Solve the expression online with a detailed solution. Simplifying Expressions


Engineering calculator online

We are happy to present everyone with a free engineering calculator. With its help, any student can quickly and, most importantly, easily perform various types of mathematical calculations online.

The calculator is taken from the site - web 2.0 scientific calculator

A simple and easy-to-use engineering calculator with an unobtrusive and intuitive interface will truly be useful to a wide range of Internet users. Now, whenever you need a calculator, go to our website and use the free engineering calculator.

An engineering calculator can perform both simple arithmetic operations and quite complex mathematical calculations.

Web20calc is an engineering calculator that has a huge number of functions, for example, how to calculate all elementary functions. The calculator also supports trigonometric functions, matrices, logarithms, and even graphing.

Undoubtedly, Web20calc will be of interest to that group of people who are looking for simple solutions types in search engines the query: mathematical online calculator. A free web application will help you instantly calculate the result of some mathematical expression, for example, subtract, add, divide, extract the root, raise to a power, etc.

In the expression, you can use the operations of exponentiation, addition, subtraction, multiplication, division, percentage, and the PI constant. For complex calculations, parentheses should be included.

Features of the engineering calculator:

1. basic arithmetic operations;
2. working with numbers in a standard form;
3. calculation of trigonometric roots, functions, logarithms, exponentiation;
4. statistical calculations: addition, arithmetic mean or standard deviation;
5. use of memory cells and custom functions of 2 variables;
6. work with angles in radian and degree measures.

The engineering calculator allows the use of a variety of mathematical functions:

Extracting roots (square, cubic, and nth root);
ex (e to the x power), exponential;
trigonometric functions: sine - sin, cosine - cos, tangent - tan;
inverse trigonometric functions: arcsine - sin-1, arccosine - cos-1, arctangent - tan-1;
hyperbolic functions: sine - sinh, cosine - cosh, tangent - tanh;
logarithms: binary logarithm base two - log2x, base ten logarithm - log, natural logarithm– ln.

This engineering calculator also includes a quantity calculator with the ability to convert physical quantities for various measurement systems - computer units, distance, weight, time, etc. Using this function, you can instantly convert miles to kilometers, pounds to kilograms, seconds to hours, etc.

To make mathematical calculations, first enter a sequence of mathematical expressions in the appropriate field, then click on the equal sign and see the result. You can enter values ​​directly from the keyboard (for this, the calculator area must be active, therefore, it would be useful to place the cursor in the input field). Among other things, data can be entered using the buttons of the calculator itself.

To build graphs, you should write the function in the input field as indicated in the field with examples or use the toolbar specially designed for this (to go to it, click on the button with the graph icon). To convert values, click Unit; to work with matrices, click Matrix.

Using any language, you can express the same information in different words and phrases. Mathematical language is no exception. But the same expression can be equivalently written in different ways. And in some situations, one of the entries is simpler. We'll talk about simplifying expressions in this lesson.

People communicate on different languages. For us, an important comparison is the pair “Russian language - mathematical language”. The same information can be communicated in different languages. But, besides this, it can be pronounced in different ways in one language.

For example: “Petya is friends with Vasya”, “Vasya is friends with Petya”, “Petya and Vasya are friends”. Said differently, but the same thing. From any of these phrases we would understand what we are talking about.

Let's look at this phrase: “The boy Petya and the boy Vasya are friends.” We understand what we are talking about. However, we don't like the sound of this phrase. Can't we simplify it, say the same thing, but simpler? “Boy and boy” - you can say once: “Boys Petya and Vasya are friends.”

“Boys”... Isn’t it clear from their names that they are not girls? We remove the “boys”: “Petya and Vasya are friends.” And the word “friends” can be replaced with “friends”: “Petya and Vasya are friends.” As a result, the first, long, ugly phrase was replaced with an equivalent statement that is easier to say and easier to understand. We have simplified this phrase. To simplify means to say it more simply, but not to lose or distort the meaning.

In mathematical language, roughly the same thing happens. One and the same thing can be said, written differently. What does it mean to simplify an expression? This means that for the original expression there are many equivalent expressions, that is, those that mean the same thing. And from all this variety we must choose the simplest, in our opinion, or the most suitable for our further purposes.

For example, consider the numeric expression . It will be equivalent to .

It will also be equivalent to the first two: .

It turns out that we have simplified our expressions and found the shortest equivalent expression.

For numeric expressions, you always need to do everything and get the equivalent expression as a single number.

Let's look at an example of a literal expression . Obviously, it will be simpler.

When simplifying literal expressions, it is necessary to perform all possible actions.

Is it always necessary to simplify an expression? No, sometimes it will be more convenient for us to have an equivalent but longer entry.

Example: you need to subtract a number from a number.

It is possible to calculate, but if the first number were represented by its equivalent notation: , then the calculations would be instantaneous: .

That is, a simplified expression is not always beneficial for us for further calculations.

Nevertheless, very often we are faced with a task that just sounds like “simplify the expression.”

Simplify the expression: .

Solution

1) Perform the actions in the first and second brackets: .

2) Let's calculate the products: .

Obviously, the last expression has a simpler form than the initial one. We've simplified it.

In order to simplify the expression, it must be replaced with an equivalent (equal).

To determine the equivalent expression you need:

1) perform all possible actions,

2) use the properties of addition, subtraction, multiplication and division to simplify calculations.

Properties of addition and subtraction:

1. Commutative property of addition: rearranging the terms does not change the sum.

2. Combinative property of addition: in order to add a third number to the sum of two numbers, you can add the sum of the second and third numbers to the first number.

3. The property of subtracting a sum from a number: to subtract a sum from a number, you can subtract each term separately.

Properties of multiplication and division

1. Commutative property of multiplication: rearranging the factors does not change the product.

2. Combinative property: to multiply a number by the product of two numbers, you can first multiply it by the first factor, and then multiply the resulting product by the second factor.

3. Distributive property of multiplication: in order to multiply a number by a sum, you need to multiply it by each term separately.

Let's see how we actually do mental calculations.

Calculate:

Solution

1) Let's imagine how

2) Let's imagine the first factor as a sum of bit terms and perform the multiplication:

3) you can imagine how and perform multiplication:

4) Replace the first factor with an equivalent sum:

The distributive law can also be used in reverse side: .

Follow these steps:

1) 2)

Solution

1) For convenience, you can use the distributive law, only use it in the opposite direction - take the common factor out of brackets.

2) Let’s take the common factor out of brackets

It is necessary to buy linoleum for the kitchen and hallway. Kitchen area - , hallway - . There are three types of linoleums: for, and rubles for. How much will each cost? three types linoleum? (Fig. 1)

Rice. 1. Illustration for the problem statement

Solution

Method 1. You can separately find out how much money it will take to buy linoleum for the kitchen, and then put it in the hallway and add up the resulting products.

An algebraic expression in which, along with the operations of addition, subtraction and multiplication, also uses division into letter expressions, is called a fractional algebraic expression. These are, for example, the expressions

We call an algebraic fraction an algebraic expression that has the form of a quotient of the division of two integers algebraic expressions(for example, monomials or polynomials). These are, for example, the expressions

The third of the expressions).

Identical transformations of fractional algebraic expressions are for the most part intended to represent them in the form algebraic fraction. To find the common denominator, factorization of the denominators of fractions is used - terms in order to find their least common multiple. When reducing algebraic fractions, the strict identity of expressions may be violated: it is necessary to exclude values ​​of quantities at which the factor by which the reduction is made becomes zero.

Let us give examples of identical transformations of fractional algebraic expressions.

Example 1: Simplify an expression

All terms can be reduced to a common denominator (it is convenient to change the sign in the denominator of the last term and the sign in front of it):

Our expression is equal to one for all values ​​except these values; it is undefined and reducing the fraction is illegal).

Example 2. Represent the expression as an algebraic fraction

Solution. The expression can be taken as a common denominator. We find sequentially:

Exercises

1. Find the values ​​of algebraic expressions for the specified parameter values:

2. Factorize.

Among the various expressions that are considered in algebra, sums of monomials occupy an important place. Here are examples of such expressions:
\(5a^4 - 2a^3 + 0.3a^2 - 4.6a + 8\)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2\)

The sum of monomials is called a polynomial. The terms in a polynomial are called terms of the polynomial. Monomials are also classified as polynomials, considering a monomial to be a polynomial consisting of one member.

For example, a polynomial
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0.25b \cdot (-12)b + 16 \)
can be simplified.

Let us represent all terms in the form of monomials of the standard form:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0.25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16\)

Let us present similar terms in the resulting polynomial:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
The result is a polynomial, all terms of which are monomials of the standard form, and among them there are no similar ones. Such polynomials are called polynomials of standard form.

Behind degree of polynomial of a standard form take the highest of the powers of its members. Thus, the binomial \(12a^2b - 7b\) has the third degree, and the trinomial \(2b^2 -7b + 6\) has the second.

Typically, the terms of standard form polynomials containing one variable are arranged in descending order of exponents. For example:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1\)

The sum of several polynomials can be transformed (simplified) into a polynomial of standard form.

Sometimes the terms of a polynomial need to be divided into groups, enclosing each group in parentheses. Since enclosing parentheses is the inverse transformation of opening parentheses, it is easy to formulate rules for opening brackets:

If a “+” sign is placed before the brackets, then the terms enclosed in brackets are written with the same signs.

If a “-” sign is placed before the brackets, then the terms enclosed in the brackets are written with opposite signs.

Transformation (simplification) of the product of a monomial and a polynomial

Using the distributive property of multiplication, you can transform (simplify) the product of a monomial and a polynomial into a polynomial. For example:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

The product of a monomial and a polynomial is identically equal to the sum of the products of this monomial and each of the terms of the polynomial.

This result is usually formulated as a rule.

To multiply a monomial by a polynomial, you must multiply that monomial by each of the terms of the polynomial.

We have already used this rule several times to multiply by a sum.

Product of polynomials. Transformation (simplification) of the product of two polynomials

In general, the product of two polynomials is identically equal to the sum of the product of each term of one polynomial and each term of the other.

Usually the following rule is used.

To multiply a polynomial by a polynomial, you need to multiply each term of one polynomial by each term of the other and add the resulting products.

Abbreviated multiplication formulas. Sum squares, differences and difference of squares

With some expressions in algebraic transformations have to deal with more often than others. Perhaps the most common expressions are \((a + b)^2, \; (a - b)^2 \) and \(a^2 - b^2 \), i.e. the square of the sum, the square of the difference and difference of squares. You noticed that the names of these expressions seem to be incomplete, for example, \((a + b)^2 \) is, of course, not just the square of the sum, but the square of the sum of a and b. However, the square of the sum of a and b does not occur very often; as a rule, instead of the letters a and b, it contains various, sometimes quite complex, expressions.

The expressions \((a + b)^2, \; (a - b)^2 \) can be easily converted (simplified) into polynomials of the standard form; in fact, you have already encountered this task when multiplying polynomials:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

It is useful to remember the resulting identities and apply them without intermediate calculations. Brief verbal formulations help this.

\((a + b)^2 = a^2 + b^2 + 2ab \) - square of the sum equal to the sum squares and double the product.

\((a - b)^2 = a^2 + b^2 - 2ab \) - the square of the difference is equal to the sum of squares without the doubled product.

\(a^2 - b^2 = (a - b)(a + b) \) - the difference of squares is equal to the product of the difference and the sum.

These three identities allow one to replace its left-hand parts with right-hand ones in transformations and vice versa - right-hand parts with left-hand ones. The most difficult thing is to see the corresponding expressions and understand how the variables a and b are replaced in them. Let's look at several examples of using abbreviated multiplication formulas.

Expressions, expression conversion

Power expressions (expressions with powers) and their transformation

In this article we will talk about converting expressions with powers. First, we will focus on transformations that are performed with expressions of any kind, including power expressions, such as opening parentheses and bringing similar terms. And then we will analyze the transformations inherent specifically in expressions with degrees: working with the base and exponent, using the properties of degrees, etc.

Page navigation.

What are power expressions?

The term “power expressions” practically does not appear in school mathematics textbooks, but it appears quite often in collections of problems, especially those intended for preparation for the Unified State Exam and the Unified State Exam, for example. After analyzing the tasks in which it is necessary to perform any actions with power expressions, it becomes clear that power expressions are understood as expressions containing powers in their entries. Therefore, you can accept the following definition for yourself:

Definition.

Power expressions are expressions containing degrees.

Let's give examples of power expressions. Moreover, we will present them according to how the development of views on from degree to degree occurs. natural indicator to a degree with a real exponent.

As is known, first one gets acquainted with the power of a number with a natural exponent; at this stage, the first simplest power expressions of the type 3 2, 7 5 +1, (2+1) 5, (−0.1) 4, 3 a 2 appear −a+a 2 , x 3−1 , (a 2) 3 etc.

A little later, the power of a number with an integer exponent is studied, which leads to the appearance of power expressions with integers negative powers, like the following: 3 −2 , , a −2 +2 b −3 +c 2 .

In high school they return to degrees. There a degree with a rational exponent is introduced, which entails the appearance of the corresponding power expressions: , , and so on. Finally, degrees with irrational exponents and expressions containing them are considered: , .

The matter is not limited to the listed power expressions: further the variable penetrates into the exponent, and, for example, the following expressions arise: 2 x 2 +1 or . And after getting acquainted with , expressions with powers and logarithms begin to appear, for example, x 2·lgx −5·x lgx.

So, we have dealt with the question of what power expressions represent. Next we will learn to convert them.

Main types of transformations of power expressions

With power expressions, you can perform any of the basic identity transformations of expressions. For example, you can expand the brackets, replace numeric expressions their values, give similar terms, etc. Naturally, in this case, it is necessary to follow the accepted procedure for performing actions. Let's give examples.

Example.

Calculate the value of the power expression 2 3 ·(4 2 −12) .

Solution.

According to the order of execution of actions, first perform the actions in brackets. There, firstly, we replace the power 4 2 with its value 16 (if necessary, see), and secondly, we calculate the difference 16−12=4. We have 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4.

In the resulting expression, we replace the power 2 3 with its value 8, after which we calculate the product 8·4=32. This is the desired value.

So, 2 3 ·(4 2 −12)=2 3 ·(16−12)=2 3 ·4=8·4=32.

Answer:

2 3 ·(4 2 −12)=32.

Example.

Simplify expressions with powers 3 a 4 b −7 −1+2 a 4 b −7.

Solution.

Obviously, this expression contains similar terms 3·a 4 ·b −7 and 2·a 4 ·b −7 , and we can present them: .

Answer:

3 a 4 b −7 −1+2 a 4 b −7 =5 a 4 b −7 −1.

Example.

Express an expression with powers as a product.

Solution.

You can cope with the task by representing the number 9 as a power of 3 2 and then using the formula for abbreviated multiplication - difference of squares:

Answer:

There are also a number of identical transformations inherent specifically in power expressions. We will analyze them further.

Working with base and exponent

There are degrees whose base and/or exponent are not just numbers or variables, but some expressions. As an example, we give the entries (2+0.3·7) 5−3.7 and (a·(a+1)−a 2) 2·(x+1) .

When working with such expressions, you can replace both the expression in the base of the degree and the expression in the exponent with an identically equal expression in the ODZ of its variables. In other words, according to the rules known to us, we can separately transform the base of the degree and separately the exponent. It is clear that as a result of this transformation, an expression will be obtained that is identically equal to the original one.

Such transformations allow us to simplify expressions with powers or achieve other goals we need. For example, in the power expression mentioned above (2+0.3 7) 5−3.7, you can perform operations with the numbers in the base and exponent, which will allow you to move to the power 4.1 1.3. And after opening the brackets and bringing similar terms to the base of the degree (a·(a+1)−a 2) 2·(x+1) we obtain a power expression more simple type a 2·(x+1) .

Using Degree Properties

One of the main tools for transforming expressions with powers is equalities that reflect . Let us recall the main ones. For any positive numbers a and b and arbitrary real numbers r and s, the following properties of powers are true:

  • a r ·a s =a r+s ;
  • a r:a s =a r−s ;
  • (a·b) r =a r ·b r ;
  • (a:b) r =a r:b r ;
  • (a r) s =a r·s .

Note that for natural, integer, and positive exponents, the restrictions on the numbers a and b may not be so strict. For example, for natural numbers m and n the equality a m ·a n =a m+n is true not only for positive a, but also for negative a, and for a=0.

At school, the main focus when transforming power expressions is on the ability to choose the appropriate property and apply it correctly. In this case, the bases of degrees are usually positive, which allows the properties of degrees to be used without restrictions. The same applies to the transformation of expressions containing variables in the bases of powers - the range of permissible values ​​of variables is usually such that the bases take only positive values ​​on it, which allows you to freely use the properties of powers. In general, you need to constantly ask yourself whether it is possible to use any property of degrees in this case, because inaccurate use of properties can lead to a narrowing of the educational value and other troubles. These points are discussed in detail and with examples in the article transformation of expressions using properties of degrees. Here we will limit ourselves to considering a few simple examples.

Example.

Express the expression a 2.5 ·(a 2) −3:a −5.5 as a power with base a.

Solution.

First, we transform the second factor (a 2) −3 using the property of raising a power to a power: (a 2) −3 =a 2·(−3) =a −6. The original power expression will take the form a 2.5 ·a −6:a −5.5. Obviously, it remains to use the properties of multiplication and division of powers with the same base, we have
a 2.5 ·a −6:a −5.5 =
a 2.5−6:a −5.5 =a −3.5:a −5.5 =
a −3.5−(−5.5) =a 2 .

Answer:

a 2.5 ·(a 2) −3:a −5.5 =a 2.

Properties of powers when transforming power expressions are used both from left to right and from right to left.

Example.

Find the value of the power expression.

Solution.

The equality (a·b) r =a r ·b r, applied from right to left, allows us to move from the original expression to a product of the form and further. And when multiplying powers with on the same grounds the indicators add up: .

It was possible to transform the original expression in another way:

Answer:

.

Example.

Given the power expression a 1.5 −a 0.5 −6, introduce a new variable t=a 0.5.

Solution.

The degree a 1.5 can be represented as a 0.5 3 and then, based on the property of the degree to the degree (a r) s =a r s, applied from right to left, transform it to the form (a 0.5) 3. Thus, a 1.5 −a 0.5 −6=(a 0.5) 3 −a 0.5 −6. Now it’s easy to introduce a new variable t=a 0.5, we get t 3 −t−6.

Answer:

t 3 −t−6 .

Converting fractions containing powers

Power expressions can contain or represent fractions with powers. Any of the basic transformations of fractions that are inherent in fractions of any kind are fully applicable to such fractions. That is, fractions that contain powers can be reduced, reduced to a new denominator, worked separately with their numerator and separately with the denominator, etc. To illustrate these words, consider solutions to several examples.

Example.

Simplify power expression .

Solution.

This power expression is a fraction. Let's work with its numerator and denominator. In the numerator we open the brackets and simplify the resulting expression using the properties of powers, and in the denominator we present similar terms:

And let’s also change the sign of the denominator by placing a minus in front of the fraction: .

Answer:

.

Reducing fractions containing powers to a new denominator is carried out similarly to reducing rational fractions to a new denominator. In this case, an additional factor is also found and the numerator and denominator of the fraction are multiplied by it. When performing this action, it is worth remembering that reduction to a new denominator can lead to a narrowing of the VA. To prevent this from happening, it is necessary that the additional factor does not go to zero for any values ​​of the variables from the ODZ variables for the original expression.

Example.

Reduce the fractions to a new denominator: a) to denominator a, b) to the denominator.

Solution.

a) In this case, it is quite easy to figure out what additional multiplier helps to achieve desired result. This is a multiplier of a 0.3, since a 0.7 ·a 0.3 =a 0.7+0.3 =a. Note that in the range of permissible values ​​of the variable a (this is the set of all positive real numbers), the power of a 0.3 does not vanish, therefore, we have the right to multiply the numerator and denominator of a given fraction by this additional factor:

b) Taking a closer look at the denominator, you will find that

and multiplying this expression by will give the sum of cubes and , that is, . And this is the new denominator to which we need to reduce the original fraction.

This is how we found an additional factor. In the range of acceptable values ​​of the variables x and y, the expression does not vanish, therefore, we can multiply the numerator and denominator of the fraction by it:

Answer:

A) , b) .

There is also nothing new in reducing fractions containing powers: the numerator and denominator are represented as a number of factors, and the same factors of the numerator and denominator are reduced.

Example.

Reduce the fraction: a) , b) .

Solution.

a) Firstly, the numerator and denominator can be reduced by the numbers 30 and 45, which is equal to 15. It is also obviously possible to perform a reduction by x 0.5 +1 and by . Here's what we have:

b) In this case, identical factors in the numerator and denominator are not immediately visible. To obtain them, you will have to perform preliminary transformations. In this case, they consist in factoring the denominator using the difference of squares formula:

Answer:

A)

b) .

Converting fractions to a new denominator and reducing fractions are mainly used to do things with fractions. Actions are performed according to known rules. When adding (subtracting) fractions, they are reduced to a common denominator, after which the numerators are added (subtracted), but the denominator remains the same. The result is a fraction whose numerator is the product of the numerators, and the denominator is the product of the denominators. Division by a fraction is multiplication by its inverse.

Example.

Follow the steps .

Solution.

First, we subtract the fractions in parentheses. To do this, we bring them to a common denominator, which is , after which we subtract the numerators:

Now we multiply the fractions:

Obviously, it is possible to reduce by a power of x 1/2, after which we have .

You can also simplify the power expression in the denominator by using the difference of squares formula: .

Answer:

Example.

Simplify the Power Expression .

Solution.

Obviously, this fraction can be reduced by (x 2.7 +1) 2, this gives the fraction . It is clear that something else needs to be done with the powers of X. To do this, we transform the resulting fraction into a product. This gives us the opportunity to take advantage of the property of dividing powers with the same bases: . And at the end of the process we move from the last product to the fraction.

Answer:

.

And let us also add that it is possible, and in many cases desirable, to transfer factors with negative exponents from the numerator to the denominator or from the denominator to the numerator, changing the sign of the exponent. Such transformations often simplify further actions. For example, a power expression can be replaced by .

Converting expressions with roots and powers

Often, in expressions in which some transformations are required, roots with fractional exponents are also present along with powers. To convert such an expression to the right type, in most cases it is enough to go only to roots or only to powers. But since it is more convenient to work with powers, they usually move from roots to powers. However, it is advisable to carry out such a transition when the ODZ of variables for the original expression allows you to replace the roots with powers without the need to refer to the module or split the ODZ into several intervals (we discussed this in detail in the article transition from roots to powers and back After getting acquainted with the degree with a rational exponent a degree with an irrational exponent is introduced, which allows us to talk about a degree with an arbitrary real exponent. At this stage, the school begins to study exponential function, which is analytically given by a power, the base of which is a number, and the exponent is a variable. So we are faced with power expressions containing numbers in the base of the power, and in the exponent - expressions with variables, and naturally the need arises to perform transformations of such expressions.

It should be said that the transformation of expressions of the indicated type usually has to be performed when solving exponential equations And exponential inequalities, and these conversions are quite simple. In the overwhelming majority of cases, they are based on the properties of the degree and are aimed, for the most part, at introducing a new variable in the future. The equation will allow us to demonstrate them 5 2 x+1 −3 5 x 7 x −14 7 2 x−1 =0.

Firstly, powers, in the exponents of which is the sum of a certain variable (or expression with variables) and a number, are replaced by products. This applies to the first and last terms of the expression on the left side:
5 2 x 5 1 −3 5 x 7 x −14 7 2 x 7 −1 =0,
5 5 2 x −3 5 x 7 x −2 7 2 x =0.

Next, both sides of the equality are divided by the expression 7 2 x, which on the ODZ of the variable x for the original equation takes only positive values ​​(this is a standard technique for solving equations of this type, we are not talking about it now, so focus on subsequent transformations of expressions with powers ):

Now we can cancel fractions with powers, which gives .

Finally, the ratio of powers with the same exponents is replaced by powers of relations, resulting in the equation , which is equivalent . The transformations made allow us to introduce a new variable, which reduces the solution to the original exponential equation to solving a quadratic equation

  • I. V. Boykov, L. D. Romanova Collection of tasks for preparing for the Unified State Exam. Part 1. Penza 2003.