Естественные науки и предметы их изучения. Развитие естествознания и естественные науки


Лекция 2. Методы естественных наук

Лекция 1. Естественнонаучная и гуманитарная культура

Культура - это система средств человеческой деятельности, благодаря которой программируется, реализуется, стимулируется активность индивида, групп, человечества в их взаимодействии с природой и между собой.

Эти средства создаются людьми, постоянно совершенствуются и состоят из трех содержательных типов культур - материальной, социальной и духовной.

Материальная культура - совокупность вещественно-энергетических средств бытия человека и общества.

Социальная культура - система правил поведения людей в различных видах общения и специализированных сферах общественной деятельности.

Духовная культура - это составная часть культурных достижений человечества

Взаимосвязь естественно-научной и гуманитарной культур заключается в следующем:

· они имеют единую основу, выраженную в потребностях и интересах человека, и человечества в создании оптимальных условий для самосохранения и совершенствования;

· осуществляют взаимообмен достигнутыми результатами (это нашло свое выражение, например, в этике естествознания, рационализации гуманитарной культуры и т. п.);

· взаимно координируют в историко-культурном процессе;

· являются самостоятельными частями единой системы знаний науки;

· имеют основополагающую ценность для человека, ибо он выражает единство природы и общества.

Лекция 2. Методы естественных наук

Естествознание использует как общенаучные методы познания (анализ, синтез, обобщение, абстрагирование, индукция, дедукция, аналогия, логический метод, исторический метод, аналогия, моделирование, классификация), так и конкретно-научные методы, присущие конкретным наукам (спектроскопия, метод меченых атомов, кристаллография и т.п.). Научные методы, по соотношению эмпирического и теоретического подразделяются на методы эмпирического (опытного) исследования: наблюдение, эксперимент, измерение, описание, сравнение, теоретические методы (идеализация, формализация, аксиоматизация, гипотетико-дедуктивный метод), а также смешанные методы.

Анализ - мысленное или реальное разложение объекта на составляющие его части.

Синтез - объединение познанных в результате анализа элементов в единое целое.

Обобщение - процесс мысленного перехода от единичного к о общему, от менее общего, к более общему, например: переход от суждения «этот металл проводит электричество» к суждению «все металлы проводят электричество», от суждения: «механическая форма энергии превращается в тепловую» к суждению «всякая форма энергии превращается в тепловую».

Абстрагирование (идеализация) - мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследования. В результате идеализации из рассмотрения могут быть исключены некоторые свойства, признаки объектов, которые не являются существенными для данного исследования.

Индукция - процесс выведения общего положения из наблюдения ряда частных единичных фактов, т.е. познание от частного к общему. На практике чаще всего применяется неполная индукция, которая предполагает вывод о всех объектах множества на основании познания лишь части объектов. Неполная индукция, основанная на экспериментальных исследованиях и включающая теоретическое обоснование называется научной индукцией. Выводы такой индукции часто носят вероятностный характер.

Дедукция - процесс аналитического рассуждения от общего к частному или менее общему. Она тесно связана с обобщением.

Аналогия - вероятное, правдоподобное заключение о сходстве двух предметов или явлений в каком-либо признаке, на основании установленного их сходства в других признаках..

Моделирование - воспроизведение свойств объекта познания на специально устроенном его аналоге - модели. Модели могут быть реальными (материальными), и идеальными (абстрактными).

Исторический метод подразумевает воспроизведение истории изучаемого объекта во всей своей многогранности, с учетом всех деталей и случайностей.

Логический метод - это, по сути, логическое воспроизведение истории изучаемого объекта. При этом история эта освобождается от всего случайного, несущественного.

Классификация - это процесс упорядочивания информации. В процессе изучения новых объектов в отношении каждого такого объекта делается вывод: принадлежит ли он к уже установленным классификационным группам. В некоторых случаях при этом обнаруживается необходимость перестройки системы классификации. Существует специальная теория классификации - таксономия . Она рассматривает принципы классификации и систематизации сложноорганизованных областей действительности.

Естественные науки имеют дело с материей, энергией, их взаимосвязью и преобразованием, а также с объективно поддающимися измерению явлениями.

В древности этой наукой занимались философы. Позднее основу этого учения развили естествоиспытатели прошлого как Паскаль, Ньютон, Ломоносов, Пирогов. Они развили естествознание.

Естественные науки отличаются от гуманитарных наличием эксперимента, состоящего в активном взаимодействии с изучаемым объектом.

Гуманитарные знания изучают деятельность человека в области духовной, умственной, культурной и общественной. Существует суждение, что гуманитарные науки изучают самого изучающего в отличие от естественных.

Основные естественные знания

К основным естественным знаниям относятся:

Физические науки:

  • физика,
  • инженерные,
  • о материалах,
  • химия;
  • биология,
  • медицина;
  • география,
  • экология,
  • климатология,
  • почвоведение,
  • антропология.

Есть два других вида: формальные, социальные и гуманитарные науки.

Химия, биология, науки о земле, астрономия, физика являются частью этих знаний. Есть также пересекающиеся дисциплины, такие как биофизика, учитывающая различные аспекты нескольких предметов.

До XVII века эти дисциплины часто упоминались как «натуральная философия» в связи с отсутствием экспериментов и процедур, используемых сегодня.

Химия

Многое из того, что определяет современную цивилизацию приходит от достижения в области знаний и технологии, вызванные естественной наукой химией. Например, современное производство в достаточных объемах продовольствия невозможно без процесса Габера - Боша, который был разработан во время первой мировой войны. Этот химический процесс позволяет создавать аммиачное удобрение из атмосферного азота, вместо того чтобы полагаться на биологически фиксированный источник азота, например коровий навоз, значительно увеличивая плодородие почв и как следствие количество продовольствия.

В пределах этих широких категорий химии в бесчисленных областях знаний, многие из которых имеют важное влияние на повседневную жизнь. Химики улучшают многие продукты, от пищи, которую мы едим до одежды, которую мы носим и материалов из которых мы строим наши дома. Химия помогает защитить нашу окружающую среду и ищет новые источники энергии.

Биология и медицина

Благодаря достижениям в области биологии, особенно в XX веке, врачи смогли использовать различные лекарства для лечения многих заболеваний, которые были ранее с большим смертельным исходом. Путем проведения исследований в области биологии и медицины бедствия XIX века, например, чума и оспа, значительно взяты под контроль. Смертность младенцев и матерей в промышленно развитых странах резко сократилась. Биологические генетики даже поняли индивидуальный код в пределах каждого человека.

Наука о земле

Наука изучающая получение и практическое применение знаний о земле позволила человечеству извлекать огромное количество минералов и нефти из земной коры, для работы двигателей современной цивилизации и промышленности. Палеонтология, знания о земле, обеспечивает окно в далекое прошлое, даже дальше чем люди существовали. Путем открытия в геологии и аналогичная информация в области естественных наук ученые способны лучше понять историю планеты и предсказывать изменения, которые могут произойти в будущем.

Астрономия и физика

Во многих отношениях, физика — это наука, которая лежит в основе как естественных наук и предлагает некоторые из самых неожиданных открытий XX века. Среди наиболее заметных из них было открытие, что материя и энергия являются постоянными и просто переход от одного состояния к другому.

Физика — это естественная наука, основанная на опытах, измерениях и математическом анализе с целью нахождения количественных физических законов для всего, от наномира до солнечных систем и галактик макрокосмоса.

На основе исследований путем наблюдения и экспериментов исследуются физические законы и теории, которые объясняют функционирование естественных сил как гравитация, электромагнетизм или ядерные взаимодействия. Открытие новых законов естественной науки физики вкладывает в существующую базу теоретические знания и может также использоваться для практических приложений, таких как развитие оборудования, электронных устройств, ядерных реакторов и т.д.

Благодаря астрономии ученые обнаружили огромное количество информации о Вселенной. В предыдущие столетия считалось, что вся Вселенная была просто Млечный путь. Серия дебатов и наблюдений в XX века показала, что Вселенная буквально в миллионы раз больше, чем представлялось ранее.

Различные виды наук

Работы философов и естествоиспытателей прошлого и последовавшая научная революция помогли создать современную базу знаний.

Естественные науки часто называют «жесткой наукой» из-за интенсивного использования объективных данных и количественных методов, которые полагаются на цифры и математику. В противоположность этому социальные знания, как психология, социология и антропология, больше полагаются на качественные оценки или алфавитно-цифровые данные и склонны иметь меньше конкретных выводов. Формальные виды знаний, включая математику и статистику, имеют сильно количественный характер и обычно не включают изучение природных явлений или экспериментов.

Сегодня актуальные проблемы развития гуманитарных и естественных наук имеют много параметров на решение задач бытия человека и общества в мире, они дали .

науки изучающие свойства природы и естественных образований. Применение терминов естественные, технические, фундаментальные и т.п. к областям деятельности человека достаточно условно, так как в каждой из них есть фундаментальная составляющая (изучающая проблемы на границе нашего знания и незнания), прикладная составляющая (изучающая проблемы применения полученных знаний в практической деятельности), естественнонаучная компонента (изучающая проблемы, возникающие или существующие независимо от нашего желания). Эти термины, если можно так выразиться, диатропичны, т.е. описывают только ядро - наиболее характерную черту или составляющую предмета.

Отличное определение

Неполное определение

ЕСТЕСТВЕННЫЕ НАУКИ

получившее права гражданства с 18 в. название для совокупности всех наук, занимающихся исследованием природы. Первые исследователи природы (натурфилософы) включали, каждый по-своему, всю природу в круг своей мыслительной деятельности. Прогрессирующее развитие естественных наук и их углубление в исследование привело к расчленению, еще и теперь не закончившемуся, единой науки о природе на отдельные ее отрасли - в зависимости от предмета исследования или по принципу разделения труда. Своим авторитетом естественные науки обязаны, с одной стороны, научной точности и последовательности, а с другой - своему практическому значению как средству покорения природы. Главные сферы естественных наук - материя, жизнь, человек, Земля, Вселенная - позволяют сгруппировать их следующим образом: 1) физика, химия, физическая химия; 2) биология, ботаника, зоология; 3) анатомия, физиология, учение о происхождении и развитии, учение о наследственности; 4) геология, минералогия, палеонтология, метеорология, география (физическая); 5) астрономия вместе с астрофизикой и астрохимией. Математика, по мнению ряда натурфилософов, не относится к естественным наукам, но является решающим инструментом их мышления. Кроме того, среди естественных наук, в зависимости от метода, существует следующее различие: описательные науки довольствуются исследованием фактических данных и их связей, которые они обобщают в правила и законы; точные естественные науки облекают факты и связи в математическую форму; однако это различие проводится непоследовательно. Чистая наука о природе ограничивается научным исследованием, прикладная наука (медицина, сельское и лесное хозяйство и вообще техника) использует его для освоения и преобразования природы. Рядом с науками о природе стоят науки о духе, и те и др. философия объединяет в единую науку, они выступают как частные науки; ср. Физическая картина мира.

1. Естественные науки – понятие и предмет изучения 3

2. История зарождения естествознания 3

3. Закономерности и особенности развития естествознания 6

4. Классификация естественных наук 7

5. Основные методы естествознания 9

Литература

    Аруцев А.А., Ермолаев Б.В., и др. Концепции современного естествознания. – М., 1999.

    Матюхин С.И., Фроленков К.Ю.Концепции современного естествознания. – Орлов, 1999.

        1. Естественные науки – понятие и предмет изучения

Естествознание – это естественные науки или совокупность наук о природе. На современном этапе развития все науки делятся на общественные или гуманитарные, и естественные .

Предметом изучения общественных наук является человеческое общество и законы его развития, а также явления, так или иначе связанные с человеческой деятельностью.

Предметом изучения естественных наук является окружающая нас Природа, т. е. различные виды материи, формы и законы их движения, их связи. Система естественных наук, взятых в их взаимной связи, как целое, образует основу одной из основных областей научных знаний о Мире – естествознания.

Ближайшей, или непосредственной, целью естествознания является познание объективной Истины , поиск сущности явлений Природы, формулировка основных законов Природы, которая дает возможность предвидеть или создавать новые явления. Конечной целью естествознания является практическое использование познанных законов , сил и веществ Природы (производственно-прикладная сторона познания).

Естествознание, таким образом, является естественнонаучным фундаментом философского понимания Природы и Человека как части этой Природы, теоретической основой промышленности и сельского хозяйства, техники и медицины.

      1. 2. История зарождения естествознания

У истоков современной науки стоят древние греки. Более древние знания дошли до нас только в виде осколков. Они бессистемны, наивны и чужды нам по духу. Греки были первыми, кто изобрел доказательство. Ни в Египте, ни в Месопотамии, ни в Китае такого понятия не существовало. Может быть потому, что все эти цивилизации были основаны на тирании и безусловном подчинении авторитетам. В таких условиях даже сама мысль о разумных доказательствах кажется крамольной.

В Афинах впервые за всю мировую историю возникла республика. Несмотря на то, что она расцвела на труде рабов, в Древней Греции сложились условия, при которых стал возможен свободный обмен мнениями, и это привело к небывалому расцвету наук.

В средние века потребность рационального познания природы совершенно угасла рядом с попытками осмыслить предназначение человека в рамках различных религиозных вероисповеданий. В продолжение почти десяти веков религия давала исчерпывающие ответы на все вопросы бытия, которые не подлежали ни критике, ни даже обсуждению.

Сочинения Евклида, автора той геометрии, которая изучается сейчас во всех школах, были переведены на латинский язык и стали известны в Европе только в XII веке. Однако в то время их воспринимали просто как совокупность остроумных правил, которые надлежало заучить наизусть - настолько они были чужды духу средневековой Европы, привыкшей верить, а не искать корней Истины. Но объем знаний стремительно рос, и их уже не удавалось согласовать с направлением мыслей средневековых умов.

Конец средневековья обычно связывают с открытием Америки в 1492 г. Некоторые указывают даже более точную дату: 13 декабря 1250 г.- день, когда в замке Флорентино близ Лючеры умер король Фридрих II Гогенштауфен. Конечно, не следует относиться к таким датам всерьез, но несколько таких дат, взятых вместе, создают несомненное ощущение достоверности перелома, который произошел в сознании людей на рубеже XIII и XIV веков. В истории этот период назвали Возрождением. Подчиняясь внутренним законам развития и без видимых на то причин, Европа всего за два века возродила зачатки древних знаний, до того более десяти веков находившихся в забвении и получивших впоследствии название научных.

В период Возрождения в умах людей произошел поворот от стремления осознать свое место в мире к попыткам понять его рациональное устройство без ссылок на чудеса и божественное откровение. Вначале переворот носил аристократический характер, но изобретение книгопечатания распространило его на все слои общества. Суть перелома - освобождение от давления авторитетов и переход от средневековой веры к знанию нового времени.

Церковь всячески противилась новым веяниям, она строго судила философов, которые признавали, что есть вещи истинные с точки зрения философии, но ложные с точки зрения веры. Но рухнувшую плотину веры починить было уже нельзя, и освобожденный дух стал искать новые пути для своего развития.

Уже в XIII веке английский философ Роджер Бекон писал: “Существует естественный и несовершенный опыт, который не сознает своего могущества и не отдает себе отчета в своих приемах: им пользуются ремесленники, а не ученые... Выше всех умозрительных знаний и искусств стоит умение производить опыты, и эта наука есть царица наук...

Философы должны знать, что их наука бессильна, если они не применяют к ней могущественную математику... Невозможно отличить софизм от доказательства, не проверив заключение путем опыта и применения”.

В 1440 г. кардинал Николай Кузанский (1401- 1464) написал книгу “Об ученом невежестве”, в которой настаивал, что все познания о природе необходимо записывать в цифрах, а все опыты над нею производить с весами в руках.

Однако, утверждение новых взглядов происходило медленно. Арабские цифры, например, уже в X веке вошли во всеобщее употребление, но даже в XVI веке вычисления повсеместно производили не на бумаге, а с помощью особых жетонов, еще менее совершенных, чем конторские счеты.

Настоящую историю естествознания принято начинать с Галилея и Ньютона. Согласно той же традиции Галилео Галилей (1564- 1642) считается родоначальником экспериментальной физики, а Исаак Ньютон (1643- 1727)- основателем теоретической физики. Конечно в их время (см. историческую справку) не было такого разделения единой науки физики на две части, не было даже самой физики - она называлась натуральной философией. Но такое разделение имеет глубокий смысл: оно помогает понять особенности научного метода и, по существу, эквивалентно делению науки на опыт и математику, которое сформулировал еще Роджер Бэкон.

Естествознание представляет собой сферу человеческой деятельности, направленную на получение новой информации об окружающем мире, живущем по объективным, независящим от человека законам. В противоположность естественным наукам, объектом изучения гуманитарных наук является сама человеческая деятельность, как субъективный процесс. Тем не менее, этот субъективный процесс изучается объективными методами. Именно последнее обстоятельство позволяет считать гуманитарные науки именно науками, а не искусством. Если целью естественонаучной деятельности человека является познать мир таким, каков он есть на самом деле, то цель деятельности человека в сфере искусства - показать, как мир субъективно воспринимается человеком.

Современное естествознание нельзя представлять как некий архив, где просто накоплено "разложено по пололчкам" огромное количество фактов и разнообразных сведений об устройстве окружающего мира. Естествознание сопоставляет факты, наблюдения и стремится создать его МОДЕЛЬ, в которой эти факты собраны в единую, НЕПРОТИВОРЕЧИВУЮ систему на основе теоретических понятий, положений и обощений. Естествознание также стремится расширять и уточнять создаваемую картину мира, используя эту модель дая планироания и выполнения новых наблюдений и экспериментов.

Приведен некоторые отличительные черты (требования) научной методологии в области естествознания:

прогностичность - обобщенные в виде теории научные понятия, модели должны предсказывать поведение объектов окружающего мира, наблюдаемое в эксперименте или непосредственно в окружающей среде

воспроизводимость - научные эксперименты должны выполняться таким образом, чтобы они могли быть воспроизведены другими исследователями и в других лабораториях

минимальная достаточность - в процессе описания научных данных нельзя создавать понятия, сверх тех, которые необходимы (т.н. принцип "бритвы Оккама")

объективность - при построение научной теории, гипотезы недопустимо избирательно учитывать только избранные (отбрасывая другие данные) факты и наблюдения, в зависимости от личных наклонностей, интересов, привязанностей и уровня подготовки ученого.

переемственность - научная работа должна максимально учитывать и ссылаться на предисторию изучаемого вопроса

Естественные науки - это не только получение новой информации, но и получение информации о том, как получать новую информацию. Являясь одновременно целью и средством человеческой деятельности, естествознание представляет собой саморазвивающийся и самоускоряющийся процесс.

вселенная черный дыра пространство

Системная классификация естественных наук

Традиционно к естественным относят такие науки, как физика, химия, биология, геология, география, а также другие дисциплины.

Насколько объективна такая классификация, где и по какому принципу должны проводиться границы между разными науками, можно ли те или иные разделы естествознания выделять в отдельные науки? Очевидно, что для ответа на этот вопрос необходима естественная классификация иерархии научного знания, которая не зависела бы от традиций и была бы объективной. Другими словами, необходим объективный критерий выделения той или иной области знаний в отдельную науку.

К такой классификации можно отнести системную классификацию наук - не только естественных. В ее основе лежит следующий принцип: объектом каждой науки должна служить целостная, обособленная система.

Остановимся более подробно на понятии "система".

Под системой обычно понимают совокупность взаимодействующих элементов, каждый из которых необходим для выполнения этой системой своих специфических функций. Как мы видим, определение системы состоит здесь из двух частей, причем вторая часть, касающаяся системных элементов, является нетривиальной и неочевидной. Из этого определения следует, что не любая составная часть системы представляет собой системный элемент. Так, например, сигнальная лампочка на передней панели компьютера не будет являться его системным элементом, поскольку удаление лампочки или выход из строя не вызовет сбой выполнения программных задач, тогда как процессор, очевидно, таковым элементом является.

Из приведенного нами определения следует, что число системных элементов в системе всегда конечно, а сами они дискретны и их выбор не случаен. Отдельные элементы и их свойства при объединении в систему всегда рождают новое качество, системную функцию, не сводимую к качеству и функциям составляющих ее элементов.

Системы бывают естественные и искусственные, объективные и субъективные. К естественным наукам относят науки, имеющие в качестве объекта своего изучения естественные системы, которые всегда объективны. Субъективные системы представляют собой объекты изучения гуманитарных наук. Отметим, что некоторые системы, например, информационные, могут одновременно являться искусственными и в тоже время объективными. Еще один пример: компьютер, как целостная информационная система, традиционно подлежит изучению в рамках науки информатики. С точки зрения системной классификации более точным было бы выделение в качестве самостоятельной науки не информатики вообще, а компьютерной информатики, поскольку информационные системы могут быть самыми разными.

Системные элементы сами тоже являются системами; можно сказать, что системы разных порядков вложены друг в друга, как матрешки.

Например, философия имеет в качестве объекта для своего изучения предельно общую систему, состоящую всего из двух элементов - материи и сознания. Если говорить о наиболее крупной из известных нам систем, то таковой является Вселенная, изучаемая как целостный объект наукой космологией.

Системами самого низшего порядка, из известных современной науке, принято считать элементарные частицы. Мы еще мало что знаем о внутреннем строении элементарных частиц, даже если принимать во внимание гипотезу о существовании кварков, которые пока в свободном виде не получены. Тем не менее, к системным элементам, составляющим элементарные частицы, вполне можно отнести не только кварки, но и их свойства (качества) - заряд, массу, спин и другие характеристики.

Наука, изучающая элементарные частицы как целостные, обособленные системы, называется физикой элементарных частиц.

Элементарные частицы являются элементами систем более высокого порядка - атомных ядер, и еще более высокого - атомов. Соответственно выделяется ядерная и атомная физика.

В свою очередь, атомы объединяются в молекулы. Наука, имеющая в качестве объекта своего изучения молекулы, называется химией. Как тут не вспомнить известное определение: молекулами называют мельчайшие частицы вещества, которые еще сохраняют химические свойства этого вещества!

Будем дальше двигаться по иерархической лестнице естественных наук. В живых организмах молекулы участвуют в сложных взаимодействиях это длинные последовательности и циклы реакций, катализируемые ферментами. Существуют, например, т.н. гликолитический путь, цикл Кребса, цикл Кальвина, пути синтеза аминокислот, нуклеиноых кислот и многие другие. Все они представляют собой сложные, целостные самоорганизующиеся системы, получившие название биохимических. Соответственно, наука, их изучающая, названа биохимией.

Биохимические процессы и сложные молекулярные структуры объединяются в еще более сложные образования - живые клетки, изучаемые цитологией. Клетки образуют ткани, изучаемые, как целостные системы, другой наукой - гистологией. Следующий уровень иерархии относится к обособленным живым комплексам, образованным тканями - органам. В комплексе биологических дисциплин не принято выделять науку, которую можно было бы назвать «органологией», однако в медицине известны такие науки, как кардиология (изучает сердце и сердечно-сосудистую систему), пульмонология (легкие), урология (органы мочеполовой системы) и др.

И, наконец, мы приблизились к науке, которая в качестве объекта своего изучения имеет живой организм, как целостную, обособленную систему (особь). Это наукой является физиология. Различают физиологию человека, животных, растений и микроорганизмов.

Системная классификация естественных наук представляет собой не просто некое абстрактно-логическое построение, а является вполне прагматическим подходом для решения организационных задач.

Представьте себе следующую ситуацию. В научный совет по защите диссертаций на соискание степени кандидата биологических наук приходят два соискателя. Первый исследовал процесс дыхания у крыс, подвергшихся действию высоких физических нагрузок. Он изучал содержание отдельных метаболитов цикла Кребса, особенности функционирования компонен-тов цепи переноса электронов в митохондриях и другие биохимические особенности процесса дыхания крыс, которых вынуждали к высокой физической активности.

Другой соискатель изучал в основном все то же самое, теми же методами, но его интересовало не воздействие физических нагрузок на дыхание, а сам процесс дыхания, как таковой, вне зависимости от физической нагрузки или даже от того, какой организм исследовался.

Первому соискателю сообщают, что его работа относится к физиологии и поэтому принимается к рассмотрению в данном совете со специализацией «физиология человека и животных», а другому отказывают, сославшись на несоответствие специализации работы («биохимия») со специализацией совета.

Как же так случилось, что очень похожие работы оказались отнесены к разным наукам? В первом случае - физическая деятельность - это функция живого организма, как целостной системы, и поэтому работа относится к физиологии. Во втором - объектом изучения является не организм в целом, а отдельная биохимическая система.

Дальнейшее восхождение по иерархической лестнице естественных наук подводит нас к интересной узловой точке. Живые организмы (особи), как системные элементы, могут входить в разные системы более высокого порядка. Система, состоящая только из двух элементов - особи (или популяции особей) и окружающей среды (биотической и абиотической ее части), рассматривается в экологии.

Систему, состоящую из особей разных видов (или популяций разных видов) изучает наука биоценология. Соответственно предмет (система) изучения этой науки может включать в себя многие системные элементы. Совокупность взаимодействующих популяций разных видов, занимающих одну и ту же территорию, называют биоценозами. Интересно, что биоценозы не являются случайной совокупностью популяций. Они представляют собой сложные, самоорганизующиеся системы, имеющие некоторые черты живых организмов. Как и особи, биоценозы рождаются, развиваются (т.н. сукцессия), стареют и умирают. Они дискретны: между разными биоценозами очень часто можно наблюдать явно выраженную границу, тогда как промежуточные формы отсутствуют, либо неустойчивы. Биоценозы обычно называют по доминирующему растительному виду - если это, например, дуб, то биоценоз называется дубравой, если это ковыль, то он будет иметь название "ковыльная степь".

Системой более высокого порядка, чем биоценоз, является биосфера Земли. В русском языке, однако, слово "биосферология" отсутсвует; вместо него пользуются термином "учение о биосфере". Приоритет создания этой науки принадлежит выдающемуся российскому ученому, академику В. И. Вернадскому (1863-1945), который впервые обратил внимание на то, что биосфера - это не просто сумма всех биоценозов Земли, а сложный, самоорганизующийся объект, качественно отличающийся от любых других известных систем.

В свою очередь, биосфера является лишь одним из системных элементов нашей планеты. К сожалению, наука, которая описывала бы поведение Земли как целостной, самоорганизующейся системы, отсутствует по объективным причинам. Современным естествознанием накоплено слишком мало сведений о том, как взаимодействуют между собой различные планетарные оболочки и уровни организации - биосфера, литосфера, гидросфера, мантия, ядро и др.

Традиционно не принято выделять в отдельную науку наши знания о формировании, строении и процессах, определяющих поведение Солнечной системы как единого целого. Объективно, однако, такая область знаний существует и рассматривается в рамках комплекса астрономических дисциплин. Это же самое касается и нашей галактики.

И, наконец, самая крупная из известных нам естественных систем - это Вселенная, которую, как мы уже говорили, изучает наука космология.

Итак, мы рассмотрели целую вереницу естественных наук и соответствующих им систем. Но где же среди них привычные нам биология и физика? По видимому, в рамках объективной, системной классификации мы не можем называть ни одну, ни другую дисциплину науками. Не существует отдельной обособленной системы (или хотя бы класса систем), в отношении которой можно было бы сформулировать задачу физики (или биологии) как науки, изучающей эту систему: принцип "одна наука - одна система" перестает работать. Биология и физика распадаются на множество других наук. Тем не менее, традиционная, субъективная, классификация тоже имеет полное право на существование: она удобна и еще долго будет использоваться в естествознании.

При всем многообразии систем - больших и маленьких, естественных и искусственных, объективных и субъективных существуют некоторые их характеристики, свойственные всем системам вообще. Они так и называются общесистемные. Существует также наука, изучающая их - системология. Достижения системологии помогают ученым, работающим в других областях знаний, строить гипотезы и делать правильные научные выводы. Например, среди исследователей геронтологов (геронтология - наука о старении) иногда встречается точка зрения, что старение животных и человека определяется неким геном старения, повредив который, можно обеспечить неограниченно длительную молодость. Однако, выводы системологии говорят нам о другом. Стареют все сложные саморазвивающиеся системы, ограниченные в пространственном росте, поэтому причины старения человека и животных лежат гораздо глубже. В то же время общие выводы системологии имеют лишь методическое значение. Ими нельзя подменять конкретные знания. В рассматриваемом случае вполне можно допустить, что некоторые гены действительно могут ускорять старение, но удалив эти гены, или устранив какие-то другие, конкретные причины старения, мы должны понимать, что столкнемся с другими причинами и сможем лишь отодвинуть старость.