Пять платоновых тел. Платоновы тела


Правильные многогранники с древних времен привлекали внимание философов, строителей, архитекторов, художников, математиков. Их поражала красота, совершенство, гармония этих фигур.

Правильный многогранник – объёмная выпуклая геометрическая фигура, все грани которой - одинаковые правильные многоугольники и все многогранные углы при вершинах равны между собой. Существует множество правильных многоугольников, но правильных многогранников всего пять. Названия этих многогранников пришли из Древней Греции, и в них указывается число («тетра» - 4, «гекса» - 6, «окта» - 8, «додека» - 12, «икоса» - 20) граней («эдра»).

Эти правильные многогранники получили название платоновых тел по имени древнегреческого философа Платона, который придавал им мистический смысл, но были известны они и до Платона. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр - как самый обтекаемый - воду; куб - самая устойчивая из фигур - землю, а октаэдр – воздух. Додекаэдр отождествлялся со всей Вселенной и почитался главнейшим.

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии по форме напоминает икосаэдр. Кристалл пирита (сернистого колчедана, FeS2) имеет форму додекаэдра.

Тетраэдр – правильная треугольная пирамида, и гексаэдр – куб – фигуры, с которыми мы постоянно встречаем в реальной жизни. Чтобы лучше почувствовать форму других платоновых тел, стоит самому создать их из плотной бумаги или картона. Сделать плоскую развёртку фигур несложно. Создание правильных многогранников чрезвычайно занимательно самим процессом формообразования.

Завершенные и причудливые формы правильных многогранников широко используются в декоративном искусстве. Объёмные фигуры можно сделать более занимательными, если плоские правильные многоугольники представить другими фигурами, вписывающимися в многоугольник. Например: правильный пятиугольник можно заменить звездой. Такая объёмная фигура не будет иметь рёбер. Собрать её можно, связывая концы лучей звёзд. И 10 звёзд собирается плоская развёртка. Объёмной фигура получается после закрепления оставшихся 2 звёзд.

Если ваш ребёнок любит делать поделки своими умелыми руками, предложите ему собрать объёмную фигуру многогранник додекаэдр из плоских пластиковых звёзд. Результат работы обрадует вашего ребёнка: он изготовит своими руками оригинальную декоративную конструкцию, которой можно украсить детскую комнату. Но, самое замечательное – ажурный шар светится в темноте. Пластиковые звёзды изготовлены с добавлением современного безвредного вещества - люминофора.

Еще в далекой древности люди заметили, что некоторые объемные фигуры обладают особыми свойствами. Это так называемые правильные многогранники - все грани у них одинаковые, все углы при вершинах равны. Каждая из этих фигур обладает устойчивостью и может быть вписана в сферу. При всем многообразии различных форм существуют всего лишь 5 видов правильных многогранников (рис. 1).

Тетраэдр - правильный четырехгранник, грани представляют собой равносторонние треугольники (рис. 1а).

Куб - правильный шестигранник, грани представляют собой квадраты (рис. 1б).

Октаэдр - правильный восьмигранник, грани представляют собой равносторонние треугольники (рис. 1в).

Додекаэдр - правильный двенадцатигранник, грани представляют собой правильные пятиугольники (рис. 1г).

Икосаэдр - правильный двадцатигранник, грани представляют собой равносторонние треугольники (рис. 1д).

Древнегреческий философ Платон полагал, что каждый из правильных многогранников соответствует одному из 5 первичных элементов. Согласно Платону, куб соответствует земле, тетраэдр - огню, октаэдр - воздуху, икосаэдр - воде, додекаэдр - эфиру. Кроме этого греческие философы выделяли еще один первоэлемент - пустоту. Ему соответствует геометрическая форма сферы, в которую могут быть вписаны все платоновы тела.

Все шесть первоэлементов являются строительными блоками Вселенной. Некоторые из них встречаются часто - земля, вода, огонь и воздух. Сегодня доподлинно известно, что правильные многогранники, или платоновы тела, составляют основу строения кристаллов, молекул различных химических веществ.

Энергетическая оболочка человека также представляет собой пространственную конфигурацию. Внешняя граница энергетического поля человека - сфера, самая близкая к ней фигура додекаэдр. Затем фигуры энергетического поля сменяют друг друга в определенном порядке, повторяясь в разных циклах. Например, в молекуле ДНК чередуются икосаэдры и додекаэдры.

Обнаружено, что платоновы тела способны оказывать благотворное воздействие на человека. Эти формы обладают свойством видоизменять, организовывать энергию в чакрах человеческого тела. Причем каждая кристаллическая форма благотворно воздействует на ту чакру, первоэлементу которой она соответствует.

Дисбаланс энергий в Муладхаре исчезает при использовании куба (элемент земля), Свадхистхана реагирует на воздействие икосаэдра (элемент вода), на Манипуру благотворно влияет тетраэдр (элемент огонь), функции Анахаты восстанавливаются с помощью октаэдра (элемент воздух). Эта же фигура способствует нормальной работе Вишудхи. Обе верхние чакры - Адж-на и Сахасрара - поддаются коррекции додекаэдром.

Для того чтобы использовать свойства платоновых тел, необходимо изготовить из медной проволоки эти фигуры (размер от 10 до 30 см в поперечнике). Можно нарисовать их на бумаге или склеить из картона, но каркасы из медной проволоки действуют эффективнее. Модели платоновых тел нужно прикрепить на проекции соответствующих чакр и полежать немного в глубоком расслаблении.

ГЕОМЕТРИЯ ПЛАТОНОВЫХ ТЕЛ

изм. от 24.06.2013 г - (дополнено)

К основным пяти Платоновым телам относятся: октаэдр, звездный тетраэдр, куб, додекаэдр, икосаэдр.

Каждый из геометрических паттернов, будь то атомное ядро, микрокластеры, глобальная решетка или расстояния между планетами , звездами, галактиками, является одним из пяти основных “Платоновых Твердых Тел”.

Почему подобные паттерны так часто возникают в природе? Один из первых намеков: математики знали, что эти формы обладают большей “симметрией”, чем любая трехмерная геометрия, которую мы можем создавать.

Из книги Роберта Лолора "Сакральная геометрия" мы можем узнать, что индусы сводили геометрии Платоновых Тел в структуру октавы, которую мы видим для звука и света (ноты и цвета). Греческий математик и философ Пифагор, посредством процесса последовательного деления частоты на пять, впервые разработал восемь “чистых” тонов октавы, известных как диатоническая шкала. Он взял однострунный “монохорд”, и измерил точные длины волны при проигрывании разных нот. Пифагор показал, что частоту (или скорость вибрации) каждой ноты можно представить в виде отношения между двумя частями струны, или двумя числами, отсюда и термин “диатонические отношения”.

Нижеприведенная таблица перечисляет геометрию в определенном порядке, увязав ее с числом спирали фи (). Это дает полную и законченную картину, как работают вместе различные вибрации. Она основана на присвоении ребрам куба длины, равной “1 ”. Затем мы сравниваем с этой величиной ребра всех других форм, больше они или меньше. Мы знаем, что в Платоновых Телах каждая грань имеет одинаковую форму, каждый угол идентичен, каждый узел находится на одинаковом расстоянии от всех других узлов, и каждая линия имеет одинаковую длину.

1 Сфера (нет граней) 2 Центральный икосаэдр 1/фи 2 3 Октаэдр 1/√2 4 Звездный тетраэдр √2 5 Куб 1 6 Додекаэдр 1/фи 7 Икосаэдр фи 8 Сфера (нет граней)

Это поможет понять, как при помощи вибраций спирали фи платоновы тела постепенно перетекают одно в другое.

МНОГОМЕРНОСТЬ ВСЕЛЕННОЙ

Cама концепция связи Платоновых геометрий с более высокими планами возникает потому, что ученые знают: там должна быть геометрия; они обнаружили это в уравнениях. Чтобы обеспечить “большее пространство” для появления невидимых дополнительных осей в “скрытых” 90° поворотах, требуется наличие Платоновых геометрий . В способе анализа данных, каждая грань геометрической формы представляет собой разную ось или план, в котором она могла бы вращаться. Когда мы начинаем рассматривать работы Фуллера и Дженни, мы видим, что идея других планов, существующих в “скрытых” 90° поворотах, - просто некорректное объяснение, основанное на отсутствии знания о “сакральных” связях между геометрией и вибрацией.

Весьма похоже на то, что традиционные ученые так и не поймут, что древние культуры могли иметь “упущенную связь”, существенно упрощающую и объединяющую все современные теории физики пространства. Хотя может показаться невероятным, что у “примитивной” культуры имелся доступ к такому виду информации, доказательство налицо. Почитайте классическую книгу Прасада , ибо сейчас можно видеть, что ведической космологии присуще научное мастерство.

Думаете что вы видите? - это взрывающаяся звезда с выбрасывающейся из нее пылью… Но здесь явно имеется и некий вид энергетического поля, структурирующего пыль по мере ее расширения в очень точный геометрический паттерн:

Проблема в том, что типичные магнитные поля в традиционных физических моделях просто не позволяют такую геометрическую точность. Ученые действительно не знают, как понимать такие вещи!

Нижеприведенное изображение – это НОВАЯ туманность, являющаяся совершенным “квадратом”. Однако это все еще двумерное мышление. Что такое квадрат в трех измерениях?
Конечно, куб!

Наблюдаемая в инфракрасном диапазоне туманность напоминает гигантскую сияющую коробку в небе с ярким белым внутренним ядром. Умирающая звезда MWC 922 находится в центре системы и извергает в пространство внутренности из противоположных полюсов. После того, как MWC 922 испустит в пространство большую часть материала, она будет сжиматься в плотное звездное тело, известное как белый карлик, спрятанный в облаках своих остатков.

Хотя отдаленно возможно, что взрыв звезды распространяется лишь в одном направлении, создавая больше пирамидальную форму, то, что вы видите, - это совершенный куб, находящийся в пространстве. Поскольку все четыре стороны куба имеют одинаковую длину и совершенные 90° углы друг с другом, и вновь, куб обладает структурированными “ступеньками”, которые мы видели на предыдущем изображении, ученые полностью сбиты с толку. Куб обладает еще БОЛЬШЕЙ СИММЕТРИЕЙ, чем “прямоугольная” туманность!

Такие паттерны появляются не только в безбрежности пространства. Они возникают и на самом крошечном уровне атомов и молекул, например, в кубической структуре обычной поваренной соли или хлористого натрия. Ан Панг Цая (Япония) сфотографировал квазикристаллы сплава алюминий-медь-железо в форме додекаэдра и сплава алюминий-никель-кобальт в форме декагональной (десятисторонней) призмы (см.фото). Проблема в том, что вы не можете создать такие кристаллы, пользуясь единичными связанными вместе атомами .

Другой пример – конденсат Бозе-Эйнштейна. Кратко говоря, конденсат Бозе-Эйнштейна – это большая группа атомов, ведущая себя как отдельная “частица”, в которой каждый составляющий ее атом одновременно занимает все пространство и все время во всей структуре . Измерено, что все атомы вибрируют на одной и той же частоте, движутся с одинаковой скоростью и расположены в одной и той же области пространства. Парадоксально, но разные части системы действуют как единое целое, теряя все признаки индивидуальности . Именно такое свойство требуется для “сверхпроводника”. Обычно конденсат Бозе-Эйнштейна может формироваться при крайне низких температурах. Однако именно такие процессы мы наблюдаем в микрокластерах и квазикристаллах, лишенных индивидуальной атомной идентичности.

Еще один подобный процесс – действие света лазера, известного как “когерентный” свет. В пространстве и времени весь лазерный луч ведет себя как единичный “фотон” , то есть, в лазерном луче невозможно выделение индивидуальных фотонов.

Более того, в конце 1960-х годов английский физик Герберт Фрёлих предположил, что живые системы часто ведут себя как конденсаты Бозе-Эйнштейна , только в крупном масштабе.

Фотографии туманности предлагают ошеломляющее видимое доказательство того, что геометрия играет бо льшую роль в силах Вселенной, чем может поверить большинство людей. Наши ученые могут лишь сражаться за понимание этого феномена в рамках существующих традиционных моделей.


Правильным многоугольником называется ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Ясно, что таких фигур бесконечно много. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. На первый взгляд может показаться, что многогранников также бесконечно много, но на самом деле их, как выразился однажды Льюис Кэррол, "вызывающе мало". Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр (рис. 90).

Первое систематическое исследование пяти правильных тел было, по-видимому, предпринято еще в глубокой древности пифагорейцами. Согласно их воззрениям, тетраэдр, куб, октаэдр и икосаэдр лежат в основе традиционных четырех элементов: огня, земли, воздуха и воды. Додекаэр пифагорейцы по непонятным соображениям отождествляли со всей вселенной. Поскольку взгляды пифагорейцев подробно изложены в диалоге Платона "Тимей", правильные многогранники принято называть Платоновыми телами. Красота и удивительные математические свойства пяти правильных тел неоднократно привлекали к себе внимание ученых и после Платона. Анализ Платоновых тел является кульминационным пунктом заключительной книги "Элементов" Евклида. Иоганн Кеплер в юности считал, что расстояния между орбитами шести известных в его время планет можно получить, вписывая в определенном порядке пять правильных тел в орбиту Сатурна. В наши дни математики не приписывают Платоновым телам мистических свойств, а изучают свойства симметрии правильных многогранников методами теории групп. Платоновы тела играют заметную роль и в занимательной математике. Рассмотрим, хотя бы бегло, несколько связанных с ними задач.

Существуют четыре различных способа, как разрезать запечатанный конверт и сложить из него тетраэдр. Вот простейший из них. На обеих сторонах конверта у одного и того же края) начертим равносторонний треугольник (рис. 91) и разрежем конверт по пунктирной прямой. Правая его половина нам не нужна, а левую мы перегнем по сторонам нарисованного треугольника (на обеих сторонах конверта) и совместим точки А и В. Тетраэдр готов!

Головоломка, изображенная на рис. 92, также связана с тетраэдром. Развертку, изображенную на рис. 92 слева, можно вырезать из пластика или плотной бумаги. Сделайте две такие развертки. (На чертеже все пунктирные линии, кроме одной, которая заметно длиннее других, имеют одинаковую длину.) Сложим развертку, перегнув ее по указанным на чертеже линиям. Грани, пересекающиеся между собой вдоль ребер, показанных на чертеже сплошной линией, склеим липкой лентой. В результате у нас получится геометрическое тело, показанное на рис. 92 справа. Из двух таких тел нужно попытаться сложить тетраэдр. Один мой знакомый математик любит приставать к своим друзьям с довольно плоской шуткой. Он собирает из двух разверток две модельки, составляет из них тетраэдр и ставит его на стол, а третью развертку незаметно зажимает в руке. Затем ударом руки он расплющивает тетраэдр и в то же время кладет на стол третью развертку. Вполне очевидно, что его друзьям никак не удается собрать тетраэдр из трех блоков.

Из различных занимательных задач, связанных с кубом, я упомяну лишь головоломку с вычислением полного сопротивления электрической цепи, образованной ребрами проволочного куба, и тот удивительный факт, что куб может проходить через отверстие в меньшем кубе. В самом деле, стоит вам взять куб так, чтобы одна из его вершин была направлена прямо на вас, а ребра образовали правильный шестиугольник, как вы увидите, что в сечении, перпендикулярном лучу зрения, есть достаточно места для квадратного отверстия, которое чуть больше грани самого куба. В электрической головоломке речь идет о цепи, изображенной на рис. 93. Сопротивление каждого ребра куба равно одному ому. Чему равно сопротивление всей цепи, если ток течет от А к В? Инженеры-электрики извели немало бумаги, пытаясь решить эту задачу, хотя при надлежащем подходе найти ее решение совсем несложно.

Все пять Платоновых тел использовались в качестве игральных костей. После куба наибольшую популярность приобрели игральные кости в форме октаэдра. Как сделать такую кость, показано на рис. 94. Начертив и вырезав полоску и перенумеровав грани, ее перегибают вдоль ребер, а "открытые" ребра склеивают прозрачной лентой. Получается миниатюрный октаэдр. Сумма очков на противоположных гранях октаэдрической игральной кости, как и у обычной кубической, равна семи. При желании с помощью новой кости вы можете показать забавный фокус с отгадыванием задуманного числа. Попросите кого-нибудь загадать любое число от 0 до 7. Положите октаэдр на стол так, чтобы загадавший мог видеть только грани с цифрами 1, 3, 5 и 7, и спросите, не видит ли он задуманного им числа. Если он отвечает утвердительно, вы запоминаете про себя число 1. Затем вы переворачиваете октаэдр так, чтобы загадавшему были видны грани с цифрами 2, 3, 6 и 7, и снова задаете тот же вопрос. На этот раз утвердительный ответ означает, что вы должны запомнить число 2. В третий (и последний раз) вы повторяете свой вопрос, повернув октаэдр так, чтобы загадавший мог видеть грани с цифрами 4, 5, 6 и 7. Утвердительный ответ в этом случае оценивается числом 4. Сложив оценки всех трех ответов, вы получите задуманное вашим приятелем число. Этот фокус без труда объяснит всякий, кто знаком с двоичной системой счисления. Чтобы легче было отыскать нужные положения октаэдра, как-нибудь пометьте три вершины, которые должны быть обращены к вам, когда вы стоите лицом к зрителю (задумавшему число).

Существуют и другие не менее интересные способы нумерации граней октаэдрической игральной кости. Например, числа от 1 до 8 можно расположить так, что сумма чисел на четырех гранях, сходящихся в общей вершине, будет постоянна. Эта сумма всегда равна 18, однако существует три различных способа нумерации граней (мы не считаем различными кости, которые переходят друг в друга при поворотах и отражениях), удовлетворяющих заданному выше условию.

Изящный способ построения додекаэдра предложен книге Гуго Штейнгауза "Математический калейдоскоп" * . Из плотного картона нужно вырезать две фигуры, показанные на рис. 95. Стороны пятиугольников должны быть около 2,5-3 см. Лезвием ножа осторожно надрежем картон вдоль сторон внутреннего пятиугольника, с тем чтобы развертка легко сгибалась в одну сторону. Подготовив таким же образом вторую развертку, наложим ее на первую так, чтобы выступы второй развертки пришлись против вырезов первой. Придерживая обе развертки рукой, скрепим их резинкой, пропуская ее попеременно то над выступающим концом одной развертки, то под выступающим концом другой. Ослабив давление руки на развертки, вы увидите, как на ваших глазах, словно по волшебству, возникнет додекаэдр.

* (Эта игрушка была приложена лишь к первому изданию книги Г. Штейнгауза . В дальнейших изданиях, в том числе и в русском (1949), ее нет.- Прим. ред. )

Раскрасим модель додекаэдра таким образом, чтобы каждая грань была выкрашена только одним цветом. Чему равно наименьшее число красок, которыми можно раскрасить додекаэдр, если требуется, чтобы любые две смежные грани были разного цвета? Ответ: наименьшее число красок равно четырем. Нетрудно убедиться, что существуют четыре различных способа наиболее экономной раскраски додекаэдра (при этом два раскрашенных додекаэдра будут зеркальными отражениями двух других). Для раскраски тетраэдра также требуется четыре краски, но существует лишь два варианта раскраски, при этом один тетраэдр переходит в другой при зеркальном отражении. Куб можно раскрасить тремя, а октаэдр - двумя красками. Для каждого из этих тел существует лишь один способ наиболее экономной раскраски. Раскрасить икосаэдр можно всего лишь тремя красками, но сделать это можно не менее чем 144 способами. Лишь в 6 из них раскрашенные икосаэдры совпадают со своими зеркальными отражениями.

Рассмотрим еще одну задачу. Предположим, что муха, разгуливая по 12 ребрам икосаэдра, ползает по каждому из них по крайней мере один раз. Каков наименьший путь, который должна проделать муха, чтобы побывать на всех ребрах иксаэдра? Возвращаться в исходную точку не обязательно; некоторые ребра мухе придется пройти дважды (из всех пяти Платоновых тел только октаэдр обладает тем свойством, что его ребра можно обойти, побывав на каждом из них лишь по одному разу). Решению задачи может помочь проекция икосаэдра на плоскость (рис. 96). Только следует иметь в виду, что длина всех ребер одинакова.

Поскольку и поныне встречаются чудаки, все еще пытающиеся найти решение задач о трисекции угла и квадратуре круга, хотя давно уже доказано, что ни то, ни другое невозможно, кажется странным, что никто не предпринимает попыток найти новые правильные многогранники сверх уже известных пяти Платоновых тел. Одна из причин такого парадоксального положения заключается в том, что понять, почему не существует более пяти правильных тел, крайне несложно. Следующее простое доказательство существования не более пяти правильных тел восходит к Евклиду.

Многогранный угол правильного тела должен быть образован по крайней мере тремя гранями. Рассмотрим простейшую из граней: равносторонний треугольник. Многогранный угол можно построить, приложив друг к другу три, четыре или пять таких треугольников. При числе треугольников свыше пяти сумма плоских углов, примыкающих к вершине многогранника, составляет 360° или даже больше, и, следовательно, такие треугольники не могут образовывать многогранный угол. Итак, существует лишь три способа построения правильного выпуклого многогранника с треугольными гранями. Пытаясь построить многогранный угол из квадратных граней, мы убедимся, что это можно сделать лишь из трех граней. Аналогичными рассуждениями нетрудно показать, что в одной вершине правильного многоугольника могут сходиться три и только три пятиугольные грани. Грани не могут иметь форму многоугольников с числом сторон больше 5, так как, приложив, например, друг к другу три шестиугольника, мы получим в сумме угол в 360 0 .

Приведенное только что рассуждение не доказывает возможности построения пяти правильных тел, оно лишь объясняет, почему таких тел не может быть больше пяти. Более тонкие рассуждения заставляют прийти к выводу, что в четырехмерном пространстве имеется лишь шесть правильных политопов (так называются аналоги трехмерных правильных тел). Любопытно отметить, что?в пространстве любого числа измерений, большем 4, существует лишь три правильных политопа: аналоги тетраэдра, куба и октаэдра.

Невольно напрашивается вывод. Математика в значительной мере ограничивает многообразие структур, которые могут существовать в природе. Обитатели далее самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. Некоторые теологи честно признали, что даже сам господь бог не смог бы построить шестое платоново тело в трехмерном пространстве. Точно так же геометрия ставит непреодолимые границы разнообразию структуры кристаллов. Может быть, наступит день, когда физики откроют математические ограничения, которым должно удовлетворять число фундаментальных частиц и основных законов природы. Разумеется, никто сейчас не имеет ни малейшего представления о том, каким образом математика делает невозможной ту или иную структуру, называемую "живой" (если только математика вообще причастна к этому кругу явлений). Вполне допустимо, например, что наличие углеродных соединений является непременным условием возникновения жизни. Как бы то ни было, человечество заранее готовит себя к мысли о возможности существования жизни на других планетах. Платоновы же тела служат напоминанием о том, что на Марсе и Венере может не оказаться многого из того, о чем думают наши мудрецы.

Ответы

Полное сопротивление цепи, образованной ребрами куба (сопротивление каждого ребра 1 ом ) составляет 5 / 6 ома . Соединим накоротко три ближайшие к А вершины куба и проделаем то же самое с тремя вершинами, ближайшими к В. Мы получим две треугольные цепи. Ни в одной из них тока не будет, так как они соединяют эквипотенциальные точки. Нетрудно заметить, что между вершиной А и ближайшей к ней треугольной цепью параллельно включены три сопротивления по 1 ому (общее сопротивление 1 / 3 ома ), между двумя треугольными цепями в параллель соединено 6 сопротивлений по 1 ому (общее сопротивление этого участка цепи 1 / 6 ома ) и между второй треугольной цепью и точкой В имеется 3 параллельно соединенных проводника по 1 ому (то есть всего 1 / 3 ома ). Таким образом, полное сопротивление цепи между точками А и В равно 5 / 6 ома .

И условие задачи, и метод решения нетрудно обобщить на случай цепи, образованной ребрами четырех остальных Платоновых тел.

Перечислим три способа нумерации граней октаэдра, удовлетворяющих условию: сумма чисел на гранях, примыкающих к любой вершине, должна быть равна 18. Числа, встречаемые при обходе (по часовой стрелке или против нее) одной вершины: 6, 7, 2, 3; при обходе противоположной вершины: 1, 4, 5, 8 (6 рядом с 1, 7 рядом с 4 и т. д.); при обходе остальных вершин: 1, 7, 2, 8 и 4, 6, 3, 5; 4, 7, 2, 5 и 6, 1, 8, 3. Простое доказательство того, что октаэдр - единственное из пяти правильных тел, чьи грани можно пронумеровать так, чтобы сумма чисел на гранях, примыкающих к любой вершине, была постоянна, можно найти в книге У. У. Роуза Болла * .

* (W. W. Rouse Ball, Mathematical recreations and essays, London, MacMillan, New York, St. Martin"s Press, 1956, p. 418. )

Кратчайшее расстояние, которое должна преодолеть муха для того, чтобы побывать на всех ребрах икосаэдра, равно 35 единицам (единица - длина ребра икосаэдра). Стерев пять ребер икосаэдра (например, ребра FM, BE, JA, ID и НС на рис. 96), мы получим граф, на котором нечетное число ребер сходится только в двух точках G и К. Поэтому муха может обойти весь этот граф (начав свой путь к точке G и закончив его в точке К), пройдя по каждому ребру лишь один раз. Пройденное мухой расстояние равно 25 единицам. Это самый длинный путь, все участки которого проходятся по одному разу. Если муха на своем пути встречает стертые ребра, мы просто добавляем их к пути из G в К, считая, что муха проходит их дважды (в противоположных направлениях). Пять стертых ребер, проходимых дважды, составляют добавку в 10 единиц к уже пройденному пути. В сумме это и составляет 35 единиц.

Суворов Михаил, ученик 10 класс

Данная работа посвящена описанию взглядов древнегреческого философа Платона на строение Вселенной, через использование правильных многоугольников, таких как тетраэдр, октаэдр, гексаэдр (куб), додекаэдр и икосаэдр. В современной математике эти тела получили название Платоновых.

Также в работе находит отражение вопрос о том, как используются в современных естественнонаучных теориях Платоновы тела.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Исследовательская работа по геометрии. Тема: «Платоновы тела» Подготовили презентацию: суворовец Суворов Михаил Преподаватель математики Харькова Марина Валерьевна

Платон (427–347 до н.э.) – великий древнегреческий философ, ученик Сократа, основатель Академии. Главная заслуга Платона в истории математики заключается в том, что он признавал, что знание математики необходимо каждому образованному человеку. Вклад Платона в математику незначителен. Однако его идеи относительно структуры и методов математики чрезвычайно ценны. Он ввел традицию давать безукоризненные определения и определять, какие положения в математических соображениях можно принимать без доказательства. Платон первым обосновал метод доказательства от противного, который теперь широко применяется в геометрии. В школе Платона особое внимание уделялось решению задач на построение. Благодарю этому в ней сформировалось понятие о геометрическом месте точек, а также была разработана методика решения задач на построение. Выпуклые правильные многогранники - тетраэдр, октаэдр, гексаэдр (куб), додекаэдр и икосаэдр - принято называть Платоновыми телами.

Определение: ПЛАТОНОВЫ ТЕЛА- от греч. Platon 427-347 гг. до н.э. – совокупность всех правильных многогранников [ т. е. объёмных тел, ограниченных равными правильными многоугольниками ] трёхмерного Мира, впервые описанных Платоном.

Правильным многоугольником называется: ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр.

История создания Платоновых тел. Четыре многогранника олицетворяли в ней четыре сущности или «стихии». Тетраэдр символизировал Огонь, так как его вершина устремлена вверх; Икосаэдр - Воду, так как он самый «обтекаемый» многогранник; Куб - Землю, как самый «устойчивый» многогранник; Октаэдр - Воздух, как самый «воздушный» многогранник. Пятый многогранник, Додекаэдр, воплощал в себе «все сущее»

Тетраэдр Древние греки дали многограннику имя по числу граней. «Тетра» означает четыре, « хедра » - означает грань (тетраэдр – четырехгранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Тетраэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 4; Число рёбер примыкающих к вершине – 3; Общее число вершин – 4; Общее число рёбер – 6 ; Правильный тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180°. Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Гексаэдр (более привычное название - куб) Древние греки дали многограннику имя по числу граней. « Гексо » означает шесть, « хедра » - означает грань (Гексаэдр – шестигранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Гексаэдр имеет следующие характеристики: Число сторон у грани – 4; Общее число граней – 6; Число рёбер примыкающих к вершине – 3; Общее число вершин – 8; Общее число рёбер – 12 ; Гексаэдр составлен из шести квадратов. Каждая вершина куба является вершиной трех квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270°. Гексаэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Икосаэдр Древние греки дали многограннику имя по числу граней. « Икоси » означает двадцать, « хедра » - означает грань (Икосаэдр – двадцатигранник). Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Икосаэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 20; Число рёбер примыкающих к вершине – 5; Общее число вершин – 12; Общее число рёбер – 30 ; Правильный икосаэдр составлен из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников. Следовательно, сумма плоских углов при каждой вершине равна 270°. Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Октаэдр Древние греки дали многограннику имя по числу граней. «Окто» означает восемь, « хедра » - означает грань (октаэдр – восьмигранник).Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Октаэдр имеет следующие характеристики: Тип грани – правильный треугольник; Число сторон у грани – 3; Общее число граней – 8; Число рёбер примыкающих к вершине – 4; Общее число вершин – 6; Общее число рёбер – 12 ; Правильный октаэдр составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине равна 240°. Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Додекаэдр Древние греки дали многограннику имя по числу граней. « Додека » означает двенадцать, « хедра » - означает грань (додекаэдр – двенадцатигранник). Многогранник относится к правильным многогранникам и является одним из пяти платоновых тел. Додекаэдр имеет следующие характеристики: Тип грани – правильный пятиугольник; Число сторон у грани – 5; Общее число граней – 12; Число рёбер примыкающих к вершине – 3; Общее число вершин – 20; Общее число рёбер – 30 ; Правильный додекаэдр составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324°. Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Применение платоновых тел в науке Иоганн Кеплер (1571-1630 г.) – немецкий астроном. Открыл законы движения планет. В 1596 Кеплер предположил правило, по которому вокруг сферы Земли описывается додекаэдр, а в нее вписывается икосаэдр. Р асстояние между орбитами планет можно получить на основании Платоновых тел, вложенных друг в друга. Расстояния вычисленные при помощи этой модели, были достаточно близки к истинным.

В. Макаров и В. Морозов считают что ядро Земли имеет форму и свойства растущего кристалла оказывающего развитие всех природных взаимодействий и процессов идущих на планете. Силовое поле этого растущего кристалла обуславливает икосаэдро - додекаэдрическую структуру Земли (ИДСЗ). Эти многогранники вписаны друг в друга. Все природные аномалии, а также очаги развития цивилизаций соответствуют вершинам и рёбрам этих фигур.

Примеры: Некоторые из правильных многогранников встречаются в природе в виде кристаллических вирусов. Вирус полиомиелита имеет форму додекаэдра. Он может жить и размножаться только в клетках человека или примата. На микроскопическом уровне додекаэдр и икосаэдр является относительными параметрами ДНК, по которым построена вся жизнь. Можно увидеть, что молекула ДНК представляет собой вращающийся в куб.

Применение в кристаллографии Тела Платона нашли широкое применение в кристаллографии, так как многие кристаллы имеют форму правильных многогранников. Например, куб - монокристалл поваренной соли (NaCl), октаэдр - монокристалл алюмокалиевых квасцов, одна из форм кристаллов алмаза – октаэдр.

http:// www.trinitas.ru/rus/doc/0232/004a/02320031.htm http:// www.mnogogranniki.ru/stati/129-svojstva-platonovyh-tel.html stepanov.lk.net http://www.goldenmuseum.com/0213Solids_rus.html