно к ним. Такие эпитопы названы иммунодоминантными эпитопами . Они почти всегда расположены на выдающихся частях молекулы антигена.

Строение антител (иммуноглобулинов)

Иммуноглобулины IgG на основании экспериментальных данных. Каждый аминокислотный остаток молекулы белка изображен в виде маленького шарика. Визуализация построена с помощью программы RasMol.

В течение XX века биохимики стремились выяснить, какие варианты иммуноглобулинов существуют и какова структура молекул этих белков. Структура антител устанавливалась в ходе разнообразных экспериментов. В основном они заключались в том, что антитела обрабатывались протеолитическими ферментами (папаином, пепсином), и подвергались алкилированию и восстановлению меркаптоэтанолом.

Затем исследовались свойства полученных фрагментов: определялась их молекулярная масса (хроматографией), четвертичная структура (рентгеноструктурным анализом), способность связываться с антигеном и т.п. Также использовались антитела к данным фрагментам: выяснялось, могут ли антитела к одному типу фрагментов связываться с фрагментами другого типа. На основе полученных данных была построена модель молекулы антител.

Более 100 лет исследований структуры и функций иммуноглобулинов только подчеркнули сложную природу этих белков. В настоящее время, строение молекул иммуноглобулинов человека не описано полностью. Большинство исследователей сконцентрировали свои усилия не на описании структуры этих белков, а на выяснении механизмов, посредством которых антитела взаимодействуют с антигенами. Кроме того, молекулы антител , поэтому изучение антител, сохраненных в неизменном виде, становится сложной задачей. Гораздо чаще удается выяснить точное строение отдельных фрагментов антител.

Несмотря на предполагаемое раз­нообразие иммуноглобулинов, их молекулы удалось классифицировать по структурам, входящим в эти молекулы. Эта классификация основана на том, что иммуноглобулины всех классов построены по общему плану, имеют некое универсальное строение.

Молекулы иммуноглобулинов - это сложные пространственные образования. Все без исключения антитела принадлежат к одному типу белковых молекул, имеющих глобулярную вторичную структуру, что соответствует их названию - «иммуноглобулины» (вторичная структура белка - это способ укладки в пространстве его полипептидной цепи). Они могут быть мономерами либо полимерами, построенными из нескольких субъединиц.

Тяжелые и легкие полипептидные цепи в структуре иммуноглобулинов

Пептидные цепи иммуноглобулинов. Схематическое изображение. Вариабельные области выделены пунктиром.

Структурная единица иммуноглобулина - мономер, молекула состоящая из полипептидных цепей, соединенных друг с другом дисульфидными связями (S-S мостиками).

Если молекулу Ig обработать 2-меркаптоэтанолом (реактивом, разрушающим дисульфидные связи), то она распадется на пары полипептидных цепей. Полученные полипептидные цепи классифицируют по молекулярной массе: легкие и тяжелые. Лёгкие цепи имеют низкую молекулярную массу (около 23 кД) и обозначаются буквой L, от англ. Light -
 лёгкий. Тяжёлые цепи Н (от англ.
 Heavy - тяжёлый) имеют высокую молекулярную массу (варьирует в пределах 50 - 73 кД).

Так называемый мономерный иммуноглобулин содержит две L-цепи и две H-цепи. Легкие и тяжелые цепи удерживаются вместе дисульфидными мостиками. Дисульфидные связи соединяют легкие цепи с тяжелыми, а также тяжелые цепи между собой.

Основной структурной субъединицей всех классов иммуноглобулинов является пара «легкая цепь - тяжелая цепь» (L-H). Структура иммуноглобулинов разных классов и подклассов различается по числу и расположению дисульфидных связей между тяжелыми цепями, а также по числу (L-H)-субъединиц в молекуле. Н-цепи скрепляются различным числом дисульфидных связей. Типы тяжелых и легких цепей, входящих в состав разных классов иммуноглобулинов, также различаются.

На рисунке представлена схема организации IgG в качестве типичного иммуноглобулина. Как и все иммуноглобулины, IgG содержит две одинаковые тяжелые (Н) цепи и две одинаковые легкие (L) цепи, которые объединены в четырехцепочечную молекулу посредством межцепьевых дисульфидных связей (-S-S-). Единственная дисульфидная связь, соединяющая Н- и L-цепи, локализуется недалеко от С-конца легкой цепи. Между двумя тяжелыми цепями также есть дисульфидная связь.

Домены в составе молекулы антитела

Легкие и тяжелые полипептидные цепи в составе молекулы Ig имеют определенную структуру. Каждая цепь условно разделена на специфические участки, называемые доменами.

Как легкие, так и тяжелые цепи не представляют собой прямолинейную нить. Внутри каждой цепи через регулярные и примерно равные промежутки по 100-110 аминокислот существуют дисульфидные мостики, которые формируют петли в структуре каждой цепи. Наличие дисульфидных мостиков означает, что каждая петля в пептидных цепях должна формировать компактно сложенный глобулярный домен. Таким образом, каждая полипептидная цепь в составе иммуноглобулина образует несколько глобулярных доменов в виде петель, включающих примерно по 110 аминокислотных остатков.

Можно сказать, что молекулы иммуноглобулинов собраны из отдельных доменов, каждый из которых располагается вокруг дисульфидного мостика и гомологичен остальным.


В каждой из легких цепей молекул антител существуют две внутрицепочечные дисульфидные связи, соответственно каждая легкая цепь имеет по два домена. Число таких связей в тяжелых цепях различно; тяжелые цепи содержат по четыре или пять доменов. Домены разделены несложно организованными отрезками. Наличие таких конфигураций было подтверждено прямыми наблюдениями и с помощью генетического анализа.

Первичная, вторичная, третичная и четвертичная структура иммуноглобулинов

Строение молекулы иммуноглобулина (как и других белков) определяется первичной, вторичной, третичной и четвертичной структурой. Первичная структура -- это последовательность аминокислот, составляющих легкие и тяжелые цепи иммуноглобулинов. Рентгеноструктурный анализ показал, что легкие и тяжелые цепи иммуноглобулинов состоят из компактных глобулярных доменов (так называемых иммуноглобулиновых доменов). Домены уложены в характерную третичную структуру, названную иммуноглобулиновой укладкой (immunoglobulin fold).

Иммуноглобулиновые домены - это области в третичной структуре молекулы Ig, которым свойственна определенная автономия структурной организации. Домены формируются различными отрезками одной и той же полипептидной цепи, свернутыми в «клубки» (глобулы). В глобулу включается примерно 110 аминокислотных остатков.

Домены имеют сходную с друг другом общую структуру и определенные функции. Внутри доменов пептидные фрагменты, входящие в состав домена, образуют компактно уложенную антипараллельную β-складчатую структуру, стабилизированную водородными связями (вторичная структура белка). Участков с α-спиральной конформацией в структуре доменов практически не содержится.

Вторичная структура каждого из доменов сформирована посредством укладки протяженной полипептидной цепи back and forth upon itself в два антипараллельных β-слоя (β-листа), содержащих несколько β-складок. Каждый β-лист имеет плоскую форму - полипептидные цепи в β-складках почти полностью вытянуты.

Два β-листа, из которых состоит иммуноглобулиновый домен, уложены в структуру, названную β-сэндвичем ("словно два куска хлеба друг на друга"). Структура каждого иммуноглобулинового домена стабилизирована за счет внутридоменной дисульфидной связи - β-листы ковалентно связаны дисульфидной связью между цистеиновыми остатками каждого β-листа. Каждый β-лист состоит из антипараллельных β-тяжей, соединенных петлями различной длины.

Домены, в свою очередь, связаны между собой продолжением полипептидной цепи, которая продолжается за пределы β-складчатых листов. Имеющиеся между глобулами открытые участки полипептидной цепи особенно чувствительные к протеолитическим ферментам.


Глобулярные домены пары из легкой и тяжелой цепи взаимодействуют между собой, образуя четвертичную структуру. Благодаря этому формируются функциональные фрагменты, которые позволяют полекуле антитела специфически связывать антиген и, в то же время, выполнять ряд биологических эффекторных функций.

Вариабельные и постоянные домены

Домены в пептидных цепях отличаются по постоянству аминокислотного состава. Различают вариабельные и постоянные домены (области). Вариабельные домены обозначаются буквой V, от англ. variable - «изменчивый» и называются V-доменами. Постоянные (константные) домены обозначают буквой C, от англ constant - «постоянный» и называют С-доменами.

Иммуноглобулины, продуцируемые разными клонами плазматических клеток, имеют разные по аминокислотной последовательности вариабельные домены. Константные домены сходны или очень близки для каждого изотипа иммуноглобулина.

Каждый домен обозначают буквой, означающей его принадлежность к легкой или тяжелой цепи, и числом, указывающим его положение.

Первый домен на легкой и тяжелой цепях всех антител крайне вариабелен по последовательности аминокислот; он обозначается как V L и V H соответственно.

Второй и последующие домены на обеих тяжелых цепях гораздо более постоянны по последовательности аминокислот. Они обозначаются C H или С H 1, С H 2 и С H 3. Иммуноглобулины IgM и IgЕ имеют дополнительный С H 4-домен на тяжелой цепи, расположенный за доменом С H 3.

Половину легкой цепи, включающую карбоксильный конец, называют константной областью C L , a N-концевую половину легкой цепи – вариабельной областью V L .

С доменом С Н 2 также связаны цепочки углеводов. Иммуноглобулины разных классов сильно отличаются по количеству и расположению углеводных групп. Углеводные компоненты иммуноглобулинов имеют сходное строение. Они состоят из постоянного ядра и вариабельной наружной части. Углеводные компоненты влияют на биологические свойства антител.

Fab- и Fc-фрагменты молекулы иммуноглобулина

Вариабельные домены легкой и тяжелой цепи (V H и V L) вместе с ближайшими к ним константными доменами (С H 1 и C L 1) образуют Fab-фрагменты антител (fragment, antigen binding). Участок иммуноглобулина, связывающийся со специфическим антигеном, формируется N-концевыми вариабельными областями легких и тяжелых цепей, т.е. V H - и V L -доменами.

Остальную часть, представленную C-концевыми константными доменами тяжелых цепей, обозначают как Fc-фрагмент (fragment, crystallizable). Fc-фрагмент включает остальные C H -домены, скрепленные дисульфидными связями. В месте соединения Fab- и Fc-фрагментов расположена шарнирная область, позволяющая антиген-связывающим фрагментам разворачиваться для более тесного контакта с антигеном.

Шарнирная область

На границе Fab- и Fc-фрагментов располагается т.наз. «шарнирная область», имеющая гибкую структуру. Она обеспечивает подвижность между двумя Fab-фрагментами Y-образной молекулы антитела. Подвижность фрагментов молекулы антитела друг относительно друга - это важная структурная характеристика иммуноглобулинов. Такой тип межпептидного соединения придает структуре мoлeкyлы динамичность - он позволяет легко менять конформацию в зависимости от окружающих условий и состояния.

Шарнирная область - это участок тяжелой цепи. Шарнирная область содержит дисульфидные связи, соединяющие тяжелые цепи между собой. У каждого класса иммуноглобулинов шарнирная область имеет свое строение.

У иммуноглобулинов (возможно, за исключением IgM и IgE) шарнирная область состоит из короткого сегмента аминокислот и обнаруживается между участками С H 1 и С H 2 тяжелых цепей. Этот сегмент состоит преимущественно из остатков цистеина и пролина. Цистеины вовлечены в формирование дисульфидных мостиков между цепями, а пролиновые остатки предотвращают складывание в глобулярную структуру.

Типичное строение молекулы иммуноглобулина на примере IgG

Схематическое изображение на плоском рисунке неточно отражает структуру Ig; в действительности вариабельные домены легкой и тяжелой цепей не располагаются параллельно, а тесно, крест-накрест переплетены друг с другом.

Типичное строение иммуноглобулина удобно рассмотреть на примере молекулы антитела класса IgG. Всего в молекуле IgG 12 доменов - по 4 на тяжелых цепях и по 2 на легких цепях.

В состав каждой легкой цепи входит два домена – один вариабельный (V L , variable domain of the light chain) и один константный (C L , constant domain of the light chain). В состав каждой тяжелой цепи – один вариабельный (V H , variable domain of the heavy chain) и три константных домена (C H 1–3, constant domains of the heavy chain). Примерно четвертую часть тяжелой цепи, включающую N-конец, относят к вариабельной области Н-цепи (V H), остальная часть ее – это константные области (С Н 1, С Н 2, С Н 3).

Каждая пара вариабельных доменов V H и V L , расположенных в соседних тяжелой и легкой цепях, образует вариабельный фрагмент (Fv, variable fragment).

Типы тяжелых и легких цепей в составе молекул антител

По различиям первичной структуры постоянных областей цепи делятся на типы. Типы определяются первичной аминокислотной последовательностью цепей и степенью их гликозилирования. Легкие цепи делятся на два типа: κ и λ (каппа и лямбда), тяжелые - на пять типов: α, γ, μ, ε и δ (альфа, гамма, мю, эпсилон и дельта). Среди многообразия тяжелых цепей альфа-, мю- и гамма-типов выделяют подтипы.

Классификация иммуноглобулинов

Иммуноглобулины классифицируют по типу H-цепей (тяжелых цепей). Постоянные области тяжелых цепей у иммуноглобулинов разных классов неодинаковы. Иммуноглобулины человека поделены на 5 классов и ряд подклассов, по типам тяжелых цепей, которые входят в их состав. Эти классы получили название IgA, IgG, IgM, IgD и IgE.

Сами Н-цепи обозначены греческой буквой, соответствующей большой латинской букве названия одного из иммуноглобулинов. У IgA тяжелые цепи α (альфа), IgM – μ (мю), IgG – γ (гамма), IgE – ε (эпсилон), IgD – δ (дельта).

У иммуноглобулинов IgG, IgM и IgA имеется ряд подклассов. Разделение на подклассы (субтипы) также происходит в зависимости от особенностей Н-цепей. У человека существует 4 подкласса IgG: IgG1, IgG2, IgG3 и IgG4, содержащие тяжелые цепи γ1, γ2, γ3 и γ4 соответственно. Эти H-цепи отличаются небольшими деталями Fc-фрагмента. Для μ-цепи известны 2 подтипа- μ1- и μ2-. IgA имеет 2 подкласса: IgA1 и IgA2 с α1- и α2-подтипами α-цепей.

В каждой молекуле иммуноrлобулина все тяжелые цепи относяrся к одинаковому типу, в соответствии с классом или подклассом.

Все 5 классов иммуноглобулинов состоят из тяжелых и легких цепей.

Легкие цепи (L-цепи) у иммуноглобулинов разных классов одни и те же. У всех иммуноглобулинов легкие цепи могут быть или обе κ (каппа) или обе λ (лямбда). Иммуноглобулины всех классов разделяют на К- и L-типы, в зависимости от присутствия в составе их молекул легких цепей κ- или λ-типов, соответственно. У человека соотношение K- и L-типов составляет 3:2.

Классы и подклассы, вместе взятые, называют изотипами иммуноглобулинов. Изотип антител (класс, подкласс иммуноглобулинов – IgM1, IgM2, IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgD, IgE) определяется C-доменами тяжелых цепей.

Каждый класс включает огромное множество индивидуальных иммуноглобулинов, различающихся по первичной структуре вариабельных областей; общее число иммуноглобулинов всех классов равно ≈ 10^7.

Строение молекул антител различных классов

Схемы строения иммуноглобулинов. (А) - мономерные IgG, IgE, IgD, IgA; (Б) - полимерный секреторный Ig A (slgA) и IgM (В); (1) - секреторный компонент; (2) - соединительная J-цепь.

1. Классы антител IgG, IgD и IgE

Молекулы антител классов IgG, IgD и IgE мономерны; они имеют Y-образную форму.

На долю иммуноглобулинов класса IgG приходится 75% от общего количества имуноглобулинов человека. Находятся они как в крови, так и вне сосудов. Важным свойством IgG является их способность проходить через плаценту. Таким образом материнские антитела попадают в организм новорожденного ребенка и защищают его от инфекции в первые месяцы жизни (естественный пассивный иммунитет).

IgD в основном находятся на мембране В-лимфоцитов. Имеют строение, подобное IgG, 2 активных центра. Тяжелая цепь (δ-цепь) состоит из вариабельного и 3 константных доменов. Шарнирная область δ-цепи самая длинная, локализация углеводов в этой цепи также необычна.

IgЕ – концентрация этого класса иммуноглобулинов в сыворотке крови чрезвычайно низкая. Молекулы IgЕ в основном фиксированы на поверхности тучных клеток и базофилов. По своему строению IgЕ сходен с IgG, имеет 2 активных центра. Тяжелая цепь (ε-цепь) имеет один вариабельный и 4 константных домена. Предполагается, что IgЕ имеет существенное значение в развитии антигельминтозного иммунитета. IgЕ играет главную роль в патогенезе некоторых аллергических заболеваний (бронхиальная астма, сенная лихорадка) и анафилактического шока.

2. Классы антител IgM и IgA

Иммуноглобулины IgM и IgA формируют полимерные структуры. Для полимеризации IgM и IgA включают в свой состав дополнительную полипептидную цепочку с молекулярной массой 15 кД, называемую J-цепью (joint-связь, от англ. joining – соединение). Эта J-цепь связывает терминальные цистеины на С-концах соответственно тяжелых μ- и α -цепей IgM и IgA.

На поверхности зрелых B-лимфоцитов молекулы IgM располагаются в виде мономеров. Однако в сыворотке они существуют в виде пентамеров: молекула IgM состоит из пяти структурных молекул, расположеных радиально. Пентамер IgM сформирован из пяти мономеров-«рогаток», подобных IgG, соедененных между собой дисульфидными связями и J-цепью. Их Fc-фрагменты направлены в центр (где и соединены J-цепью), а Fab-фрагменты - наружу.

В IgM тяжелые (Н) цепи состоят из 5 доменов, так как содержат 4 константных домена. Тяжелые цепи IgM не имеют шарнирной области; её роль выполняет домен С H 2, обладающий некоторой конформационной лабильностью.

IgM синтезируется в основном при первичном иммунном ответе и преимущественно содержится во внутрисосудистом русле. Количество Ig M в сыворотке крови здоровых людей составляет около 10% от общего количества Ig.

Антите­ла IgA построены из различного количества мономеров. Иммуноглобулины класса А делят на два вида: сывороточный и секреторный. Большая часть (80%) IgА, присутствующих в сыворотке крови, имеет мономерную структуру. Менее 20% IgA в сыворотке представлено димерными молекулами.

Секреторные IgA находятся не в крови, а в составе экзосекретов на слизистых оболочках и обозначаются sIgА. В секретах слизистых оболочек IgА представлены в виде димеров. Секреторный IgA формирует димер из двух «рогаток» (Ig-мономеров). С-концы тяжелых цепей в молекуле sIgА соединены между собой J-цепью и белковой молекулой, которая называется «секреторный компонент».

Секреторный компонент вырабатывается эпителиальными клетками слизистых оболочек. Он присоединяется к молекуле IgA в момент её прохождения через эпителиальные клетки. Секреторный компонент защищает sIgА от расщепления и инактивации протеолитическими ферментами, которые содержатся в большом количестве в секрете слизистых оболочек.

Основная функция sIgА – защита слизистых оболочек от инфекции. Роль sIgA в обеспечении местного иммунитета весьма значительна, т.к. общая площадь слизистых оболочек в организме взрослого человека составляет несколько сот квадратных метров и намного превышает поверхность кожи.

Высокая концентрация sIgА обнаруживается в женском грудном молоке, особенно в первые дни лактации. Они защищают желудочно-кишечный тракт новорожденного от инфекции.

Дети рождаются без IgA и получают его с молоком матери. Достоверно показано, что дети, находящиеся на естественном вскармливании, значительно реже болеют кишечными инфекциями и заболеваниями дыхательных путей по сравнению с детьми, получающими искусственное питание.

Антитела класса IgА составляют 15-20% от общего содержания иммуноглобулинов. IgА не проникают через плацентарный барьер. Ig A синтезируется плазматическими клетками, находящимися преимущественно в подслизистых тканях, на слизистой эпителиальной поверхности дыхательных путей, урогенитального и кишечного тракта, почти во всех экскреторных железах. Часть Ig А попадает в общую циркуляцию, но большая его часть секретируется местно на слизистых оболочках в виде sIgA и служит местным защитным иммунологическим барьером слизистых. Сывороточный IgA и sIgA это различные иммуноглобулины, sIgA нет в сыворотке крови.

У лиц с иммунодефицитом IgA отмечается склонность к аутоиммунным заболеваниям инфекциям дыхательных путей, гайморовых и лобных пазух, кишечным расстройствам.

Расщепление молекулы иммуноглобулина ферментами

Протеолитические ферменты (такие, как папаин или пепсин) расщепляют молекулы иммуноглобулинов на фрагменты. При этом под воздействием разных протеаз можно получить различные продукты. Полученные таким способом фрагменты иммуноглобулинов можно использовать для исследовательских, либо медицинских целей.

Глобулярная структура иммуноглобулинов и способность ферментов расщеплять эти молекулы на крупные составляющие в строго определенных местах, а не разрушать их до олигопептидов и аминокислот, указывает на чрезвычайную компактность структуры.

1. Расщепление молекулы иммуноглобулина папаином. Fab- и Fc-фрагменты антител.

В конце 50-х - начале 60-х годов, английский ученый Р.Р. Портер проанализировал структурные характеристики антител IgG, посредством разделения их молекулы папаином (очищенным ферментом сока папайи). Папаин разрушает иммуноглобулин в шарнирной области, выше межцепьевых дисульфидных связей. Этот фермент расщепляет молекулу иммуноглобулина на три фрагмента, примерно одинаковых размеров.

Два из них получили название Fab-фрагментов (от англ. fragment antigen-binding - фрагмент антигенсвязывающий). Fab-фрагменты полностью идентичны и, как показали исследования, предназначены для связывания с антигеном. Участок тяжелой цепи в составе Fab-фрагмента называют Fd; он состоит из доменов V H и С H 1.

Третий фрагмент может быть выкристаллизован из раствора и не может связывать антиген. Этот фрагмент назван Fc-фрагментом (от англ. fragment crystallizable - фрагмент кристализации). Он отвечает за биологические функции молекулы антитела после связывания антигена и Fab-части неповрежденной молекулы антитела.

Fc-фрагмент имеет одинаковую структуру у антител каждого класса и подкласса и разную - у антител, принадлежащих к разным подклассам и классам.

Fc-фрагмент молекулы взаимодействует с клетками иммунной системы: нейтрофилами, макрофагами и другими мононуклеарными фагоцитами, несущими на своей поверхности рецепторы для Fc-фрагмента. Если антитела связались с патогенными микроорганизмами, они могут своим Fc-фрагментом взаимодействовать и с фагоцитами. Благодаря этому клетки возбудителя будут разрушены этими фагоцитами. Фактически антитела действуют в данном случае как молекулы-посредники.

Впоследствии стало известно, что Fc-фрагменты иммуноглобулинов в пределах одного изотипа у данного организма строго идентичны независимо от специфичности антитела по антигену. За эту инвариантность их стали называть константными областями (fragment constant - Fc, аббревиатура совпала).

2. Расщепление молекулы иммуноглобулина пепсином.

Другой протеолитический фермент - пепсин - расщепляет молекулу в другом месте, ближе к С-концу Н-цепей, чем это делает папаин. Расщепление происходит «ниже» дисульфидных связей, скрепляющих Н-цепи. В результате при действии пепсина образуется двухвалентный антигенсвязывающий F(аb")2 -фрагмент и укороченный pFc"-фрагмент. Фрагмент pFc" представляет собой C-концевую часть Fc -области.

Пепсин отсекает pFc" -фрагмент от большого фрагмента с константой седиментации 5S. Этот большой фрагмент получил название F(ab")2 , поскольку он, как и исходное антитело, бивалентен в отношении связывания антигена. Он представляет собой соединенные Fab-фрагменты, связанные дисульфидным мостиком в шарнирной области. Эти Fab-фрагменты одновалентны и гомологичны с папаиновыми Fab-фрагментами I и II, но их Fd-фрагмент примерно на десять аминокислотных остатков больше.

Антигенсвязывающие центры антител (паратопы)

В Fab-фрагмент иммуноглобулина входят V-домены обеих цепей, C L и C H 1-домены. Антигенсвязывающий участок Fab-фрагмента получил несколько названий: активный или антигенсвязывающий центр антител, антидетерминанта или паратоп.

В образовании активных центров участвуют вариабельные отрезки легких и тяжелых цепей. Активный центр представляет собой щель, расположенную между вариабельными доменами легкой и тяжелой цепей. В формировании активного центра участвуют оба этих домена.

Молекула иммуноглобулина. L - лёгкие цепи; H - тяжёлые цепи; V - вариабельная область; С - константная область; N-концевые области L- и Н-цепей (V-область) образуют два антигенсвязывающих центра в составе Fab-фрагментов.

Каждый Fab-фрагмент иммуноглобулинов IgG имеет один антигенсвязывающий центр. Активные центры антител других классов, способные взаимодействовать с антигеном, также расположены в Fab-фрагментах. Антитела IgG, IgA и IgE имеют по 2 активных центра, IgM - по 10 центров.

Иммуноглобулины могут связывать антигены разной химической природы: пептиды, карбогидраты, сахара, полифосфаты, стероидные молекулы.

Существенным и уникальным свойством антител является их способность вступать в связывание с цельными, нативными молекулами антигенов, непосредственно в том виде, в каком антиген проник во внутреннюю среду организма. Для этого не требуется никакая предварительная метаболическая обработка антигенов

Структура доменов в составе молекул иммуноглобулинов

Вторичная структура полипептидных цепей молекулы иммуноглобулина обладает доменным строением. Отдельные участки тяжелых и легких цепей свернуты в глобулы (домены), которые соединены линейными фрагментами. Каждый домен имеет примерно цилиндрическую форму и представляет собой β-складчатую структуру, сформированную из антипараллельных β-складок. В рамках базовой структуры, между C- и V-доменами есть определенная разница, которую можно рассмотреть на примере легкой цепи.

На рисунке схематически изображена укладка одиночной полипептидной цепи белка Бенс-Джонса, содержащей V L и C L домены. Схема построена по данным рентгеноструктурного анализа - метода, который позволяет устанавливать трехмерную структуру белков. На схеме можно видеть сходства и различия между V- и C-доменами.

В верхней части рисунка схематически показана пространственная укладка постоянного (C) и вариабельного (V) доменов легкой цепи молекулы белка. Каждый домен - это цилиндрическая "бочкообразная" (barrel-shaped) структура, в которой участки полипептидной цепи (β-тяжи), идущие в противоположных направлениях (т.е. антипареллельные) упакованы так, что формируют два β-листа, удерживаемых вместе дисульфидной связью.

Каждый из доменов, V- и C-, состоит из двух β-листов (слоев с β-складчатой структурой). Каждый β-лист содержит несколько антипараллельных (идущих в противоположных направлениях) β-тяжей: в С-домене β-листы содержат четыре и три β-тяжа, в V-домене - оба слоя состоят из четырех β-тяжей. На рисунке β-тяжи показаны желтым и зеленым для C-домена и красным и синим для V-домена.

В нижней части рисунка иммуноглобулиновые домены рассмотрены подробнее. В этой половине картинки отображена схема взаимного расположения β-тяжей для V- и C-доменов легкой цепи. Можно яснее рассмотреть создающий итоговую структуру способ укладки их полипептидных цепей при формировании из них β-листов. Чтобы показать укладку, β-тяжи обозначены буквами латинского алфавита, в соответствии с порядком их появления в последовательности аминокислот, составляющих домен. Порядок следования в каждом β-листе - это характеристика иммуноглобулиновых доменов.

β-листы (слои) в доменах связаны дисульфидным мостиком (связью) примерно в середине каждого домена. Эти связи отображены на рисунке: между слоями изображена дисульфидная связь, соединяющая складки В и F и стабилизирующая структуру домена.

Основная разница между V- и C-доменами состоит в том, что V-домен больше и содержит дополнительные β-тяжи, обозначенные, как Cʹ и Cʹʹ. На рисунке β-тяжи Cʹ и Cʹʹ, имеющиеся у V-доменов, но отсутствующие у C-доменов выделены голубым прямоугольником. Можно видеть, что каждая полипептидная цепь формирует гибкие петли между последовательными β-тяжами при смене направления. В V-домене, гибкие петли, сформированные между некоторыми из β-тяжей, входят в структуру активного центра молекулы иммуноглобулина.

Гипервариабельные области в составе V-доменов

Уровень вариабельности внутри вариабельных доменов распределен неравномерно. Не весь вариабельный домен изменчив по своему аминокислотному составу, а лишь его малая часть - гипервариабельные области. На их долю приходится около 20 % аминокислотной последовательности V-доменов.

В структуре цельной молекулы иммуноглобулина V H - и V L -домены объединены. Их гипервариабельные области примыкают друг к другу и создают единый гипервариабельный участок в виде кармана. Это участок, который специфически связывается с антигеном. Гипервариабельные области определяют комплементарность антитела антигену.

Поскольку гипервариабельные участки играют ключевую роль в распознавании и связывании антигена, их еще называют участками, определяющими комплементарность - CDR (Сomplementarity determining regions). В вариабельных доменах тяжелой и легкой цепей выделяют по три CDR (V L CDR1–3, V H CDR1–3).

Между гипервариабельными областями расположены относительно постоянные участки аминокислотной последовательности, которые называются каркасными участками (framework region, FR). На их долю приходится около 80% аминокислотной последовательности V-доменов. Роль таких участков заключается в поддержании относительно однотипной трехмерной структуры V-доменов, которая необходима для обеспечения аффинного взаимодействия гипервариабельных участков с антигеном.

В последовательности вариабельного домена области 3 гипервариантные области чередуются с 4 относительно инвариантными «каркасными» участками FR1–FR4,


H1–3 – CDR-петли, входящие в состав цепей.

Особый интерес представляет пространственное расположение гипервариабельных областей в трех отдельных петлях вариабельного домена. Эти гипервариабельные области, хотя и находятся на большом отдалении друг от друга в первичной структуре легкой цепи, но, при образовании трехмерной структуры, они оказываются расположенными в непосредственной близости друг к другу.

В пространственной структуре V-доменов гипервариабельные последовательности расположены в зоне изгибов полипептидной цепи, направленной навстречу соответствующим участкам V-домена другой цепи (т.е. CDR легкой и тяжелой цепей направлены навстречу друг другу). В результате взаимодействия вариабельного домена H- и L-цепей и формируется антигенсвязывающий участок (активный центр) иммуноглобулина. По данным электронной микроскопии, он представляет собой полость длиной 6 нм и шириной 1,2–1,5 нм.

Пространственная структура этой полости, обусловленная строением гипервариабельных участков, определяет способность антител распознавать и связывать конкретные молекулы на основе пространственного соответствия (специфичность антител). В формирование активного центра вносят вклад и пространственно разделенные участки Н- и L-цепей. Гипервариабельные участки V-доменов входят в состав активного центра не полностью - поверхность антигенсвязывающего участка захватывает только около 30% CDR.

Гипервариабельные области тяжелой и лег­кой цепи определяют индивидуальные особенности строения антигенсвязывающего центра для каждого клона Ig и многообразие их специфичностей.

Сверхвысокая вариабельность CDR и активных центров обеспечивает уникальность молекул иммуноглобулинов, синтезируемых В-лимфоцитами одного клона, не только по структуре, но и по способности связывать различные антигены. Несмотря на то, что структура иммуноглобулинов довольно хорошо известна и именно CDR отвечают за их особенности, до сих пор не ясно, какой именно домен отвечает за связывание антигена в наибольшей степени.

Взаимодействие антител и антигенов (взаимодействие эпитопа и паратопа)

В основе реакции антиген-антитело лежит взаимодействие между эпитопом антигена и активным центром антитела, основанное на их пространственном соответствии (комплементарности). В результате связывания патогена с активным центром антитела происходит нейтрализация патогена и затрудняется его проникновение в клетки организма.

В процессе взаимодействия с антигеном принимает участие не вся молекула иммуноглобулина, а лишь ее ограниченный участок - антигенсвязывающий центр, или паратоп, который локализован в Fab-фрагменте молекулы Ig. При этом антитело взаимодействует не со всей молекулой антигена сразу, а лишь с ее антигенной детерминантой (эпитопом).

Активный центр антител является структурой, пространственно комплементарной (специфичной) детерминантой группе антигена. Активный центр антител обладает функциональной автономией, т.е. способен связывать антигенную детерминанту в изолированном виде.

Со стороны антигена, за взаимодействие с активными центрами антигенраспознающих молекул ответственны эпитопы, которые взаимодействуют со специфичными антителами. Эпитоп непосредственно вступает в ионные, водородные, ван-дер-ваальсовы и гидрофобные связи с активным центром антитела.

Специфическое взаимодействие антител с молекулой антигена связано с относительно небольшим участком ее поверхности, соответствующим по размеру антиген-связывающему участку рецепторов и антител.

Связь антигена с антителом осуществляется за счет слабых взаимодействий в пределах антигенсвязывающего центра. Все эти взаимодействия проявляются только при близком контакте молекул. Такое маленькое расстояние между молекулами может быть достигнуто только за счет комплементарности эпитопа и активного центра антитела.

Иногда один и тот же антигенсвязывающий центр молекулы антитела может связываться с несколькими различными антигенными детерминантами (обычно эти антигенные детерминанты очень схожи). Такие антитела называют перекрестно-реагирующими , способными к полиспецифическому связыванию.


Например если антиген А имеет общие эпитопы с антигеном Б, то часть антител, специфичных к А, будет реагировать также с Б. Этот феномен назван перекрестной реактивностью.

Полные и неполные антитела. Валентность

Валентность – это количество активных центров антитела, которые способны соединяться с антигенными детерминантами. Антитела имеют различное число активных центров в молекуле, что и определяет их валентность. В связи с этим, различают полные и неполные антитела.

Полные антитела имеют не менее двух активных центров. Полные (двух- и пятивалентные) антитела при взаимодействии in vitro с антигеном, в ответ на который они выработаны, дают визуально видимые реакции (агглютинации, лизиса, преципитации, связывания комплемента и др.).

Неполные, или моновалентные антитела отличаются от обычных (полных) антител тем, что имеют лишь один активный центр, второй центр у таких антител не работает. Это не значит, что второй активный центр молекулы отсутствует. Второй активный центр у подобных иммуноглобулинов экранирован различными структурами, либо обладает низкой авидностью. Такие антитела могут взаимодействовать с антигеном, блокировать его, связывая эпитопы антигена и препятствуя контакту с ним полных антител, но не вызывают агрегацию антигена. Поэтому они также называются блокирующими .

Реакция между неполными антителами и антигеном не сопровождается макроскопическими феноменами. Неполные антитела при специфическом взаимодействии с гомологичным антигеном не дают видимого проявления серологической реакции, т.к. не могут аггрегировать частицы в крупные конгломераты, а лишь блокируют их.

Неполные антитела образуются независимо от полных и выполняют те же функции. Они также представлены различными классами иммуноглобулинов.

Идиотипы и идиотопы

Антитела являются сложными белковыми молекулами, которые сами по себе могут иметь антигенные свойства и вызывать образование антител. В их составе различают несколько типов антегенных детерминант (эпитипов): изотипы, аллотипы и идиотипы.

Различные антитела отличаются друг от друга своими вариабельными областями. Антигенные детерминанты вариабельных областей (V-областей) антител называются идиотопами . Идиотопы могут быть построены из характерных участков V-областей только лишь H-цепей или же L-цепей. В большинстве случаев, в образовании идиотопа участвуют обе цепи сразу.

Идиотопы могут относиться к антигенсвязывающему участку (сайт-ассоциированные идиотопы) или не иметь к нему отношения (неассоциированные идиотопы).

Сайт-ассоциированные идиотопы зависят от структуры антигенсвязывающего участка антитела (принадлежащего к Fab-фрагменту). Если этот участок занят антигеном, то антиидиотопическое антитело уже не может реагировать с антителом, имеющим данный идиотоп. Другие идиотопы, по-видимому, не имеют такой тесной связи с антигенсвязывающими участками.

Набор идиотопов на молекуле любого антитела обозначают как идиотип . Таким образом, идиотип состоит из набора идиотопов – антигенных детерминант V-области антитела.

Групповые конституциональные варианты антигенной структуры тяжёлых цепей называются аллотипами . Аллотипы - детерминанты, кодируемые аллелями данного иммуноглобулинового гена.

Изотипы - детерминанты, по которым различаются классы и подклассы тяжелых цепей и варианты κ (каппа) и λ (лямбда) легких цепей.

Афинность и авидность антител

Сила связывания антител может быть охарактеризована иммунохимическими характеристиками: авидностью и аффинностью.

Под аффинностью понимают силу связывания активного центра молекулы антитела с соответствующей детерминантой антигена. Силу химической связи одного антигенного эпитопа с одним из активных центров молекулы Ig называют аффинностью связи антитела с антигеном. Аффинность количественно принято оценивать по константе диссоциации (в моль-1) одного антигенного эпитопа с одним активным центром.

Аффинность – это точность совпадения пространственной конфигурации активного центра (паратопа) антитела и антигенной детерминанты (эпитопа). Чем больше образуется связей между эпитопом и паратопом, тем выше будут устойчивость и продолжительность жизни образовавшегося иммунного комплекса. Иммунный комплекс, образованный низкоаффинными антителами, чрезвычайно неустойчив и имеет малую продолжительность существования.

Сродство антител к антигену называется авидностью антител. Авидностью связи антитела с антигеном называют суммарную силу прочности и интенсивности связи цельной молекулы антитела со всеми ангитегнными эпитопами, которые ей удалось связать.

Авидность антител характеризуется скоростью образования комплекса «антиген-антитело», полнотой взаимодействия и прочностью образующегося комплекса. В основе авидности, так же, как и в основе специфичности антител, лежит первичное строение детерминанты (активного центра) антитела и связанная с ней степень адаптации поверхностной конфигурации полипептидов антител к детерминанте (эпитопу) антигена.

Авидность определяется как аффинностью взаимодействия между эпитопами и паратопами, так и валентностью антител и антигена. Авидность зависит от числа антигенсвязывающих центров в молекуле антитела и их способностью связываться с многочисленными эпитопами данного антигена.

Типичная молекула IgG при вовлечении в реакцию обоих антиген-связывающих участков будет связываться с мультивалентным антигеном по меньшей мере в 10000 раз сильнее, чем в том случае, когда воэлечен лишь один участок.

Наибольшей авидностью обладают антитела класса М, так как они имеют 10 антигенсвязывающих центров. Если сродство отдельных антиген-связывающих участков IgG и IgM одинаково, молекула IgM (имеющая 10 таких участков) проявит несравненно большую авидностъ к мультивалентному антигену, чем молекула IgG (имеющая 2 участка). Благодаря высокой общей авидности антитела IgM - основной класс иммуноглобулинов, вырабатываемых в начале иммунного ответа, - могут эффективно функционировать даже при низком сродстве отдельных связывающих участков.

Различие в авидиости весьма важно, так как антитела, образующиеся на ранних стадиях имунного ответа, обычно обладают значительно меньшим сродством к антигену, чем те, которые вырабатываются позже. Повышение среднего сродства продуцируемых антител с течением времени после иммунизации называется созреванием сродства.

Специфичность взаимодействия антигенов и антител

В иммунологии под специфичностью понимают избирательность взаимодействия индукторов и продуктов иммунных процессов, в частности, антигенов и антител.

Специфичность взаимодействия для антител - это способность иммуноглобулина реагировать только с определенным антигеном, а именно - способность связываться со строго определенной антигенной детерминантой. Феномен специфичности основан на наличии активных центров в молекуле антител, вступающих в контакт с соответствующими детерминантами антигена. Избирательность взаимодействия обусловлена комплементарностью между структурой активного центра антитела (паратопа) и структурой антигенной детерминанты (эпитопа).

Специфичностью антигена называют способность ан­тигена индуцировать иммунный ответ к строго определенному эпитопу. Специфичность антигена во многом определяется свойствами составляющих его эпитопов.

Одной из важнейших функций иммуноглобулинов является связывание антигена и образование иммунных комплексов. Белки-антитела специфически реагируют с антигенами, образуя иммунные комплексы - комплексы антител, связанных с антигенами. Такая связь отли­чается неустойчивостью: образовавшийся иммунный комплекс (ИК) может легко распадаться на составляющие его компоненты.

К каждой молекуле антигена может присоединиться несколько молекул антител, поскольку на антигене есть несколько антигенных детерминант и к каждой из них могут образовываться антитела. В результате возникают сложные молекулярные комплексы.

Образование иммунных комплексов является неотъемлемым компонентом нормального иммунного ответа. Формирование и биологическая активность иммунных комплексов зависят, в первую очередь, от природы антител и антигена, входящих в их состав, а также от их соотношения. Особенности иммунных комплексов зависят от свойств антител (валентность, аффинность, скорость синтеза, способность связывать комплемент) и антигена (растворимость, размер, заряд, валентность, пространственное распределение и плотность эпитопов).

Взаимодействие антигенов и антител. Реакция антиген-антитело

Реакция антиген-антитело - образование комплекса между антигеном и направленными к нему антителами. Изучение таких реакций имеет большое значение для понимания механизма специфического взаимодействия биологических макромолекул и для выяснения механизма серологических реакций.

Эффективность взаимодействия антитела с антигеном существенно зависит от условий, в которых происходит реакция, прежде всего от pH среды, осмотической плотности, солевого состава и температура среды. Оптимальными для реакции антиген-антитело являются физиологические условия внутренней среды макроорганизма: близкая к нейтральной реакция среды, присутствие фосфат-, карбонат-, хлорид- и ацетат-ионов, осмолярность физиологического раствора (концентрация раствора 0,15 М), а также температура 36-37 °С.

Взаимодействие молекулы антигена с антителом или его активным Fab-фрагментом сопровождается изменениями пространственной структуры молекулы антигена.

Поскольку при соединении антигена с антителом не возникает химических связей, прочность этого соединения определяется пространственной точностью (специфичностью) взаимодействующих участков двух молекул - активного центра иммуноглобулина и антигенной детерминанты. Мера прочности связи определяется афинностью антитела (величиной связи одного антигенсвязывающего центра с индивидуальным эпитопом антигена) и его авидностью (суммарной силой взаимодействия антитела с антигеном в случае взаимодействия поливалентного антитела с поливалентным антигеном).

Все реакции антиген-антитело обратимы; комплекс "антиген-антитело" может диссоциировать с выделением антител. При этом обратная реакция антиген-антитело протекает значительно медленнее, чем прямая.

Можно выделить два основных пути, с помощью которых может быть частично или полностью разделен уже сформировавшийся комплекс антиген - антитело. Первый состоит в вытеснении антител избытком антигена, а второй - в воздействии на иммунный комплекс внешних факторов, приводящих к разрыву связей (уменьшению сродства) между антигеном и антителом. Частичная диссоциация комплекса "антиген-антитело" может быть достигнута в общем случае при повышении температуры.

При использовании серологических методов наиболее универсальным способом диссоциации иммунных комплексов, образованных самыми разнообразными антителами, служит их обработка разбавленными кислотами и щелочами, а также концентрированными растворами амидов (мочевины, солянокислого гуанидина).

Гетерогенность антител

Антитела, образовавшиеся при иммунном ответе организма, неоднородны и отличаются друг от друга, т.е. они гетерогенны . Антитела гетерогенны по своим физико-химическим, биологическим свойствам и прежде всего по своей специфичности. Главная основа гетерогенности (разнообразия специфичностей) антител - разнообразие их активных центров. Последняя связана с вариабельностью аминокислотного состава в V-областях молекулы антитела.

Также антитела гете­рогенны по принадлежности к различным классам и подклассам.

Гетерогенность антител связана также с тем, что иммуноглобулины содержат 3 вида антигенных детерминант: изотипические, характеризующие принадлежность иммуноглобулина к определенному классу; аллотипические, соответствующие аллельным вариантам иммуноглобулина; идиотипические, отражающие индивидуальные особенности иммуноглобулина. Система идиотип−антиидиотип составляет основу так называемой сетевой теории Ерне.

Изотипы, аллотипы, идиотипы антител

Иммуноглобулины содержат три вида антигенных детерминант: изотипические (одинаковые для каждого представителя данного вида), аллотипические (детерминанты, различные у представителей данного вида) и идиотипические (детерминанты, определяющие индивидуальность данного иммуноглобулина и являющиеся различными у антител одного класса, подкласса).

У каж­дого биологического вида тяжелые и легкие цепи иммуноглобулинов имеют определенные антигенные осо­бенности, в соответствии с которыми тяжелые цепи разделены на 5 классов (γ, μ, α, δ, ε), а легкие на 2 типа (κ и λ). Эти антигенные детерминанты называют изотипическими (изотипы), для каждой цепи они одинаковые у каждого представителя данного биологического вида.

Вместе с тем имеются внутривидовые различия названных цепей иммуноглобулинов - аллотипы, обусловленные генетичес­кими особенностями организма-продуцента: их признаки генети­чески детерминированы. Например, у тяжелых цепей описано более 20 аллотипов.

Даже тогда, когда антитела к конкретному антигену относятся к одному классу, подклассу и даже аллотипу, они характеризуются специфическими отличиями друг от друга. Эти различия названы идиотипами. Они характе­ризуют «индивидуальность» данного иммуноглобулина в зависи­мости от специфичности антигена-индуктора. Это зависит от особенностей строения V-доменов H- и L- цепей, множества различных вариантов их аминокислотных последовательностей. Все указанные антигенные различия определяются с помощью специфических сывороток.

Классификации антител в соответствии с реакциями, в которых они могут участвовать

Первоначально антитела условно классифицировали по их функциональным свойствам на нейтрализующие, лизирующие и коагулирующие. К нейтрализующим были отнесены антитоксины, антиферменты и вирус-нейтрализующие лизины. К коагулирующим – агглютинины и преципитины; к лизирующим – гемолитические и комплемент-связывающие антитела. С учетом функциональной способности антител были даны названия серологическим реакциям: агглютинация, гемолиз, лизис, преципитация и др.

Исследования антител. Фаговый дисплей.

До недавнего времени изучение антител было затруднено техническими причинами. Иммуноглобулины в организме - это сложная смесь белков. Фракция иммуноглобулинов сыворотки крови представляет собой смесь огромного числа различных антител. Причем относительное содержание каждого вида из них, как правило, очень мало. До недавнего времени, получение чистых антител из иммуноглобулиновой фракции было труднодоступно. Трудность выделения индивидуальных иммуноглобулинов долгое время была препятствием как для их биохимического исследования, так и для установления их первичной структуры.

В последние годы сформировалась новая область иммунологии – инженерия антител, которая занимается получением неприродных иммуноглобулинов с заданными свойствами. Для этого обычно используются два основных направления: биосинтез полноразмерных антител и получение минимальных фрагментов молекулы антител, которые необходимы для эффективного и специфического связывания с антигеном.

Современные технологии получения антител in vitro копируют селекционные стратегии иммунной системы. Одной из таких технологий является фаговый дисплей, который позволяет получать фрагменты антител человека разной специфичности. Гены этих фрагментов могут быть использованы для конструирования полноразмерных антител.

Кроме того, очень часто терапевтические препараты, созданные на основе антител, не требуют привлечения их эффекторных функций посредством Fc-домена, например, при инактивации цитокинов, блокировании рецепторов или нейтрализации вирусов. Поэтому одна из тенденций в конструировании рекомбинантных антител состоит в уменьшении их размера до минимального фрагмента, сохраняющего как связывающую активность, так и специфичность.

Такие фрагменты в некоторых случаях могут быть более предпочтительны из-за их способности лучше проникать в ткани и быстрее выводиться из организма, по сравнению с полноразмерными молекулами антител. Вместе с тем, нужный фрагмент может быть наработан в E.coli или дрожжах, что существенно снижает его стоимость по сравнению с антителами, полученными с использованием культур клеток млекопитающих. К тому же, такой способ наработки позволяет избежать биологической опасности, связанной с применением антител, выделенных из донорской крови.

Миеломные иммуноглобулины

Белок Бенс-Джонса. Пример молекулы такого иммуноглобулина, который представляет собой димер легких каппа-цепей

Термин иммуноглобулины относится не только к нормальным классам антител, но и к большому числу патологических белков, обычно называемых миеломными белками. Эти белки синтезируются в большом количестве при множественной миеломе, злокачественном заболевании, при котором переродившиеся специфические клетки антителообразующей системы продуцируют большие количества определенных белков, например белки Бенс-Джонса, миеломные глобулины, фрагменты иммуноглобулинов различных классов.

Белки Бенс-Джонса представляют собой либо одиночные κ- или λ-цепи, либо димеры из двух одинаковых цепей, связанных одной дисульфидной связью; они экскретируются с мочой.

Миеломные глобулины содержатся в высокой концентрации в плазме больных множественной миеломой; их Н- и L-цепи имеют уникальную последовательность. Одно время предполагали, что миеломные глобулины представляют собой патологические иммуноглобулины, характерные для опухоли, в которой они образуются, но теперь считают, что каждый из них является одним из индивидуальных иммуноглобулинов, случайно «выбранным» из многих тысяч нормальных антител, образующихся в организме человека.

Установлена полная аминокислотная последовательность нескольких индивидуальных иммуноглобулинов, в том числе миеломных глобулинов, белков Бенс-Джонса, а также легкой и тяжелой цепей одного и того же миеломного иммуноглобулина. В отличие от антител здорового человека все белковые молекулы каждой названной группы имеют одинаковую аминокислотную последовательность и являются одним из многих тысяч возможных антител индивидуума.

Гибридомы и моноклональные антитела

Получение антител для нужд человека начинается с иммунизации животных. После нескольких инъекций антигена (в присутствии стимуляторов иммунного ответа) в сыворотке крови животных накапливаются специфические антитела. Такие сыворотки называются иммунными. Из них специальными методами выделяют антитела.

Однако иммунная система организма животного вырабатывает специальные антитела на огромное множество антигенов. В основе этой способности лежит наличие разнообразия клонов лимфоцитов, каждый из которых вырабатывает антитела одного типа с узкой специфичностью. Общее число клонов у мышей, например, достигает 10^7 –10^10 степени.

Поэтому иммунные сыворотки содержат много молекул антител с различной специфичностью, т. е. имеющих сродство ко многим антигенным детерминантам. Антитела, полученные из иммунных сывороток направлены как против антигена, которым проводилась иммунизация, так и против других антигенов, с которыми встречалось животное-донор.

Для современного иммунохимического анализа и клинического применения очень важны специфичность и стандартизованность применяемых антител. Необходимо получать абсолютно идентичные антитела, что невозможно сделать с помощью иммунных сывороток.

В 1975 году Ж. Кёлер и С. Мильштейн (G. Köhler, C. Milstein) решили эту проблему, предложив метод получения гомогенных антител. Они разработали так называемую «гибридомную технологию» - методику получения клеточных гибридов (гибридом). С помощью этого метода получают гибридные клетки, способные неограниченно размножаться и синтезировать антитела узкой специфичности - моноклональные антитела .

Для получения моноклональных антител производят слияние клеток плазмоцитарной опухоли (плазмоцитомы или множественной миеломы) с клетками селезенки иммунизированного животного, чаще всего мыши. Технология Кёлера и Мильштейна включает в себя несколько этапов.


Мыши вводят специфический антиген, который вызывает продукцию антител против этого антигена. Селезенку мышей удаляют и гомогенизируют для получения суспензии клеток. Эта суспензия содержит B-клетки, которые продуцируют антитела против введенного антигена.

Клетки селезенки затем смешивают с клетками миеломы. Это опухолевые клетки, которые способны непрерывно расти в культуре, в них также отсутствует резервный путь синтеза нуклеотидов. Некоторые антителопродуцирующие клетки селезенки и клетки миеломы сливаются, образуя гибридные клетки. Эти гибридные клетки теперь способны непрерывно расти в культуре и продуцировать антитела.

Смесь клеток помещают в селективную среду, которая позволяет расти только гибридным клеткам. Погибают неслившиеся миеломные клетки и В-лимфоциты.

Гибридные клетки пролиферируют, образуя клон гибридом. Гибридомы проверяют на продукцию нужных антител. Выбранные гибридомы затем культивируют для получения больших количеств моноклональных антител, не содержащих посторонних антител и настолько однородных, что могут рассматриваться как чистые химические реагенты.

Следует отметить, что антитела, продуцируемые одной культурой гибридом, связываются только с одной антигенной детерминантой (эпитопом). В связи с этим к антигену с несколькими эпитопами можно получить столько моноклональных антител, сколько у него имеется антигенных детерминант. Также можно отобрать клоны, продуцирующие антитела только одной нужной специфичности.

Разработка технологии получения гибридом имела революционное значение в иммунологии, молекулярной биологии и медицине. Она позволила создать совершенно новые научные направления. Благодаря гибридомам открылись новые пути для изучения и лечения злокачественных опухолей и многих других заболеваний.

В настоящее время гибридомы стали основным источником моноклональных антител, использующихся в фундаментальных исследованиях и в биотехнологии при создании тест-систем. Моноклональные антитела получили широкое распространение при диагностике инфекционных болезней сельскохозяйственных животных и человека.

Благодаря моноклональным антителам стали рутинными иммуноферментный анализ, реакция иммунофлюоресценции, методы проточной цитометрии, иммунохроматографии, радиоиммунный анализ.

Разработано множество технологий, позволивших усовершенствовать синтез антител. Это - технологии рекомбинации ДНК, методы клонирования клеток и другие трансгенные технологий. В 90-х годах, с помощью методов генной инженерии удалось свести к минимуму процент мышиных последовательностей аминокислот в искусственно синтезируемых антителах. Благодаря этому, помимо мышиных, были получены химерные, гуманизированные и полностью человеческие антитела.

    Экзогенные, эндогенные;

    Полноценные и неполноценные (гаптены, полугаптены);

    Тимус-зависимые и тимус-независимые;

    Суперантигены;

    Гетерогенные;

    Аутоантигены;

    Опухолевые;

    Бактериальные (группоспецифические, видоспецифические, типоспецифические, О-, К-, Н-антигены и другие);

    Вирусные;

    Грибковые;

    Протективные;

    Изоантигены;

    Антигены главного комплекса гистосовместимости.

Экзогенные антигены – попадают в организм из окружающей среды, подвергаются эндоцитозу и расщеплению в Аг-представляющих клетках (макрофагах, дендритных клетках тимуса, фолликулярных отросчатых клетках лимфатических узлов и селезёнки, М-клетках лимфатических фолликулов пищеварительного тракта, клетках Лангерганса кожи). Затем Аг-детерминанта (эпитоп) в комплексе с молекулой класса II МНС, встраивается в плазматическую мембрану Аг-представляющей клетки и предъявляется CD 4 + Т-лимфоцитам (Т-хелперам);

Эндогенные антигены – продукты собственных клеток организма. Чаще всего это аномальные белки опухолевых клеток и вирусные белки, синтезируемые вирусинфицированными клетками хозяина. Их антигенные детерминанты (эпитопы) предъявляются в комплексе с молекулой класса I МНС CD 8 + Т-лимфоцитам (Т-киллерам).

Полноценные Аг – обладают способностью индуцировать образование антител и взаимодействовать с ними;

Неполноценные Аг (гаптены) – низкомолекулярные вещества, которые не обладают способностью индуцировать образование антител и, но взаимодействуют с готовыми специфичными антителами. Гаптены приобретают свойства полноценных антигенов при связывании с высокомолекулярными веществами, например белками (шлепперами). К гаптенам относятся лекарственные препараты, например, антибиотики, которые способны запускать иммунный ответ при связывании с белками организма (альбумином), а также с белками на поверхности клеток (эритроцитов, лейкоцитов). В результате образуются антитела, способные взаимодействовать с гаптеном. При повторном введении в организм гаптена возникает вторичный иммунный ответ, нередко в виде аллергической реакции, например анафилаксии;

Полугаптены – неорганические вещества – йод, бром, хром, никель, нитрогруппа, азот и т.д. – связываясь с белками, например, кожи, способны вызвать аллергический контактный дерматит (ГЗТ), развивающийся при повторных соприкосновениях кожи с хромированными, никелированными предметами, нанесении на кожу йода и т.д.

Тимус-зависимые антигены – это антигены, которые для индукции иммунного ответа требуют участия Т-лимфоцитов, этих антигенов большинство;

Тимус-независимые – антигены, которые способны стимулировать синтез антител без помощи Т-клеток, например, ЛПС бактериальных клеточных стенок, высокомолекулярные синтетические полимеры.

Суперантигены (бактериальные энтеротоксины (стафилококковый, холерный), некоторые вирусы (ротавирусы) и др. – особая группа антигенов, которые в значительно меньших дозах, чем другие антигены, вызывают поликлональную активацию и пролиферацию большого числа Т-лимфоцитов (более 20%, тогда как обычные антигены стимулируют 0,01% Т-лимфоцитов). При этом вырабатывается много ИЛ-2 и других цитокинов, вызывающих воспаление и повреждение тканей.

Гетерогенные Аг – это перекрёстно реагирующие Аг, общие антигены у различных видов микробов, животных и человека. Это явление называется антигенной мимикрией. Например, гемолитические стрептококки группы А содержат перекрестно реагирующие антигены (в частности, М-белок), общие с антигенами эндокарда и клубочков почек человека. Такие бактериальные антигены вызывают образование антител, перекрестно реагирующих с клетками человека, что приводи к развитию ревматизма и постстрептококкового гломерулонефрита. У возбудителя сифилиса имеются антигены фосфолипиды сходные с фосфолипидами сердца человека и животных, поэтому кардиолипиновый антиген сердца быка используется для выявления антител к бледной трепонеме в серодиагностике сифилиса (реакция Вассермана). Антиген Форсмана – выявлен в эритроцитах барана, кошек, собак, почках морских свинок, сальмонеллах.

Аутоантигены – это эндогенные антигены, вызывающие выработку аутоантител. Различают:

- естественные первичные (нормальная ткань хрусталика глаза, нервная ткань и др.), что связано с нарушением аутотолерантности,

Приобретенные вторичные – продукты повреждения тканей микробами, вирусами, ожоговые, лучевые, холодовые, которые возникают из собственных тканей в результате изменения тканей при ожогах, отморожениях, при действии радиоактивного излучения.

Опухолевые (онкоантигены, Т-антигены ( tumor - опухоль ) - в результате злокачественной трансформации нормальных клеток в опухолевые в них начинают экспрессироваться (проявляться) специфические аномальные антигены, отсутствующие в составе нормальных клеток. Выявление иммунологическими методами опухолевых антигенов даст возможность ранней диагностики онкологических заболеваний.

Бактериальные антигены:

    группоспецифические – общие антигены у разных видов одного рода или семейства,

    видоспецифические – антигены характерные представителям одного вида,

    типоспецифические – определяют серологические варианты (серовары, серотипы) внутри одного вида,

    Н-антигены (жгутиковый) – белок флагеллин, входящий в состав бактериальных жгутиков, термолабилен;

    О-антигены (соматический) – представляет собой ЛПС Гр- бактерий, термостабильны. Эпитопы соматического антигена представлены гексозами (галакторза, рамноза и др.) и аминосахарами (N-ацетилглюкозамин, N-ацетилгалактозамин). У Гр+ бактерий соматический антиген представлен глицерилтейхоевой и рибитолтейхоевой кислотами.

    К-антигены (капсульные антигены) – находятся в капсуле и связаны с поверхностным слоем липополисахарида клеточной стенки. Содержат кислые полисахариды, в состав которых входят галактуроновая, глюкуроновая и идуроновая кислоты. Капсульные антигены используют для приготовления вакцин против менингококков, пневмококков, клебсиелл. Однако введение больших доз полисахаридных антигенов может вызвать толерантность. У –кишечной палочки К-антиген подразделяют на фракции А (термостабильная), В, L (термолабильные). Разновидностью К-антигена является поверхностный Vi-антиген (у сальмонелл), который обусловливает вирулентность микроба и персистенцию возбудителя у бактерионосителей.

    Антигенами бактерий являются также их токсины, рибосомы, ферменты.

Вирусные – а) суперкапсидные (белковые и гликопротеидные, например гемагглютинин и нейраминидаза вируса гриппа), б) капсидные (белковые), в) серцевинные (нуклеопротеидные).

Грибковые – дрожжеподобные грибы Candida albicans содержат полисахарид клеточной стенки – маннан, цитоплазматические и ядерные белки. Среди них выявлено 80 антигенов. Эти антигены вызывают немедленные (антитела Ig m, Ig G, Ig A, Ig E классов) и замедленные (Т-клеточные) реакции и сенсибилизацию без клинических проявлений. Антигены грибов обладают иммуностимулирующим и иммунодепрессивным действием.

Протективные – это антигенные детерминанты (эпитопы) микроорганизмов, которые вызывают наиболее сильный иммунный ответ, что обеспечивает иммунитет к соответствующему возбудителю при повторной инфекции. Впервые были обнаружены в экссудате пораженной ткани при сибирской язве. Наиболее иммуногенные, протективные пептиды вирусов используются для создания синтетических вакцин.

Изоантигены – антигены, по которым индивидуумы одного вида отличаются друг от друга (например, антигены эритроцитов – система АВО групп крови, Rh-фактор, антигены лейкоцитов – главного комплекса гистосовместимости).

Антигены главного комплекса гистосовместимости – гликопротеины клеточных мембран, которые играют важную роль в иммунном ответе, реакции отторжения трансплантата, определяют предрасположенность к некоторым заболеваниям. Спектр молекул главного комплекса гистосовместимости уникален для каждого организма и определяет его биологическую индивидуальность, что позволяет отличать «своё» (гистосовместимое) от «чужого» (несовместимого). Главный комплекс гистосовместимости обозначается как МНС (Major Histocompability Complex). Антигены МНС у разных видов животных обозначают по разному: у мышей - Н2-система, у собаки – DLA, у кролика - RLA, у свиньи – SLA. У человека антигены главного комплекса гистосовместимости обозначают HLA (Human leucocyte antigenes), так как для клинических и экспериментальных целей в качестве антигенов главного комплекса гистосовместимости определяют лейкоцитарные антигены. Человеческие лейкоцитарные антигены кодируются генами локализованными в 6-ой хромосоме. По химической структуре и функциональному назначению HLA подразделяют на два класса.

Антигены l класса МНС представлены на поверхности всех ядросодержащих клеток. Они регулируют взаимодействие мжду Т-киллерами и клетками мишенями. Основная биологическая роль нтигенов l класса заключается в том, что они являются маркерами “своего”. Клетки, несущие антигены l класса не атакуются собственными Т-киллерами в связи с тем, что в эмбриогенезе аутореактивные Т-киллеры, распознающие антигены l класса на собственных клетках, уничтожаются. Антигены l класса взаимодействуют с молекулой CD 8 на мембране Т-киллера.

Антигены ll класса МНС располагаются преимущественно на мембране иммунокомпетентных клеток (макрофагах, моноцитах, В- и активированных Т-лимфоцитах. Антигены ll класса взаимодействуют с молекулой CD 4 мембраны Т-хелпера, что вызываеь выделение лимфокинов, стимулирующих пролиферацию и созревание Т-киллеров и плазматических клеток.

Определение HLA-антигенов необходимо в следующих ситуациях:

    При типировании тканей с целью подбора донора реципиенту;

    Для установления связи наличия определенных антигенов МНС и предрасположенности к тому или иному заболеванию. Наиболее выраженная корреляция выявлена между наличием HLA-В27 и болезнью Бехтерева (анкилозирующий спондилоартрит): 95% больных имеют этот антиген.

    При оценке иммунного статуса (выявление несущих HLA-DR антигены а) активированных Т-лимфоцитов и б) мононуклеаров, участвующих в распознавании антигенов.

Все ткани и клетки организма человека обладают антигенными свойствами. Одни антигены специфичны для всех млекопитающих, другие видоспецифичны для человека, третьи - для отдельных групп, их назвают изоантигенами (например, антигены групп крови). Антигены, свойственные только данному организму, называют аллоантигенами (греч. аллос - другой). К ним относятся антигены тканевой совместимости - продукты генов главного комплекса тканевой совместимости МНС (Major Histocompatibiliti Complex), свойственные каждому индивидууму. Антигены разных лиц, не имеющие отличий, называют сингенными. Органы и ткани помимо других антигенов обладают специфичными для них органными и тканевыми антигенами. Антигенным сходством обладают одноименные ткани человека и животных. Существуют стадиоспецифические антигены, появляющиеся и исчезающие на отдельных стадиях развития тканей или клеток. Каждая клетка содержит антигены характерные для наружной мембраны, цитоплазмы, ядра и других компонентов.

Антигены каждого организма в норме не вызывают в нем иммунологических реакций, поскольку организм к ним толерантен. Однако при определенных условиях они приобретают признаки чужеродности и становятся аутоантигенами, а возникшую против них реакцию называют аутоиммунной.

Антигены опухолей и противоопухолевый иммунитет. Клетки злокачественных опухолей представляют собой варианты нормальных клеток организма. Поэтому им свойственны антигены тех тканей, из

которых они произошли, а также антигены, специфичные для опухоли и составляющие малую долю всех антигенов клетки. В ходе канцерогенеза происходит дедифференцировка клеток, поэтому может происходить утрата некоторых антигенов, появление антигенов, свойственных незрелым клеткам, вплоть до эмбриональных (фетопротеины). Антигены, свойственные только опухоли, специфичны только для данного вида опухоли, а нередко для опухоли у данного лица. Опухоли, индуцированные вирусами, могут иметь вирусные антигены, одинаковые у всех опухолей, индуцированных данным вирусом. Под влиянием антител у растущей опухоли может меняться ее антигенный состав.

Лабораторная диагностика опухолевой болезни включает выявление антигенов, свойственных опухоли в сыворотках крови. Для этого в настоящее время медицинская промышленность готовит диагностические наборы, содержащие все необходимые ингредиенты для выявления антигенов при иммуноферментном, радиоиммунном, иммунолюминесцентном анализе.

Резистентность организма к опухолевому росту обеспечивается действием естественных киллерных клеток, которые составляют 15% всех лимфоцитов, постоянно циркулирующих в крови и всех тканях организма. Естественные киллеры (ЕК) обладают способностью отличать любые клетки, имеющие признаки чужеродности, в том числе опухолевые, от нормальных клеток организма и уничтожать чужеродные клетки. При стрессовых ситуациях, болезнях, иммунодепрессивных воздействиях и некоторых других ситуациях число и активность ЕК снижаются и это служит одной из причин начала опухолевого роста. В ходе развития опухоли ее антигены вызывают иммунологическую реакцию, но она, как правило, недостаточна для остановки опухолевого роста. Причины этого явления многочисленны и недостаточно изучены. К ним относятся:

    низкая иммуногенность опухолевых антигенов вследствии их близости к нормальным антигенам организма, к которым организм толерантен;

    развитие толерантности вместо позитивного ответа;

    развитие иммунного ответа по гуморальному типу, тогда как подавить опухоль могут только клеточные механизмы;

    иммунодепрессивные факторы, вырабатываемые злокачественной опухолью.

Химио и радиотерапия опухолей, стрессовые ситуации при хирургических вмешательствах могут быть дополнительными факторами, снижающими иммунную защиту организма. Меры по повышению уровня противоопухолевой резистентности включают использование иммуностимулирующих средств, препаратов цитокинов, стимуляцию иммуноцитов пациента in vitro с возвратом в русло крови больного.

Изоантигены. Это антигены, по которым отдельные индивидуумы или группы особей одного вида различаются между собой.

В эритроцитах, лейкоцитах, тромбоцитах, а также в плазме крови людей открыто несколько десятков видов изоантигенов.

Изоантигены, генетически связанные, объединены в группы, получившие названия: система ЛВО, резус и др. В основе деления людей на группы по системе АВО лежит наличие или осутствие на эритроцитах антигенов, обозначенных А и В. В соответствии с этим все люди подразделены на 4 группы. Группа I (0) - антигены отсутствуют, группа II (А) - в эритроцитах содержится антиген А, группа

III (В) - эритроциты обладают антигеном В, группа IV (АВ) - эритроциты обладают обоими антигенами. Поскольку в окружающей среде имеются микроорганизмы, обладающие такими же антигенами (их называют перекрестнореагирующими), у человека имеются антитела к этим антигенам, но только к тем, которые у него отсутствуют. К собственным антигенам организм толерантен. Следовательно, в крови лиц I группы содержатся антитела к антигенам А и В, в крови лиц II группы - анти-В, в крови лиц III группы - анти-А, в крови лиц

IV группы антитела к А и Вантигенам не содержатся. При переливании крови или эритроцитов реципиенту, в крови которых содержатся антитела к соответствующему антигену, в сосудах происходит агглютинация перелитых несовместимых эритроцитов, что может вызвать шок и гибель реципиента. Соответственно люди I (0) группы именуются универсальными донорами, а люди IV (АВ) группы - универсальными реципиентами. Кроме антигенов А и В эритроциты человека могут обладать и другими изоантигенами (М, М 2 , N, N 2) и др. К этим антигенам нет изоантител, и следовательно, их присутствие не учитывается при переливании крови.

Антигены главного комплекса тканевой совместимости. Помимо антигенов, свойственных всем людям и групповых антигенов, каждый организм обладает уникальным набором антигенов, свойственных только ему самому. Эти антигены кодируются группой генов, находящихся у человека на 6 хромосоме, и называются антигенами главного комплекса тканевой совместимости и обозначаются МНС-антигены (англ. Major histocompatibility complex). МНС-антигены человека впервые были обнаружены на лейкоцитах и поэтому имеют другое название HLA (Human leucocyte antigens). МНС-антигены относятся к гликопротеинам и содержатся на мембранах клеток организма, определяя его индивидуальные свойства и индуцируют трансплантационные реакции, за что они получили третье название - трансплантационные антигены. Кроме того, МНС-антигены играют обязательную роль в индукции иммунного ответа на любой антиген.

Гены МНС кодируют три класса белков, из которых два имеют прямое отношение к работе иммунной системы и рассматриваются ниже, а в число белков III класса входят компоненты комплемента, цитокины группы ФНО, белки теплового шока.

Белки I класса находятся на поверхности практически всех клеток организма. Они состоят из двух полипептидных цепей: тяжелая ацепь нековалентно связана со второй рцепью. ацепь существует в трех вариантах, что определяет разделение антигенов класса на три серологические группы А, В и С. Тяжелая цепь обуславливает контакт всей структуры с мембраной клеток и ее активность. Рцепь представляет собой микроглобулин одинаковый для всех групп. Каждый антиген I класса обозначается латинской буквой и порядковым номером данного антигена.

Антигены I класса обеспечивают представление антигенов цитотоксическим С08 + лимфоцитам, а распознавание этого антигена антигенпредставляющими клетками другого организма при трансплантации приводит к развитию трансплантационного иммунитета.

МНС антигены II класса находятся преимущественно на антигенпредставляющих клетках - дендритных, макрофагах, Влимфоцитах. На макрофагах и Влимфоцитах их экспрессия резко увеличивается после активации клетки. Антигены II класса подразделяются на 5 групп, в каждой из которых имеется от 3 до 20 антигенов. В отличие от антигенов I класса, которые выявляются в серологических тестах с помощью сывороток, содержащих антитела к ним, антигены II класса лучше всего выявляются в клеточных тестах - активации клеток при совместном культивировании испытуемых клеток со стандартными лимфоцитами.

Несомненно, вам приходилось слышать о понятиях антиген и антитело. Но, если вы не имеете отношения к медицине или биологии, то, вероятнее всего не знаете о роли антигенов и антител. У большинства людей есть общее представление о том, что делают антитела, но они не осознают их решающую связь с антигенами. В этой статье мы рассмотрим разницу между этими двумя образованиями, узнаем о том, какие их функции в организме.

Какие различия имеют антиген и антитело?

Самый простой способ получить лучшее представление о различии между антигеном и антителом — это провести сравнение этих двух образований. Они имеют разные структуры, функции и местоположения в теле. Одни, как правило, обладают положительными качествами, поскольку защищают организм, а другие могут вызывать негативную реакцию.

Что это такое?

Антиген — чужеродная частица, которая может вызывать иммунный ответ в теле человека. Они в основном состоят из белков, но они также могут быть нуклеиновыми кислотами, углеводами или липидами. Антигены также известны под термином иммуногены. К ним относятся химические соединения, пыльцу растений, вирусы, бактерии и другие вещества биологического происхождения.

Антитела могут называться иммуноглобулинами. Это белки, синтезируемые организмом. Их продукция необходима для борьбы с антигенами.

Какие типы и функции имеют антиген и антитело?

Все антигены делятся на внешние и внутренние. Внутри организма образуются ауто-антигены, такие как раковые клетки. Внешние антигены попадают в организм из внешней среды. Они стимулируют иммунную систему производить больше антител, защищающих организм от различных повреждений.

Существует всего 5 различных типов антител. Это IgA, IgE, IgG, IgM и IgD.

IgA защищают поверхность тела от воздействия внешних веществ.

IgE вызывает защитную реакцию в организме против посторонних веществ, в том числе животного происхождения, пыльцы растений и спор грибов. Эти антитела являются частью аллергических реакций на некоторые яды и лекарства. Те, у кого аллергия, как правило, имеют большое количество антител этого типа.

IgG играет ключевую роль в борьбе с инфекциями бактериальной или вирусной природы. Это единственные антитела, которые способны проникать через плаценту беременной женщины, оказывая защиту плоду, находящемуся еще в утробе матери.

Когда развивается инфекция, антитела IgM представляют собой самый первый тип антител, которые синтезируются в организме в качестве иммунного ответа. Они приведут к другим клеткам иммунной системы, разрушающим посторонние вещества.

Ученым до сих пор не ясно, что именно делают антитела IgD.

Где их можно найти антиген и антитело?

Другое различие между антигеном и антителом заключается в том, где они. Антигены являются своеобразными «крючками» на поверхности клеток и встречаются почти в каждой клетке.

Вы можете найти IgA-антитела во влагалище, глазах, ушах, пищеварительном тракте, дыхательных проходах и носу, а также в крови, слезах и слюне. Приблизительно 10-15% антител в организме составляют IgA. Есть небольшое количество людей, которые не синтезируют IgA-антитела.

IgD-антитела можно обнаружить в небольших количествах в жировой ткани грудной клетки или живота.

Вы найдете IgE-антитела в слизистых оболочках, коже и легких.

IgG антитела находятся во всех жидкостях организма. Они являются наиболее распространенными и самыми малыми по размеру антителами в организме.

IgM-антитела являются самыми большими антителами и могут быть обнаружены в лимфатической жидкости и крови. Они составляют 5-10% антител в организме.

Как действуют антигены и антитела: иммунный ответ

Чтобы лучше понять разницу между антигеном и антителом, он помогает понять иммунный ответ. Все здоровые взрослые имеют тысячи различных антител в небольших количествах по всему телу. Каждое антитело является очень специализированным, признавая единственный тип постороннего вещества. Большинство молекул антител имеют форму Y, имеющую связующее место вдоль каждой руки. Каждый сайт связывания имеет определенную форму, и в него будут входить только антигены с одинаковой формой. Антитела предназначены для связывания с антигенами. При связывании они делают антигены неактивными, позволяя другим процессам в организме захватывать посторонние вещества, удаляя и уничтожая их.

В первый раз, когда инородное вещество попадает в организм, вы можете испытывать симптомы болезни. Это происходит, когда иммунная система создает антитела, которые будут бороться с чужеродным веществом. В будущем, когда тот же антиген повторно атакует организм, стимулируется иммунная память. Это приводит к немедленному производству большого количества антител, которые были созданы при первой атаке. Быстрый ответ на дальнейшие атаки означает, что вы уже можете не испытывать каких-либо симптомов болезни или даже знать, что подверглись воздействию антигена. Вот почему большинство людей повторно не болеют такими болезнями, как ветряная оспа.

Из вышеупомянутой разницы между антигеном и антителом анализ на антитела может предоставить врачу полезную информацию в процессе диагностики.

Ваш врач может проверить вашу кровь на антитела по целому ряду причин, включая:

  • диагностика аллергий или аутоиммунных заболеваний
  • определение текущей инфекции или одной из инфекций в прошлом
  • диагностика рецидивирующих инфекций, причины рецидивов из-за низкого уровня IgG-антител или других иммуноглобулинов
  • проверка реакции иммунизации как способа убедиться, что вы по-прежнему невосприимчивы к определенному заболеванию
  • диагностика эффективности лечения различных видов рака, особенно тех, которые влияют на костный мозг человека
  • диагностика конкретных видов рака, включая макроглобулинемию или множественные миеломы.

Прочитайте еще:

Длительная субфебрильная температура: причины и лечение

Лейкопения: причины, симптомы, лечение

Чем отличается врожденный и приобретенный иммунитет?