Площадь оси цилиндра. Цилиндр, площадь цилиндра


Стереометрия − это раздел геометрии, в котором изучаются фигуры в пространстве. Основными фигурами в пространстве являются точка, прямая и плоскость. В стереометрии появляется новый вид взаимного расположения прямых: скрещивающиеся прямые. Это одно из немногих существенных отличий стереометрии от планиметрии, так как во многих случаях задачи по стереометрии решаются путем рассмотрения различных плоскостей, в которых выполняются планиметрические законы.

В окружающей нас природе существует множество объектов, являющихся физическими моделями указанной фигуры. Например, многие детали машин имеют форму цилиндра или представляют собой некоторое их сочетание, а величественные колонны храмов и соборов, выполненные в форме цилиндров, подчеркивают их гармонию и красоту.

Греч. − кюлиндрос. Античный термин. В обиходе − свиток папируса, валик, каток (глагол − крутить, катать).

У Евклида цилиндр получается вращением прямоугольника. У Кавальери − движением образующей (при произвольной направляющей − "цилиндрика").

Цель данного реферата рассмотреть геометрическое тело – цилиндр.

Для достижения данной цели необходимо рассмотреть следующие задачи:

− дать определения цилиндра;

− рассмотреть элементы цилиндра;

− изучить свойства цилиндра;

− рассмотреть виды сечения цилиндра;

− вывести формулу площади цилиндра;

− вывести формулу объема цилиндра;

− решить задачи с использованием цилиндра.

1.1. Определение цилиндра

Рассмотрим какую-либо линию (кривую, ломаную или смешанную) l, лежащую в некоторой плокости α, и некоторую прямую S, пересекающую эту плоскость. Через все точки данной линии l проведем прямые, параллельные прямой S; образованная этими прямыми поверхность α называется цилиндрической поверхностью. Линия l называется направляющей этой поверхности, прямые s 1 , s 2 , s 3 ,... − ее образующими.

Если направляющая является ломаной, то такая цилиндрическая поверхность состоит из ряда плоских полос, заключенных между парами параллельных прямых, и называется призматической поверхностью. Образующие, проходящие через вершины направляющей ломаной, называются ребрами призматической поверхности, плоские полосы между ними − ее гранями.

Если рассечь любую цилиндрическую поверхность произвольной плоскостью, не параллельной ее образующим, то получим линию, которая также может быть принята за направляющую данной поверхности. Среди направляющих выделяется та, которая, получается, от сечения поверхности плоскостью, перпендикулярной образующим поверхности. Такое сечение называется нормальным сечением, а соответствующая направляющая − нормальной направляющей.

Если направляющая − замкнутая (выпуклая) линия (ломаная или кривая), то соответствующая поверхность называется замкнутой (выпуклой) призматической или цилиндрической поверхностью. Из цилиндрических поверхностей простейшая имеет своей нормальной направляющей окружность. Рассечем замкнутую выпуклую призматическую поверхность двумя плоскостями, параллельными между собой, но не параллельными образующим.

В сечениях получим выпуклые многоугольники. Теперь часть призматической поверхности, заключенная между плоскостями α и α", и две образовавшиеся при этом многоугольные пластинки в этих плоскостях ограничивают тело, называемое призматическим телом − призмой.

Цилиндрическое тело − цилиндр определяется аналогично призме:
Цилиндром называется тело, ограниченное с боков замкнутой (выпуклой) цилиндрической поверхностью, а с торцов двумя плоскими параллельными основаниями. Оба основания цилиндра равны, также равны между собой и все образующие цилиндра, т.е. отрезки образующих цилиндрической поверхности между плоскостями оснований.

Цилиндром (точнее, круговым цилиндром) называется геометрическое тело, которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов (рис. 1).

Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, − образующими цилиндра.

Так как параллельный перенос есть движение, то основания цилиндра равны.

Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у цилиндра основания лежат в параллельных плоскостях.

Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у цилиндра образующие параллельны и равны.

Поверхность цилиндра состоит из оснований и боковой поверхности. Боковая поверхность составлена из образующих.

Цилиндр называется прямым, если его образующие перпендикулярны плоскостям оснований.

Прямой цилиндр наглядно можно представить себе как геометрическое тело, которое описывает прямоугольник при вращении его около стороны как оси (рис. 2).

Рис. 2 − Прямой цилиндр

В дальнейшем мы будем рассматривать только прямой цилиндр, называя его для краткости просто цилиндром.

Радиусом цилиндра называется радиус его основания. Высотой цилиндра называется расстояние между плоскостями его оснований. Осью цилиндра называется прямая, проходящая через центры оснований. Она параллельна образующим.

Цилиндр называется равносторонним, если его высота равна диаметру основания.

Если основания цилиндра плоские (и, следовательно, содержащие их плоскости параллельны), то цилиндр называют стоящим на плоскости. Если основания стоящего на плоскости цилиндра перпендикулярны образующей, то цилиндр называется прямым.

В частности, если основание стоящего на плоскости цилиндра − круг, то говорят о круговом (круглом) цилиндре; если эллипс − то эллиптическом.

1. 3. Сечения цилиндра

Сечение цилиндра плоскостью, параллельной его оси, представляет собой прямоугольник (рис. 3, а). Две его стороны − образующие цилиндра, а две другие − параллельные хорды оснований.

а)б)

в) г)

Рис. 3 – Сечения цилиндра

В частности, прямоугольником является осевое сечение. Это − сечение цилиндра плоскостью, проходящей через его ось (рис. 3, б).

Сечение цилиндра плоскостью, параллельной основанию − круг (рис 3, в).

Сечение цилиндра плоскостью не параллельной основанию и его оси − овал (рис. 3г).

Теорема 1. Плоскость, параллельная плоскости основания цилиндра, пересекает его боковую поверхность по окружности, равной окружности основания.

Доказательство. Пусть β − плоскость, параллельная плоскости основания цилиндра. Параллельный перенос в направлении оси цилиндра, совмещающий плоскость β с плоскостью основания цилиндра, совмещает сечение боковой поверхности плоскостью β с окружностью основания. Теорема доказана.


Площадь боковой поверхности цилиндра.

За площадь боковой поверхности цилиндра принимается предел, к которому стремится площадь боковой поверхности правильной призмы, вписанной в цилиндр, когда число сторон основания этой призмы неограниченно возрастет.

Теорема 2. Площадь боковой поверхности цилиндра равна произведению длины окружности его основания на высоту (S бок.ц = 2πRH, где R − радиус основания цилиндра, Н − высота цилиндра).

А) б)
Рис. 4 − Площадь боковой поверхности цилиндра

Доказательство.

Пусть P n и Н соответственно периметр основания и высота правильной n-угольной призмы, вписанной в цилиндр (рис. 4, а). Тогда площадь боковой поверхности этой призмы S бок.ц − P n H. Предположим, что число сторон многоугольника, вписанного в основание, неограниченно растет (рис. 4, б). Тогда периметр P n стремится к длине окружности С = 2πR, где R- радиус основания цилиндра, а высота H не изменяется. Таким образом, площадь боковой поверхности призмы стремится к пределу 2πRH, т. е. площадь боковой поверхности цилиндра равна S бок.ц = 2πRH. Теорема доказана.

Площадь полной поверхности цилиндра.

Площадью полной поверхности цилиндра называется сумма площадей боковой поверхности и двух оснований. Площадь каждого основания цилиндра равна πR 2 , следовательно, площадь полной поверхности цилиндра S полн вычисляется по формуле S бок.ц = 2πRH+ 2πR 2 .

r
T 1
T
F
F 1
F
T
а)
F
б)

Рис. 5 − Площадь полной поверхности цилиндра

Если боковую поверхность цилиндра разрезать по образующей FT (рис. 5, а) и развернуть так, чтобы все образующие оказались в одной плоскости, то в результате мы получим прямоугольник FTT1F1, который называется разверткой боковой поверхности цилиндра. Сторона FF1 прямоугольника есть развертка окружности основания цилиндра, следовательно, FF1=2πR, а его сторона FT равна образующей цилиндра, т. е. FT = Н (рис. 5, б). Таким образом, площадь FT∙FF1=2πRH развертки цилиндра равна пло­щади его боковой поверхности.

1.5. Объем цилиндра

Если геометрическое тело простое, то есть допускает разбиение на конечное число треугольных пирамид, то его объем равен сумме объемов этих пирамид. Для произвольного тела объем определяется следующим образом.

Данное тело имеет объем V, если существует содержащие его простые тела и содержащиеся в нем простые тела с объемами, сколько угодно мало отличающимися от V.

Применим это определение к нахождению объема цилиндра с радиусом основания R и высотой Н.

При выводе формулы для площади круга были построены такие два n-угольника (один − содержащий круг, другой − содержащийся в круге), что их площади при неограниченном увеличении n неограниченно приближались к площади круга. Построим такие многоугольники для круга в основании цилиндра. Пусть Р − многоугольник, содержащий круг, а Р" − многоугольник, содержащийся в круге (рис. 6).

Рис. 7 − Цилиндр с описанной и вписанной в него призмой

Построим две прямые призмы с основаниями Р и Р" и высотой Н, равной высоте цилиндра. Первая призма содержит цилиндр, а вторая призма содержится в цилиндре. Так как при неограниченном увеличении n площади оснований призм неограниченно приближаются к площади основания цилиндра S, то их объемы неограниченно приближаются к SН. Согласно определению объем цилиндра

V = SH = πR 2 H.

Итак, объем цилиндра равен произведению площади основания на высоту.

Задача 1.

Осевое сечение цилиндра − квадрат, площадь которого Q.

Найдите площадь основания цилиндра.

Дано: цилиндр, квадрат − осевое сечение цилиндра, S квадрата = Q.

Найти: S осн.цил.

Сторона квадрата равна . Она равна диаметру основания. Поэтому площадь основания равна .

Ответ: S осн.цил. =

Задача 2.

В цилиндр вписана правильная шестиугольная призма. Найдите угол между диагональю ее боковой грани и осью цилиндра, если радиус основания равен высоте цилиндра.

Дано: цилиндр, правильная шестиугольная призма вписанная в цилиндр, радиус основания = высоте цилиндра.

Найти: угол между диагональю ее боковой грани и осью цилиндра.

Решение: Боковые грани призмы − квадраты, так как сторона правильного шестиугольника, вписанного в окружность, равна радиусу.

Ребра призмы параллельны оси цилиндра, поэтому угол между диагональю грани и осью цилиндра равен углу между диагональю и боковым ребром. А это угол равен 45°, так как грани − квадраты.

Ответ: угол между диагональю ее боковой грани и осью цилиндра = 45°.

Задача 3.

Высота цилиндра 6см, радиус основания 5см.

Найдите площадь сечения, проведенного параллельно оси цилиндра на расстоянии 4см от нее.

Дано: Н = 6см, R = 5см, ОЕ = 4см.

Найти: S сеч.

S сеч. = КМ×КС,

ОЕ = 4 см, КС = 6 см.

Треугольник ОКМ − равнобедренный (ОК = ОМ = R = 5 см),

треугольник ОЕК − прямоугольный.

Из треугольника ОЕК, по теореме Пифагора:

КМ = 2ЕК = 2×3 = 6,

S сеч. = 6×6 = 36 см 2 .

Цель данного реферата выполнена, рассмотрено такое геометрическое тело, как цилиндр.

Рассмотрены следующие задачи:

− дано определение цилиндра;

− рассмотрены элементы цилиндра;

− изучены свойства цилиндра;

− рассмотрены виды сечения цилиндра;

− выведена формула площади цилиндра;

− выведена формула объема цилиндра;

− решены задачи с использованием цилиндра.


1. Погорелов А. В. Геометрия: Учебник для 10 – 11 классов общеобразовательных учреждений, 1995.

2. Бескин Л.Н. Стереометрия. Пособие для учителей средней школы, 1999.

3. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Киселева Л. С., Позняк Э. Г. Геометрия: Учебник для 10 – 11 классов общеобразовательных учреждений, 2000.

4. Александров А.Д., Вернер А.Л., Рыжик В.И. Геометрия: учебник для 10-11 классов общеобразовательных учреждений, 1998.

5. Киселев А. П., Рыбкин Н. А. Геометрия: Стереометрия: 10 – 11 классы: Учебник и задачник, 2000.

Представляет собой геометрическое тело, ограниченное двумя параллельными плоскостями и цилиндрической поверхностью.

Цилиндр состоит из боковой поверхности и двух оснований. Формула площади поверхности цилиндра включает в себя отдельный расчет площади оснований и боковой поверхности. Так как основания в цилиндре равны, то полная его площадь будет рассчитываться по формуле:

Пример расчета площади цилиндра мы рассмотрим после того, как узнаем все необходимые формулы. Для начала нам понадобится формула площади основания цилиндра. Так как основанием цилиндра является круг, то нам потребуется применить :
Мы помним, что в этих расчетах используется постоянное число Π = 3,1415926, которое рассчитано как соотношение длины окружности к ее диаметру. Это число является математической константой. Пример расчета площади основания цилиндра мы также рассмотрим чуть позже.

Площадь боковой поверхности цилиндра

Формула площади боковой поверхности цилиндра представляет собой произведение длины основания на его высоту:

А теперь рассмотрим задачу, в которой нам потребуется рассчитать полную площадь цилиндра. В заданной фигуре высота h = 4 см, r = 2 см. Найдем полную площадь цилиндра.
Для начала рассчитаем площадь оснований:
Теперь рассмотрим пример расчета площади боковой поверхности цилиндра. В развернутом виде она представляет прямоугольник. Его площадь рассчитывается по приведенной выше формуле. Подставим в нее все данные:
Полная площадь круга представляет собой сумму двойной площади основания и боковой:


Таким образом, используя формулы площади оснований и боковой поверхности фигуры, мы смогли найти полную площадь поверхности цилиндра.
Осевое сечение цилиндра представляет собой прямоугольник, в котором стороны равны высоте и диаметру цилиндра.

Формула площади осевого сечения цилиндра выводится из формулы расчета :

Цилиндр – это фигура, состоящая из цилиндрической поверхности и двух окружностей, расположенных параллельно. Расчет площади цилиндра – это задача геометрического раздела математики, которая решается достаточно просто. Существует несколько методов ее решения, которые в результате всегда сводятся к одной формуле.

Как найти площадь цилиндра – правила вычисления

  • Чтобы узнать площадь цилиндра, необходимо две площади основания сложить с площадью боковой поверхности: S= Sбок.+ 2Sосн. В более развернутом варианте данная формула выглядит так: S= 2 π rh+ 2 π r2= 2 π r(h+ r).
  • Площадь боковой поверхности данного геометрического тела можно высчитать, если известны его высота и радиус окружности, лежащей в основании. В данном случае можно выразить радиус из длины окружности, если она дана. Высота может быть найдена, если в условии задано значение образующей. В этом случае образующая будет равна высоте. Формула боковой поверхности данного тела выглядит так: S= 2 π rh.
  • Площадь основания считается по формуле нахождения площади круга: S osn= π r 2 . В некоторых задачах может не даваться радиус, но задаваться длина окружности. С данной формулы радиус выражается достаточно легко. С=2π r, r= С/2π. Нужно также помнить о том, что радиус – это половина диаметра.
  • При выполнении всех этих расчетов число π обычно не переводится в 3,14159… Его нужно просто дописывать рядом с числовым значением, которое было получено в результате проведения вычислений.
  • Далее необходимо лишь умножить найденную площадь основания на 2 и прибавить к полученному числу вычисленную площадь боковой поверхности фигуры.
  • Если в задаче указывается, что в цилиндре есть осевое сечение и это – прямоугольник, то решение будет немного другим. В таком случае ширина прямоугольника будет являться диаметром окружности, лежащей в основании тела. Длина фигуры будет равна образующей или высоте цилиндра. Необходимо высчитать нужные значения и подставить в уже известную формулу. В данном случае ширину прямоугольника нужно разделить на два, чтобы найти площадь основания. Для нахождения боковой поверхности длина умножается на два радиуса и на число π.
  • Можно высчитать площадь данного геометрического тела через его объем. Для этого нужно из формулы V=π r 2 h вывести недостающую величину.
  • В вычислении площади цилиндра нет ничего сложного. Нужно только знать формулы и уметь выводить из них величины, необходимые для проведения расчетов.

Цилиндр - это симметричная пространственная фигура, свойства которой рассматривают в старших классах школы в курсе стереометрии. Для его описания используют такие линейные характеристики, как высота и радиус основания. В данной статье рассмотрим вопросы касательно того, что такое осевое сечение цилиндра, и как рассчитать его параметры через основные линейные характеристики фигуры.

Геометрическая фигура

Сначала дадим определение фигуре, о которой пойдет речь в статье. Цилиндр представляет собой поверхность, образованную параллельным перемещением отрезка фиксированной длины вдоль некоторой кривой. Главным условием этого перемещения является то, что отрезок плоскости кривой принадлежать не должен.

На рисунке ниже показан цилиндр, кривая (направляющая) которого является эллипсом.

Здесь отрезок длиной h является его образующей и высотой.

Видно, что цилиндр состоит из двух одинаковых оснований (эллипсы в данном случае), которые лежат в параллельных плоскостях, и боковой поверхности. Последней принадлежат все точки образующих линий.

Перед тем как переходить к рассмотрению осевого сечения цилиндров, расскажем, какие типы этих фигур бывают.

Если образующая линия перпендикулярна основаниям фигуры, тогда говорят о прямом цилиндре. В противном случае цилиндр будет наклонным. Если соединить центральные точки двух оснований, то полученная прямая называется осью фигуры. Приведенный рисунок демонстрирует разницу между прямым и наклонным цилиндрами.

Видно, что для прямой фигуры длина образующего отрезка совпадает со значением высоты h. Для наклонного цилиндра высота, то есть расстояние между основаниями, всегда меньше длины образующей линии.

Осевое сечение прямого цилиндра

Осевым называется любое сечение цилиндра, которое содержит его ось. Это определение означает, что осевое сечение будет всегда параллельно образующей линии.

В цилиндре прямом ось проходит через центр круга и перпендикулярна его плоскости. Это означает, что рассматриваемое сечение круг будет пересекать по его диаметру. На рисунке показана половинка цилиндра, которая получилась в результате пересечения фигуры плоскостью, проходящей через ось.

Не сложно понять, что осевое сечение прямого круглого цилиндра представляет собой прямоугольник. Его сторонами являются диаметр d основания и высота h фигуры.

Запишем формулы для площади осевого сечения цилиндра и длины h d его диагонали:

Прямоугольник имеет две диагонали, но обе они равны друг другу. Если известен радиус основания, то не сложно переписать эти формулы через него, учитывая, что он в два раза меньше диаметра.

Осевое сечение наклонного цилиндра

Рисунок выше демонстрирует наклонный цилиндр, изготовленный из бумаги. Если выполнить его осевое сечение, то получится уже не прямоугольник, а параллелограмм. Его стороны - это известные величины. Одна из них, как и в случае сечения прямого цилиндра, равна диаметру d основания, другая же - длина образующего отрезка. Обозначим ее b.

Для однозначного определения параметров параллелограмма недостаточно знать его длины сторон. Необходим еще угол между ними. Предположим, что острый угол между направляющей и основанием равен α. Он же и будет углом между сторонами параллелограмма. Тогда формулу для площади осевого сечения наклонного цилиндра можно записать следующим образом:

Диагонали осевого сечения цилиндра наклонного рассчитать несколько сложнее. Параллелограмм имеет две диагонали разной длины. Приведем без вывода выражения, позволяющие рассчитывать диагонали параллелограмма по известным сторонам и острому углу между ними:

l 1 = √(d 2 + b 2 - 2*b*d*cos(α));

l 2 = √(d 2 + b 2 + 2*b*d*cos(α))

Здесь l 1 и l 2 - длины малой и большой диагоналей соответственно. Эти формулы можно получить самостоятельно, если рассмотреть каждую диагональ как вектор, введя прямоугольную систему координат на плоскости.

Задача с прямым цилиндром

Покажем, как использовать полученные знания для решения следующей задачи. Пусть дан круглый прямой цилиндр. Известно, что осевое сечение цилиндра - квадрат. Чему равна площадь этого сечения, если всей фигуры составляет 100 см 2 ?

Для вычисления искомой площади необходимо найти либо радиус, либо диаметр основания цилиндра. Для этого воспользуемся формулой для общей площади S f фигуры:

Поскольку сечение осевое представляет собой квадрат, то это означает, что радиус r основания в два раза меньше высоты h. Учитывая это, можно переписать равенство выше в виде:

S f = 2*pi*r*(r + 2*r) = 6*pi*r 2

Теперь можно выразить радиус r, имеем:

Поскольку сторона квадратного сечения равна диаметру основания фигуры, то для вычисления его площади S будет справедлива следующая формула:

S = (2*r) 2 = 4*r 2 = 2*S f / (3*pi)

Мы видим, что искомая площадь однозначно определяется площадью поверхности цилиндра. Подставляя данные в равенство, приходим к ответу: S = 21,23 см 2 .

Название науки «геометрия» переводится как "измерение земли". Зародилась стараниями самых первых древних землеустроителей. А было так: во время разливов священного Нила потоки воды иногда смывали границы участков земледельцев, а новые границы могли не совпасть со старыми. Налоги же крестьянами уплачивались в казну фараона пропорционально величине земельного надела. Измерением площадей пашни в новых границах после разлива занимались специальные люди. Именно в результате их деятельности и возникла новая наука, получившая развитие в Древней Греции. Там она и название получила, и приобрела практически современный вид. В дальнейшем термин стал интернациональным названием науки о плоских и объёмных фигурах.

Планиметрия - раздел геометрии, занимающийся изучением плоских фигур. Другим разделом науки является стереометрия, которая рассматривает свойства пространственных (объёмных) фигур. К таким фигурам относится и описываемая в этой статье - цилиндр.

Примеров присутствия предметов цилиндрической формы в повседневной жизни предостаточно. Цилиндрическую (гораздо реже - коническую) форму имеют почти все детали вращения - валы, втулки, шейки, оси и т.д. Цилиндр широко используется и в строительстве: башни, опорные, декоративные колонны. А кроме того посуда, некоторые виды упаковки, трубы всевозможных диаметров. И наконец - знаменитые шляпы, ставшие надолго символом мужской элегантности. Список можно продолжать бесконечно.

Определение цилиндра как геометрической фигуры

Цилиндром (круговым цилиндром) принято называть фигуру, состоящую из двух кругов, которые при желании совмещаются с помощью параллельного переноса. Именно эти круги и являются основаниями цилиндра. А вот линии (прямые отрезки), связывающие соответствующие точки, получили название «образующие».

Важно, что основания цилиндра всегда равны (если это условие не выполняется, то перед нами - усечённый конус, что-либо другое, но только не цилиндр) и находятся в параллельных плоскостях. Отрезки же, соединяющие соответствующие точки на кругах, параллельны и равны.

Совокупность бесконечного множества образующих - не что иное, как боковая поверхность цилиндра - один из элементов данной геометрической фигуры. Другая её важная составляющая - рассмотренные выше круги. Называются они основаниями.

Виды цилиндров

Самый простой и распространённый вид цилиндра - круговой. Его образуют два правильных круга, выступающих в роли оснований. Но вместо них могут быть и другие фигуры.

Основания цилиндров могут образовывать (кроме кругов) эллипсы, другие замкнутые фигуры. Но цилиндр может иметь не обязательно замкнутую форму. Например основанием цилиндра может служить парабола, гипербола, другая открытая функция. Такой цилиндр будет открытым или развернутым.

По углу наклона образующих к основаниям цилиндры могут быть прямыми или наклонными. У прямого цилиндра образующие строго перпендикулярны плоскости основания. Если данный угол отличается от 90°, цилиндр - наклонный.

Что такое поверхность вращения

Прямой круговой цилиндр, без сомнения - самая распространённая поверхность вращения, используемая в технике. Иногда по техническим показаниям применяется коническая, шарообразная, некоторые другие типы поверхностей, но 99% всех вращающихся валов, осей и т.д. выполнены именно в форме цилиндров. Для того чтобы лучше уяснить, что такое поверхность вращения, можно рассмотреть, как же образован сам цилиндр.

Допустим, имеется некая прямая a , расположенная вертикально. ABCD - прямоугольник, одна из сторон которого (отрезок АВ) лежит на прямой a . Если вращать прямоугольник вокруг прямой, как это показано на рисунке, объём, который он займёт, вращаясь, и будет нашим телом вращения - прямым круговым цилиндром с высотой H = AB = DC и радиусом R = AD = BC.

В данном случае, в результате вращения фигуры - прямоугольника - получается цилиндр. Вращая треугольник, можно получить конус, вращая полукруг - шар и т.д.

Площадь поверхности цилиндра

Для того чтобы вычислить площадь поверхности обычного прямого кругового цилиндра, необходимо подсчитать площади оснований и боковой поверхности.

Вначале рассмотрим, как вычисляют площадь боковой поверхности. Это произведение длины окружности на высоту цилиндра. Длина окружности, в свою очередь, равняется удвоенному произведению универсального числа П на радиус окружности.

Площадь круга, как известно, равняется произведению П на квадрат радиуса. Итак, сложив формулы для площади определения боковой поверхности с удвоенным выражением площади основания (их ведь два) и произведя нехитрые алгебраические преобразования, получаем окончательное выражение для определения площади поверхности цилиндра.

Определение объёма фигуры

Объем цилиндра определяется по стандартной схеме: площадь поверхности основания умножается на высоту.

Таким образом, конечная формула выглядит следующим образом: искомое определяется как произведение высоты тела на универсальное число П и на квадрат радиуса основания.

Полученная формула, надо сказать, применима для решения самых неожиданных задач. Точно так же, как объем цилиндра, определяется, например, объём электропроводки. Это бывает необходимо для вычисления массы проводов.

Отличия в формуле только в том, что вместо радиуса одного цилиндра стоит делённый надвое диаметр жилы проводки и в выражении появляется число жил в проводе N . Также вместо высоты используется длина провода. Таким образом рассчитывается объем «цилиндра» не одного, а по числу проводков в оплётке.

Такие расчёты часто требуются на практике. Ведь значительная часть ёмкостей для воды изготовлена в форме трубы. И вычислить объем цилиндра часто бывает нужно даже в домашнем хозяйстве.

Однако, как уже говорилось, форма цилиндра может быть разной. И в некоторых случаях требуется рассчитать, чему равен объем цилиндра наклонного.

Отличие в том, что площадь поверхности основания умножают не на длину образующей, как в случае с прямым цилиндром, а на расстояние между плоскостями - перпендикулярный отрезок, построенный между ними.

Как видно из рисунка, такой отрезок равен произведению длины образующей на синус угла наклона образующей к плоскости.

Как построить развёртку цилиндра

В некоторых случаях требуется выкроить развёртку цилиндра. На приведённом рисунке показаны правила, по которым строится заготовка для изготовления цилиндра с заданными высотой и диаметром.

Следует учитывать, что рисунок приведен без учёта швов.

Отличия скошенного цилиндра

Представим себе некий прямой цилиндр, ограниченный с одной стороны плоскостью, перпендикулярной образующим. А вот плоскость, ограничивающая цилиндр с другой стороны, не перпендикулярна образующим и не параллельна первой плоскости.

На рисунке представлен скошенный цилиндр. Плоскость а под неким углом, отличным от 90° к образующим, пересекает фигуру.

Такая геометрическая форма чаще встречается на практике в виде соединений трубопроводов (колена). Но бывают даже здания, построенные в виде скошенного цилиндра.

Геометрические характеристики скошенного цилиндра

Наклон одной из плоскостей скошенного цилиндра слегка изменяет порядок расчёта как площади поверхности такой фигуры, так и ее объёма.