Методы исследования лучевой диагностики. Методы лучевой диагностики. Плюсы лучевой диагностики


Виды лучевых методов диагностики

К лучевым методам диагностики относятся:

  • Рентгенодиагностика
  • Радионуклидное исследование
  • УЗИ диагностика
  • Компьютерная томография
  • Термография
  • Рентгенодиагностика

Является самым распространённым (но не всегда самым информативным!!!) методом исследования костей скелета и внутренних органов. Метод основан на физических законах, согласно которым человеческое тело неравномерно поглощает и рассеивает специальные лучи - рентгеновские волны. Рентгеновское излучение является одним из разновидностей гамма излучения. С помощью рентгеновского аппарата генерируется пучок, который направляется через тело человека. При прохождении рентгеновских волн через исследуемые структуры, они рассеиваются и поглощаются костями, тканями, внутренними органами и на выходе образуется своего рода скрытая анатомическая картина. Для её визуализации используются специальные экраны, рентгеновская плёнка (кассеты) или сенсорные матрицы, которые после обработки сигнала позволяют видеть модель исследуемого органа на экране ПК.

Виды рентгенодиагностики

Различают следующие виды рентгенодиагностики:

  1. Рентгенография - графическая регистрация изображения на рентгеновской плёнке или цифровых носителях.
  2. Рентгеноскопия - изучение органов и систем с помощью специальных флюоресцирующих экранов, на которые проецируется изображение.
  3. Флюорография - уменьшенный размер рентгеновского снимка, который получают путём фотографирования флюоресцирующего экрана.
  4. Ангиография - комплекс рентгенологических методик, с помощью которых изучают кровеносные сосуды. Изучение лимфатических сосудов носит название - лимфография.
  5. Функциональная рентгенография - возможность исследования в динамике. Например, регистрируют фазу вдоха и выдоха при исследовании сердца, лёгких или делают два снимка (сгибание, разгибание) при диагностике заболеваний суставов.

Радионуклидное исследование

Этот метод диагностики делится на два вида:

  • in vivo. Больному в организм вводят радиофармпрепарат (РФП) - изотоп, который избирательно накапливается в здоровых тканях и патологических очагах. С помощью специальной аппаратуры (гамма-камера, ПЭТ, ОФЭКТ) накопление РФП фиксируются, обрабатываются в диагностическое изображение и полученные результаты интерпретируются.
  • in vitro. При этом виде исследования РФП не вводится в организме человека, а для диагностики исследуются биологические среды организма - кровь, лимфа. Этот вид диагностики имеет ряд преимуществ - отсутствие облучения пациента, высокая специфичность метода.

Диагностика in vitro позволяет проводить исследования на уровне клеточных структур, по сути являясь методом радиоиммунного анализа.

Радионуклидное исследование применяется как самостоятельный метод лучевой диагностики для постановки диагноза (метастазирование в кости скелета, сахарный диабет, болезни щитовидной железы), для определения дальнейшего плана обследования при нарушении работы органов (почки, печень) и особенностей топографии органов.

УЗИ диагностика

В основе метода лежит биологическая способность тканей отражать или поглощать ультразвуковые волны (принцип эхолокации). Используются специальные детекторы, которые одновременно являются и излучателями ультразвука, и его регистратором (детекторами). Пучок ультразвука с помощью этих детекторов направляют на исследуемый орган, который «отбивает» звук и возвращает его на датчик. С помощью электроники отражённые от объекта волны обрабатываются и визуализируются на экране.

Преимущества перед другими методами — отсутствие лучевой нагрузки на организм.

Методики УЗИ диагностики

  • Эхография - «классическое» УЗИ-исследование. Применяется для диагностики внутренних органов, при наблюдении за беременностью.
  • Допплерография - исследование структур, содержащих жидкости (измерение скорости движения). Чаще всего используется для диагностики кровеносной и сердечно-сосудистой систем.
  • Соноэластография - исследование эхогенности тканей с одновременным измерением их эластичности (при онкопатологии и наличии воспалительного процесса).
  • Виртуальная сонография - совмещает в себе УЗИ диагностику в реальном времени со сравнением изображения, сделанным с помощью томографа и записанного заранее на УЗИ аппарат.

Компьютерная томография

С помощью методик томографии можно увидеть органы и системы в двух- и трёхмерном (объёмном) изображении.

  1. КТ - рентгеновская компьютерная томография . В основе лежат методы рентгенодиагностики. Пучок рентгеновских лучей проходит через большое количество отдельных срезов организма. На основании ослабления рентгеновских лучей формируется изображение отдельного среза. С помощью компьютера происходит обработка полученного результата и реконструкция (путём суммации большого количества срезов) изображения.
  2. МРТ - магнитно-резонансная диагностика. Метод основан на взаимодействии протонов клетки с внешними магнитами. Некоторые элементы клетки имеют способность поглощать энергию при воздействии электромагнитного поля, с последующей отдачей специального сигнала - магнитного резонанса. Этот сигнал считывается специальными детекторами, а потом преобразовывается в изображение органов и систем на компьютере. В настоящее время считается одним из самых эффективных методов лучевой диагностики , так как позволяет исследовать любую часть тела в трёх плоскостях.

Термография

Основана на способности регистрировать специальной аппаратурой инфракрасные излучения, которые излучают кожные покровы и внутренние органы. В настоящее время в диагностических целях используется редко.

При выборе метода диагностики необходимо руководствоваться несколькими критериями:

  • Точность и специфичность метода.
  • Лучевая нагрузка на организм — разумное сочетание биологического действия излучения и диагностической информативности (при переломе ноги нет необходимости в радионуклидном исследовании. Достаточно сделать рентгенографию поражённого участка).
  • Экономическая составляющая. Чем сложнее диагностическая аппаратура, тем дороже будет стоить обследование.

Начинать диагностику надо с простых методов, подключая в дальнейшем более сложные (если необходимо) для уточнения диагноза. Тактику обследования определяет специалист. Будьте здоровы.

Лучевая диагностика в последние три десятилетия достигла значительных успехов в первую очередь за счет внедрения компьютерной томографии (КТ), ультразвукового исследования (УЗИ) и магнитнорезонансной томографии (МРТ). Однако первичное обследование пациента базируется все же на традиционных методах визуализации: рентгенографии, флюорографии, рентгеноскопии.Традиционные лучевые методы исследования основаны на использованииХ-лучей,открытыхВильгельмомКонрадомРентгеном в 1895 г. Он не считал возможным извлекать материальную выгоду из результатов научных поисков, так как «…его открытия и изобретенияпринадлежат человечеству, и. им не должны ни в коей мере мешать патенты, лицензии, контракты или контроль какой-либо группы людей». Традиционные рентгенологические методы исследования называют проекционными методами визуализации, которые, в свою очередь, можно разделить на три основные группы: прямые аналоговые методы; непрямые аналоговые методы; цифровые методы.В прямых аналоговых методах изображение формируется непосредственно в воспринимающей излучение среде (рентгеновская пленка, флюоресцирующий экран), реакция которой на излучение не дискретна, а постоянна. Основными аналоговыми методами исследования являются прямая рентгенография и прямая рентгеноскопия.Прямая рентгенография – базисный метод лучевой диагностики. Он заключается в том, что рентгеновские лучи, прошедшие через тело пациента, создают изображение непосредственно на пленке. Рентгеновская пленка покрыта фотографической эмульсией с кристаллами бромида серебра, которые ионизируются энергией фотонов (чем выше доза излучения, тем больше образуется ионов серебра). Это так называемое скрытое изображение. В процессе проявления металлическое серебро формирует участки потемнения на пленке, а в процессе фиксирования кристаллы бромида серебра вымываются, на пленке появляются прозрачные участки.Прямая рентгенография позволяет получать статические изображения с наилучшим из всех возможных методов пространственным разрешением. Этот метод используется для получения рентгенограмм органов грудной клетки. В настоящее время редко прямая рентгенография используется также для получения серии полноформатных изображений при кардиоангиографических исследованиях.Прямая рентгеноскопия (просвечивание) заключается в том, что прошедшее через тело пациента излучение, попадая на флюоресцирующий экран, создает динамическое проекционное изображение. В настоящее время этот метод практически не используется из-за малой яркости изображения и высокой дозы облучения пациента.Непрямая рентгеноскопия практически полностью вытеснила просвечивание. Флюоресцирующий экран является частью элек-тронно-оптического преобразователя, который усиливает яркость изображения более чем в 5000 раз. Рентгенолог получил возможность работать при дневном освещении. Результирующее изображение воспроизводится монитором и может быть записано на кинопленку, видеомагнитофон, магнитный или оптический диск.Непрямая рентгеноскопия применяется для изучения динамических процессов, таких как сократительная деятельность сердца, кровоток по сосудам

Рентгеноскопия используется также для выявления интракардиальных кальцинатов, обнаружения парадоксальной пульсации ЛЖ сердца, пульсации сосудов, расположенных в корнях легких, и др.В цифровых методах лучевой диагностики первичная информация (в частности, интенсивность рентгеновского излучения, эхосигнала, магнитные свойства тканей) представлена в виде матрицы (строк и колонок из чисел). Цифровая матрица трансформируется в матрицу пикселов (видимых элементов изображения), где каждому значению числа присваивается тот или иной оттенок серой шкалы.Общим преимуществом всех цифровых методов лучевой диагностики по сравнению с аналоговыми является возможность обработки и хранения данных с помощью компьютера. Вариантом цифровой проекционной рентгенографии является дигитальная (цифровая) субтракционная ангиография. Сначала производится нативная цифровая рентгенограмма, затем – цифровая рентгенограмма после внутрисосудистого введения контрастного препарата и далее из второго изображения вычитается первое. В результате получают изображение только сосудистого русла.Компьютерная томография – метод получения томографических изображений («срезов») в аксиальной плоскости без наложения друг на друга изображений соседних структур. Вращаясь вокруг пациента, рентгеновская трубка испускает тонко коллимированные веерообразные пучки лучей, перпендикулярных длинной оси тела (аксиальная проекция). В исследуемых тканях часть фотонов рентгеновского излучения поглощается или рассеивается, а другая распространяется до специальных высоко чувствительных детекторов, генерируя в последних электрические сигналы, пропорциональныеинтенсивности пропущенного излучения. При определении различий в интенсивности излучения КТ-детекторы на два порядка более чувствительны, чем рентгеновская пленка. Работающий по специальной программе компьютер (спецпроцессор) оценивает ослабление первичного луча по различным направлениям и рассчитывает показатели «рентгеновской плотности» для каждого пиксела в плоскости томографического среза.
Уступая полноразмерной рентгенографии в пространственном разрешении, КТ значительно превосходит ее в разрешении по контрастности. Спиральная (или винтовая) КТ сочетает постоянное вращение рентгеновской трубки с поступательным движением стола с пациентом. В результате исследования компьютер получает (и обрабатывает) информацию о большом массиве тела пациента, а не об одном срезе.Спиральная КТ дает возможность реконструкции двухмерных изображений в различных плоскостях, позволяет создавать трехмерные виртуальные изображения органов и тканей человека. КТ является эффективным методом выявления опухолей сердца, обнаружения осложнений ИМ, диагностики заболеваний перикарда. С появлением мультислайсных (многорядных) спиральных компьютерных томографов удается изучать состояние коронарных артерий и шунтов.Радионуклидная диагностика (радионуклидная визуализация) основана на обнаружении излучения, которое испускается радиоактивным веществом, находящимся внутри тела пациента. Вводимые пациенту внутривенно (реже ингаляционно), РФП представляют собой молекулу-носитель (определяющую пути и характер распространения препарата в теле пациента), в состав которой входит радионуклид – нестабильный атом, спонтанно распадающийся с выделением энергии. Так как для целей визуализации используются радионуклиды, испускающие гамма-фотоны (высокоэнергетическое электромагнитное излучение), то в качестве детектора применяется гамма-камера (сцинтилляционная камера). Для радионуклидныхисследований сердца используются различные препараты, меченные технецием-99т, и таллий-201. Метод позволяет получить данные о функциональных особенностях камер сердца, перфузии миокарда, существовании и объеме внутрисердечного сброса крови.Однофотонная эмиссионная компьютерная томография (ОЭКТ) – вариант радионуклидной визуализации, при котором гамма-камера вращается вокруг тела пациента. Определение уровня радиоактивности с различных направлений позволяет реконструировать томографические срезы (подобно рентгеновской КТ). Этот метод в настоящее время широко используется в кардиологических исследованиях.
В позитронной эмиссионной томографии (ПЭТ) используется эффект аннигиляции позитронов и электронов. Позитронэмиттирующие изотопы (15O, 18F) продуцируются с помощью циклотрона. В теле пациента свободный позитрон реагирует с ближайшим электроном, что приводит к образованию двух γ-фотонов, разлетающихся в строго диаметральных направлениях. Для выявления этих фотонов имеются специальные детекторы. Метод позволяет определять концентрацию радионуклидов и меченных ими продуктов жизнедеятельности, в результате чего удается изучить метаболические процессы в различных стадиях заболеваний. Преимущество радионуклидной визуализации – в возможности изучения физиологических функций, недостаток – низкое пространственное разрешение. Кардиологические ультразвуковые методики исследования ненесут потенциала лучевых повреждений органов и тканей тела человека и в нашей стране традиционно относятся к функциональной диагностике, что диктует необходимость их описания в отдельной главе.Магнитно-резонансная томография (МРТ) – метод диагностической визуализации, в котором носителем информации являются радиоволны. Попадая в поле действия сильного однородного магнитного поля, протоны (ядра водорода) тканей тела пациента выстраиваются вдоль линий этого поля и начинают вращаться вокруг длинной оси со строго определенной частотой. Воздействие боковых электромагнитных радиочастотных импульсов, соответствующих этой частоте (резонансная частота), приводит к накоплению энергиии отклонению протонов. После прекращения импульсов протоны возвращаются в исходное положение, выделяя накопленную энергию в виде радиоволн. Характеристики этих радиоволн зависят от концентрации и взаиморасположения протонов и от взаимоотношений других атомов в исследуемом веществе. Компьютер анализирует информацию, которая поступает от радиоантенн, расположенных вокруг пациента, и строит диагностическое изображение по принципу, аналогичному созданию изображений в других томографических методах.
МРТ – наиболее бурно развивающийся метод оценки морфологических и функциональных особенностей сердца и сосудов, имеет большое разнообразие прикладных методик. Ангиокардиографический метод применяется для изучения камер сердца и сосудов (в том числе коронарных). Пункционным способом (по методу Сельдингера) под контролем флюороскопии в сосуд (чаще всего бедренную артерию) вводится катетер. В зависимости от объема и характера исследования катетер продвигают в аорту, камеры сердца и выполняют контрастирование – введение определенного количества контрастного вещества для визуализации исследуемых структур. Исследование снимается кинокамерой или записывается видеомагнитофоном в нескольких проекциях. Скорость прохождения и характер наполнения контрастным препаратом сосудов и камер сердца дают возможность определить объемы и параметры функции желудочков и предсердий сердца, состоятельность клапанов, аневризмы, стенозы и окклюзии сосудов. Одновременно можно измерять показатели давления и насыщения крови кислородом (зондирование сердца).На базе ангиографического метода в настоящее время активно развивается интервенционная радиология – совокупность малоинвазивных методов и методик терапии и хирургии ряда заболеваний человека. Так, баллонная ангиопластика, механическая и аспирационная реканализация, тромбэктомия, тромболизис (фибринолизис) дают возможность восстановить нормальный диаметр сосудов и кровоток по ним. Стентирование (протезирование) сосудов улучшает результаты чрескожной транслюминальной баллонной ангиопластики при рестенозах и отслоениях интимы сосудов, позволяет укрепить их стенки при аневризмах. С помощью баллонных катетеровбольшого диаметра осуществляют вальвулопластику – расширение стенозированных клапанов сердца. Ангиографическая эмболизация сосудов позволяет остановить внутренние кровотечения, «выключить» функцию органа (например, селезенки при гиперспленизме). Эмболизация опухоли производится при кровотечениях из ее сосудов и для уменьшения кровоснабжения (перед операцией).
Интервенционная радиология, являясь комплексом малоинвазивных методов и методик, позволяет проводить в щадящем режиме лечение таких заболеваний, которые раньше требовали хирургического вмешательства. Сегодня уровень развития интервенционной радиологии демонстрирует качество технологического и профессионального развития специалистов лучевой диагностики.Таким образом, лучевая диагностика – это комплекс разнообразных методов и методик медицинской визуализации, при которых получают и обрабатывают информацию от пропускаемого, испускаемого и отраженного электромагнитного излучения. В кардиологии лучевая диагностика за последние годы претерпела значительные изменения и заняла важнейшее место как в диагностике, так и в лечении заболеваний сердца и сосудов.

Лучевая диагностика и лучевая терапия составные части медицинской радиологии (так принято называть эту дисциплину за рубежом).

Лучевая диагностика - практическая дисциплина, изучающая применение различных излучений с целью распознавания многочисленных болезней, для изучения морфологии и функции нормальных и патологических органов и систем человека. В состав лучевой диагностики входят: рентгенология, включая компьютерную томографию (КТ); радионуклидная диагностика, ультразвуковая диагностика, магнитно-резонансная томография (МРТ), медицинская термография и интервенционная радиология, связанная с выполнением диагностических и лечебных процедур под контролем лучевых методов исследования.

Роль лучевой диагностики вообще и в стоматологии в частности, нельзя переоценить. Лучевая диагностика характеризуется рядом особенностей. Во-первых, она имеет массовое применение как при соматических заболеваниях, так и в стоматологии. В РФ ежегодно выполняется более 115 миллионов рентгенологических исследований, более 70 миллионов ультразвуковых и более 3-х миллионов радионуклидных исследований. Во-вторых, лучевая диагностика обладает информативностью. С ее помощью устанавливается или дополняется 70-80% клинических диагнозов. Лучевая диагностика используется при 2000 различных заболеваниях. Дентальные исследования составляют 21% от всех рентгенологических исследований в РФ и почти 31% по Омской области. Другой особенностью является то, что аппаратура, используемая при лучевой диагностике, дорогостоящая, особенно компьютерные и магнитно-резонансные томографы. Их стоимость превышает 1 - 2 млн. долларов. За рубежом из-за высокой цены аппаратуры лучевая диагностика (радиология) является самой финансовоемкой отраслью медицины. Особенностью лучевой диагностики является еще и то, что рентгенология и радионуклидная диагностика, не говоря уже о лучевой терапии, обладают радиационной опасностью для персонала этих служб и пациентов. Данное обстоятельство обязывает врачей всех специальностей, в том числе стоматологов учитывать этот факт при назначении рентгенорадиологических исследований.

Лучевая терапия практическая дисциплина, изучающая применение ионизирующего излучения с лечебной целью. В настоящее время лучевая терапия располагает большим арсеналом источникров квантового и корпускулярного излучений, используемых в онкологии и при лечении неопухолевых заболеваний.

В настоящее время без лучевой диагностики и лучевой терапии не могут обойтись никакие медицинские дисциплины. Практически нет такой клинической специальности, в которой лучевая диагностика и лучевая терапия не являлись бы сопряженными с диагностикой и лечением различных заболеваний.

Стоматология одна из тех клинческих дисциплин, где рентгенологическое исследование занимает основное место в диагностике заболеваний зубочелюстной системы.

Лучевая диагностика использует 5 видов излучений, которые по способности вызывать ионизацию среды относятся к ионизирующим, или к неионизирующим излучениям. К ионизирующим излучениям относятся рентгеновское и радионуклидное излучения. К числу неионизирующих излучений относятся ультразвуковое, магнитное, радиочастотное, инфракрасное излучения. Однако, при использовании данных излучений могут возникать единичные акты ионизации в атомах и молекулах, которые однако не вызывают никаких нарушений в органах и тканях человека, не являются доминирующими в процессе взаимодействия излучения с веществом.

Основные физические характеристики излучений

Рентгеновское излучение является электромагнитным колебанием, искусственно создаваемое в специальных трубках рентгеновских аппаратов. Это излучение было открыто Вильгельмом Конрадом Рентгеном в ноябре 1895 года. Рентгеновские лучи относятся к невидимому спектру электромагнитных волн с длиной волны от 15 до 0,03 ангстрем. Энергия квантов в зависимости от мощности аппаратуры колеблется от 10 до 300 и более Кэв. Скорость распространения квантов рентгеновского излучения 300 000 км\сек.

Рентгеновские лучи обладают определенными свойствами, которые обуславливают применение их в медицине для диагностики и лечения различных заболеваний. Первое свойство - проникающая способность, способность проникать сквозь твердые и непрозрачные тела. Второе свойство - их поглощение в тканях и органах, которое зависит от удельного веса и объема тканей. Чем плотнее и объемнее ткань, тем большее поглощение лучей. Так, удельный вес воздуха равен 0,001, жира 0,9, мягких тканей 1,0, костной ткани - 1,9. Естественно, в костях будет наибольшее поглощение рентгеновского излучения. Третье свойство рентгеновых лучей - способность их вызывать свечение флюоресцирующих веществ, используемое при проведении просвечивания за экраном рентгенодиагностического аппарата. Четвертое свойство - фотохимическое, благодаря чему на рентгеновской фотопленке получается изображение. Последнее, пятое свойство - биологическое действие рентгеновых лучей на организм человека, чему будет посвящена отдельная лекция.

Рентгенологические методы исследования выполняются с помощью рентгеновского аппарата, в устройство которого входит 5 основных частей:

  • - рентгеновский излучатель (рентгеновская трубка с системой охлаждения);
  • - питающее устройство (трансформатор с выпрямителем электрического тока);
  • - приемник излучения (флюоресцирующий экран, кассеты с пленкой, полупроводиниковые датчики);
  • - штативное устройство и стол для укладки пациента;
  • - пульт управления.

Основной частью любого рентгенодиагностического аппарата является рентгеновская трубка, которая состоит из двух электродов: катода и анода. На катод подается постоянный электрический ток, который накаливает нить катода. При подаче высокого напряжения на анод электроны в результате разности потенциалов с большой кинетической энергией летят с катода и тормозятся на аноде. При торможении электронов и происходит образование рентгеновских - тормозных лучей, выходящих под определенным углом из рентгеновской трубки. Современные рентгеновские трубки имеют вращающийся анод, скорость которого достигает 3000 оборотов в минуту, что значительно снижает разогрев анода и повышает мощность и срок службы трубки.

Рентгенологический метод в стоматологии стал применяться вскоре после открытия рентгеновых лучей. Более того, считается, что первый рентгеновский снимок в России (в г. Риге) запечатлел челюсти рыбы пилы в 1896 году. В январе 1901 года появилась статья о роли рентгенографии в зубоврачебной практике. Вообще то стоматологическая рентгенология является одной из наиболее ранних разделов медицинской рентгенологии. Она стала развиваться в России, когда появились первые рентгеновские кабинеты. Первый специализированный рентгеновский кабинет при стоматологическом институте в Ленинграде был открыт в 1921 году. В Омске рентгеновские кабинеты общего назначения (где выполнялись и снимки зубов) открылись в 1924 году.

Рентгеновский метод включает следующие методики: рентгеноскопию, то есть получение изображения на флюоресцирующем экране; рентгенографию - получение изображения на рентгеновской пленке, помещенной в рентгенопрозрачную кассету, где она защищена от обычного света. Эти методики относятся к основным. Дополнительные включают: томографию, флюорографию, рентгеноденситометрию и др.

Томография - получение послойного изображения на рентгеновской пленке. Флюорография - это получение рентгеновского изображения меньшего размера (72×72 мм или 110×110 мм) в результате фотографического переноса изображения с флюоресцирующего экрана.

Рентгеновский метод включает и специальные, рентгеноконтрастные исследования. При проведении этих исследований используются специальные приемы, приспособления для получения рентгеновского изображения, а рентгеноконтрастные они именуются потому, что при исследовании применяются различные контрастные вещества, задерживающие рентгеновские лучи. К контрастным методикам относятся: ангио-, лимфо-, уро-, холецистография.

К рентгеновскому методу относится и компьютерная томография (КТ, РКТ), которая была разработана английским инженером Г.Хаунсфильдом в 1972 году. За это открытие он и другой ученый - А.Кормак получили в 1979 году нобелевскую премию. Компьютерные томографы в настоящее время имеются и в Омске: в Диагностическом центре, Областной клинической больнице, Иртышкой центральной бассейновой клинической больнице. Принцип РКТ основан на послойном исследовании органов и тканей тонким импульсным пучком рентгеновского излучения в поперечном сечении с последующей компьютерной обработкой тонких различий поглощения рентгеновских лучей и вторичным получением томографического изображения исследуемого объекта на мониторе или пленке. Современные рентгеновские компьютерные томографы состоят из 4 основных частей: 1- сканирующая система (рентгеновская трубка и детекторы); 2 - высоковольтный генератор - источник питания на 140 Кв и силой тока до 200 мА; 3 - пульт управления (клавиатура управления, монитор); 4 - компьютерная система, предназначенной для предварительной обработки, поступающей от детекторов информации и получения изображения с оценкой плотности объекта. КТ обладает рядом преимуществ перед обычным рентгенологическим исследованием прежде всего большей чувствиетльностью. Она позволяет отдифференцировать отдельные ткани друг от друга, отличающиеся по плотности в пределах 1 - 2% и даже в 0,5%. При рентгенографии этот показатель составляет 10 - 20%. КТ дает точную количественную информацию о размерах плотности нормальных и патологических тканей. При использовании контрастных веществ, методом так называемого внутривенного контрастного усиления повышается возможность более точного выявления патологических образований, проводить дифференциальную диагностику.

В последние годы появилась новая рентгенологическая система получения дигитального (цифрового) изображения. Каждая дигитальная картинка сотоит из множества отдельных точек, которым соответствует числовая интенсивность свечения. Степень яркости точек улавливается в специальном приборе - аналого-цифровом преобразователе (АЦП), в котором электрический сигнал, несущий информацию о рентгеновском изображении, превращается в череду цифр, то есть происходит цифровое кодирование сигналов. Чтобы цифровую информацию превратить в изображение на телевизионном экране или пленке, необходимо цифро-аналоговый преобразователь (ЦАП), где цифровой образ трансформируется в аналоговое, видимое изображение. Дигитальная рентгенография постепенно будет вытеснять обычную пленочную рентгенографию, так как она отличается быстрым получением изображения, не требует фотохимической обработки пленки, обладает большей разрешающей возможностью, позволяет проводить математическую обработку изображения, архивировать на магнитные носители информации, дает значительно меньшую лучевую нагрузку на пациента (приблизительно в 10 раз), увеличивает пропускную способность кабинета.

Второй метод лучевой диагностики - радионуклидная диагностика. В качестве источников излучения применяются различные радиоактивные изотопы, радионуклиды.

Естественную радиоактивность открыл в 1896 году А.Беккерель, а искусственную в 1934 году Ирен и Жолио Кюри. Наиболее часто в радионуклидной диагностике используются радионуклиды (РН) гамма-излучатели и радиофармпрепараты (РФП) с гамма-излучателями. Радионуклид - изотоп, физические свойства которого определяют пригодность его к радиодиагностическим исследованиям. РФП называются диагностические и лечебные средства на основе радиоактивных нуклидов - вещества неорганической или органической природы, в структуре которых содержится радиоактивный элемент.

В стоматтологической практике и вообще в радионуклидной диагностике широкое применение имеют следующие радионуклиды: Тс 99 m , In- 113 m , I- 125 , Xe- 133 , реже I- 131 , Hg- 197 . Используемые для радионуклидной диагностики РФП по их поведению в организме разделяются условно на 3 группы: органотропные, тропные к патологическому очагу и без выраженной селективности, тропности. Тропность РФП бывает направленной, когда препарат включается в специфический обмен клеток определённого органа, в котором происходит его накопление, и косвенной, когда в органе происходит временная концентрация РФП по пути его прохождения или выведения из организма. Кроме того, выделяется и вторичная селективность, когда препарат, не обладая способностью к накоплению, вызывает в организме химические превращения, которые обусловливают возникновение новых соединений, уже накапливаемые в определённых органах или тканях. Самым распространённым РН в настоящее время является Тс 99 m , который является дочерним нуклидом радиоактивного молибдена Мо 99 . Тс 99 m , образуется в генераторе, где Мо- 99 распадается, путём бета-распада, с образованием долгоживущего Тс- 99 m . Последний при распаде испускает гамма-кванты с энергией 140 кэв (наиболее технически удобная энергия). Период полураспада Тс 99 m составляет 6 часов, что достаточно для всех радионуклидных исследований. Из крови он выводится с мочой (30 % в течении 2 час), накапливается в костях. Приготовление РФП на основе метки Тс 99 m осуществляется непосредственно в лаборатории с помощью набора специальных реагентов. Реагенты в соответствии с прилагаемой к наборам инструкцией, определённым образом перемешиваются с элюатом (раствором) технеция и в течение нескольких минут происходит образование РФП. Растворы РФП являются стерильными и апирогенными, и могут вводиться внутривенно. Многочисленные методики радионуклидной диагностики подразделяются на 2 группы в зависимости от того, вводится ли РФП в организм пациента или используется для исследования изолированных проб биосред (плазмы крови, мочи и кусочки ткани). В первом случае методики обьединяются в группу исследований in vivo, во-втором случае - in vitro. Оба способа имеют принципиальные различия в показаниях, в технике выполнения и в получаемых результатах. В клинической практике чаще всего используются комплексные исследования. Радионуклидные исследования in vitro используются для определения в сыворотке крови человека концентрации различных биологически активных соединений, количество которых в настоящее время достигает более 400 (гормоны, лекарственные вещества, ферменты, витамины). Они применяются для диагностики и оценки патологии репродуктивной, эндокринной, гемопоэтической и иммунологической систем организма. Большая часть современных наборов реагентов основана на радиоиммунологическом анализе (РИА), который был впервые предложен Р. Ялоу в 1959 г., за что автору была присуждена Нобелевская премия в 1977 г.

В последнее время наряду с РИА развивается новая методика радиорецепторного анализа (РРА). РРА также основан на принципе конкурентного равновесия меченного лиганда (меченый антиген) и исследуемого вещества сыворотки, но не с антителами, а с рецепторными связями клеточной мембраны. РРА отличается от РИА более коротким сроком постановки методики и ещё большей специфичностью.

Основными принципами радионуклидных исследований in vivo являются:

1.Изучение особенностей распределения в органах и тканях введенного РФП;

2.Определение динамики пассажирования РФП у пациента. Методики основанные на первом принципе дают характеристику анатомо-топографического состояния органа или системы и называются статическими радионуклидными исследованаями. Методики, основанные на втором принципе, позволяют оценить состояние функций исследуемого органа или системы и называются динамическами радионуклидными исследованиями.

Сушествуют несколько методик измерения радиоактивности организма или его частей после введения РФП.

Радиометрия. Эта методика измерения интенсивности потока ионизирующего излучения в единицу времени, выражающаяся в условных единицах-импульсах в секунду или минуту (имп/сек). Для измерения используют радиометрическую аппаратуру (радиометры, комплексы). Эта методика используется при исследовании накопления Р 32 в тканях кожи, при исследовании щитовидной железы, для изучения метаболизма белков, железа, витаминов в организме.

Радиография - метод непрерывной или дискретной регистрации процессов накопления, перераспределения и выведения РФП из организма или отдельных органов. Для этих целей применяют радиографы, в которых измеритель скорости счета соединен с самописцем, вычерчивающим кривую. В составе радиографа может быть один или несколько детекторов, каждый из которых ведет измерение независимо друг от друга. Если клиническая радиометрия предназначена для однократного или нескольких повторных измерений радиоактивности организма или его частей, то с помощью радиографии можно проследить динамику накопления и его выведения. Типичным примером радиографии является исследование накопления и выведения РФП из легких (ксенон), из почек, из печени. Радиографическая функция в современных аппаратах совмещена в гамма-камере с визуализацией органов.

Радионуклидная визуализация. Методика создания картины пространственного распределения в органах РФП, введенного в организм. Радионуклидная визуализация в настоящее время включает в себя следующие виды:

  • а) сканирование,
  • б) сцинтиграфию с использованием гамма-камеры,
  • в) однофотонную и двухфотонную позитронкую эмиссионную томографию.

Сканирование-метод визуализации органов и тканей посредотвом движущегося над телом сцинтилляционного детектора. Прибор, проводящий исследование называется сканер. Главный недостаток - большая продолжительность исследования.

Сцинтиграфия-получение изображения органов и тканей посредством регистрации на гамма-камере излучений, исходяших от радионуклидов, распределённых в органах и тканях и в организме в целом. Сцинтиграфия в настоящее время является основным методом радионуклидной визуализации в клинике. Он позволяет изучить быстро протекающие процессы распределения вводимых в организм радиоактивных соединений.

Однофотонная эмисионная томография (ОФЭТ). При ОФЭТ используются такие же РФП, что и при сцинтиграфии. В этом аппарате детекторы расположены в ротационной томокамере, которая вращается вокруг пациента, давая возможность после компьютерной обработки, получить изображение распределения радионуклидов в различных слоях тела в пространстве и во времени.

Двухфотонная эмииссионная томография (ДФЭТ). Для ДФЭТ в организм человека вводят позитрон излучающий радионуклид (С 11 , N 13 , О 15 , F 18). Позитроны, испускaeмыe этими нуклидами, аннигилируют вблизи ядер атомов с электронами. При аннигиляции пара позитрон-электрон исчезает, образуя два гамма-кванта с энергией 511 кэв. Эти два кванта, разлетающиеся в строго противоположном направлении регистрируются двумя также противоположно расположенными детекторами.

Компьютерная обработка сигналов позволяет получить объемное и цветное изображение объекта исследования. Пространственное разрешение ДФЭТ хуже, чем на рентгеновских компьютерных и магнитно-резонансных томографах, но чувствительность метода фантастическая. ДФЭТ позволяет констатировать изменение расхода глюкозы, меченного С 11 в «глазном центре» головного мозга, при открывании глаз, удается выявить изменения при мыслительном процессе определить т.н. «душу», расположенную, как полагают некоторые ученые, в головном мозге. Недостатком этого метода является то, что использование его возможнно только при наличии циклотрона, радиохимической лаборатории для получения короткоживущих нуклидов, позитронного томографа и компьютера для обработки информации, что очень дорого и громоздко.

В последнее десятилетие в практику здравоохранения широким фронтом вошла ультразвуковая диагностика, основанная на использовании ультразвукового излучения.

Ультразвуковое излучение относится к невидимому спектру с длиною волны 0,77-0,08 мм и частотой колебаний свыше 20 Кгц. Звуковые колебания с частотой более 10 9 гц относятся к гиперзвуку. Ультразвук имеет определённые свойства:

  • 1.В однородной среде ультразвук (УЗ) распределяется прямолинейно с одинаковой скоростью.
  • 2. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, другая часть преломляется, продолжая прямолинейное распространение, третья - ослабляется.

Ослабление УЗ определяется так называемым ИМПЕДАНСОМ - ультразвуковым ослаблением. Величина его зависит от плотности среды и скорости распространения в ней УЗ волны. Чем выше градиент перепада акустической плотности пограничных сред, тем большая часть УЗ колебаний отражается. Например, на границе перехода УЗ из воздуха на кожу происходит отражение почти 100% колебаний (99,99%). Именно поэтому при ультразвуковом исследовании (УЗИ) необходимо смазывать поверхность кожи пациента водным желе, которое выполняет роль переходной среды, ограничивающей отражение излучения. УЗ почти полностью отражается от кальцинатов, давая резкое ослабление эхосигналов в виде акустической дорожки (дистальная тень). Наоборот, при исследовании кист и полостей, содержащих жидкость, возникает дорожка за счет компенсаторного усиления сигналов.

Наибольшее распространение в клинической практике нашли три метода ультразвуковой диагностики: одномерное исследование (эхография), двухмерное исследование (сканирование, сонография) и допплерография.

1. Одномерная эхография основана на отражении импульсов У3, которые фиксируются на мониторе в виде вертикальных всплесков (кривых) на прямой горизонтальной линии (линии развертки). Одномерный метод дает информацию о расстояниях между слоями тканей на пути ультразвукового импульса. Одномерная эхография до настоящего времени применяется в диагностике болезней головного мозга (эхоэнцефалография), органа зрения, сердца. В нейрохирургии эхоэнцефалография используется для определения размеров желудочков и положения срединных диэнцефальных структур. В офтальмологической практике этот метод применяется для изучения структур глазного яблока, помутнения стекловидного тела, отслойки сетчатки или сосудистой оболочки, для уточнения локализации инородного тела или опухоли в орбите. В кардиологической клинике эхография оценивает структуру сердца в виде кривой на видеомониторе называемой М-эхограммой (motion - движение).

2. Двухмерное ультразвуковое сканирование (сонография). Позволяет получить двухмерное изображение органов (В-метод, brightness - яркость). При сонографии идет перемещение датчика в направлении перпендикулярном линии распространения ультразвукового луча. Отраженные импульсы сливаются в виде светящихся точек на мониторе. Поскольку датчик находится в постоянном движении, а экран монитора имеет длительное свечение, то отраженные импульсы сливаются, формируя изображение сечения обследуемого органа. Современные аппараты имеют до 64 степеней градации цвета, именуемой «серой шкалой», обеспечивающей разницу в структурах органов и тканей. Дисплей делает изображение в двух качествах: позитивном (белый фон, черное изображение) и негативном (черный фон, белое изображение).

Визуализация в режиме реального времени отражает динамическое изображение движущихся структур. Она обеспечивается разнонаправленными датчиками, имеющих до 150 и более элементов - линейное сканирование, либо из одного, но совершающего быстрые колебательные движения - секторальное сканирование. Картина исследуемого органа при УЗИ в масштабе реального времени возникает на видеомониторе мгновенно с момента исследования. Для исследования органов прилегающих к открытым полостям (прямой кишке, влагалищу, ротовой полости, пищеводу, желудку, толстой кишке) - используют специальные интраректальные, интравагинальные и другие внутриполостные датчики.

3.Допплеровская эхолокация - метод ультразвукового диагностического исследования движущихся объектов (элементов крови), основанный на эффекте Допплера. Эффект Допплера связан с изменением частоты ультразвуковой волны, воспринимаемой датчиком, происходящее вследствие перемещения исследуемого объекта относительно датчика: частота эхосигнала, отраженного от движущегося объекта, отличается от частоты излученного сигнала. Существует две модификации допплерографии:

  • а) - непрерывная, которая наиболее эффективна при измерении высоких скоростей кровотока в местах сужения сосудов, однако непрерывная допплерография имеет существенный недостаток - она даёт суммарную скорость движения объекта, а не только потока крови;
  • б) - импульсная допплерография лишена этих недостатков и позволяет измерить малые скорости на большой глубине или большие скорости на малой глубине в нескольких контрольных объектах малой величины.

Допплерография используется в клинике для изучения формы контуров и просветов кровеносных сосудов (сужения, тромбоз, отдельные склеротические бляшки). Важное значение в клинике УЗ диагностики в последние годы приобретает сочетание сонографии и допплерографии (т.н. дуплексная сонография), которая и позволяет выявить изображение сосудов (анатомическая информация) и получает запись кривой кровотока в них (физиологическая информация), к тому же в современных ультразвуковых аппаратах имеется система, позволяющая раскрашивать разнонаправленные потоки крови в разные цвета (синий и красный), так называемое цветное допплеровское картирование. Дуплексная сонография, цветное картирование позволяют следить за кровенаполнением плаценты, сокращениями сердца у плода, за направлением кровотока в камерах сердца, определять обратный ток крови в системе воротной вены, вычислять степень стеноза сосудов и т.д.

В последние годы стали известны некоторые биологические эффекты у персонала при проведении УЗ исследований. Действие УЗ через воздух прежде всего сказывается на критическом объёме, каковым является уровень сахара в крови, отмечаются электролитные сдвиги, повышается утомляемость, возникает головная боль, тошнота, шум в ушах, раздражительность. Однако в большинстве случаев эти признаки носят неспецифический характер и имеют выраженную субъективную окраску. Этот вопрос требует дальнейшего изучения.

Медицинская термография - метод регистрации естественного теплового излучения тела человека в виде невидимых инфракрасных излучений. Инфракрасное излучение (ИКИ) дают все тела с температурой выше минус 237 0 С. Длина волны ИКИ от 0,76 до 1 мм. Энергия излучения меньше, чем у квантов видимого света. ИКИ поглощается и слабо рассеивается, имеет как волновое, так и квантовое свойство. 0собенности метода:

  • 1. Абсолютно безвреден.
  • 2. Высокая скорость исследования (1 - 4 мин.).
  • 3. Достаточно точный - улавливает колебания в 0,1 0 С.
  • 4. Имеет возможность одновременно оценивать функциональное состояние нескольких органов и систем.

Методики термографического исследования:

  • 1. Контактная термография основана на использовании термоиндакаторных пленок на жидких кристаллах в цветном изображении. По цветному окрашиванию изображения с помощью калориметрической линейки судят о температуре поверхностных тканей.
  • 2. Дистанционная инфракракрасная термография - самый распространенный метод терморгафии. Она обеспечивает получение изображения теплового рельефа поверхности тела и измерение температуры в любом участке тела человека. Дистанционный тепловизор дает возможность получать на экране аппарата отображение теплового поля человека в виде черно-белого или цветного изображения. Эти изображения можно зафиксировать на фотохимической бумаге и получить термограмму. Используя так называемые активные, стрессовые пробы: холодовые, гипертермические, гипергликемические, можно выявить начальные, даже скрытые нарушения терморегуляции поверхности тела человека.

В настоящее время термография применяется для обнаружения расстройств кровообращения, воспалительных, опухолевых и некоторых профессиональных заболеваний, особенно при диспансерном наблюдении. Считается, что этот метод, имея достаточную чувствительность, не обладает высокой специфичностью, что затрудняет его широкое применение при диагностике различных заболеваний.

Последние достижения науки и техники позволяют измерять температуру внутренних органов по собственному их излучению радиоволн в СВЧ диапазоне. Эти измерения производят с помощью микроволнового радиометра. Зa этим методом более перспективное будущее, чем за инфракрасной термографией.

Огромным событием последнего десятилетия явилось внедрение в клиническую практику поистине революционного метода диагностики ядерно-магнитной-резонансной томографии, именуемой в настоящее время магнитно-резонансной томографией (слово «ядерная» снято, чтобы не вызывать у населения радиофобии). Метод магнитно-резонансной томографии (МРТ) основан на улавливании электромагнитных колебаний от определенных атомов. Дело в том, что ядра атомов, содержащие нечётное количество протонов и нейтронов имеют собственный ядерно-магнитный спин, т.е. угловой момент вращения ядра вокруг собственной оси. К таким атомам относится водород, составная часть воды, которая в организме человека доходит до 90%. Подобный эффект дают и другие атомы, содержащие нечётное количество протонов и нейтронов (углерод, азот, натрий, калий и другие). Поэтому каждый атом подобен магниту и в обычных условиях оси углового момента располагаются хаотично. В магнитном поле диагностического диапазона при мощности порядка 0,35-1,5 Т (единица измерения магнитного поля названа в честь Тесла - сербского, югославского учeнoгo, имеющего 1000 изобретений), атомы ориентируются по направлению магнитного поля параллельно или антипараллельно. Если в этом состоянии наложить радиочастотное поле (порядка 6,6-15 Мгц), то возникает ядерно-магнитный резонанс (резонанс, как известно, возникает, когда частота возбуждения совпадает с собственной частотой системы). Этот радиочастотный сигнал улавливается детекторами и через компьютерную систему строится изображение, основанное на протонной плотности (чем больше протонов в среде, тем интенсивнее сигнал). Наиболее яркий сигнал дает жировая ткань (высокая протонная плотность). Наоборот, костная ткань из-за небольшого количества воды (протонов), дает наименьший сигнал. Для каждой ткани свой сигнал.

Магнитно-резонансная томография обладает рядом преимуществ перед остальными методами диагностической визуализации:

  • 1. Отсутствие лучевой нагрузки,
  • 2. Отсутствие необходимости применения контрастных веществ в большинстве случаев рутинной диагностики, так как МРТ позволяет видеть с осуды, особеннокрупные и средние без контрастирования.
  • 3. Возможность получения изображения в любой плоскости, включая три ортоганальные анатомические проекции, в отличие от рентгеновской компьютерной томографии, где исследование проводится в аксиальной проекции, и в отличии от УЗИ, где изображение ограниченное (продольное, поперечное, секторальное).
  • 4. Высокая разрешающая способность выявления структур мягких тканей.
  • 5. Нет необходимости специальной подготовки пациента к исследованию.

За последние годы появились новые методы лучевой диагностики: получение трехмерного изображения с использованием спиральной компьютерной рентгеновской томографии, возник метод использующий принцип виртуальной реальности с трехмерным изображением, моноклоналъная радионуклидная диагностика и некоторые другие методы, находящиеся на стадии эксперимента.

Таким образом, в этой лекции дана общая характеристика методов и методик лучевой диагностики, более подробное описание их будет дано в частных разделах.

Одной из активно развивающихся отраслей современной клинической медицины является лучевая диагностика. Этому способствует постоянный прогресс в области компьютерных технологий и физики. Благодаря высокоинформативным неинвазивным методам обследования, обеспечивающим подробную визуализацию внутренних органов, врачам удается выявлять заболевания на разных стадиях их развития, в том числе и до появления ярко выраженной симптоматики.

Сущность лучевой диагностики

Лучевой диагностикой принято называть отрасль медицины, связанную с применением ионизирующего и неионизирующего излучения с целью обнаружения анатомических и функциональных изменений в организме и выявления врожденных и приобретенных заболеваний. Выделяют такие виды лучевой диагностики:

  • рентгенологическая, подразумевающая использование рентгеновских лучей: рентгеноскопия, рентгенография, компьютерная томография (КТ), флюорография, ангиография;
  • ультразвуковая, связанная с применением ультразвуковых волн: ультразвуковое исследование (УЗИ) внутренних органов в форматах 2D, 3D, 4D, допплерография;
  • магнитно-резонансная, основанная на явлении ядерного магнитного резонанса – способности вещества, содержащего ядра с ненулевым спином и помещенного в магнитное поле, поглощать и излучать электромагнитную энергию: магнитно-резонансная томография (МРТ), магнитно-резонансная спектроскопия (МРС);
  • радиоизотопная, предусматривающая регистрацию излучения, исходящего от радиофармацевтических препаратов, введенных в организм пациента или в биологическую жидкость, содержащуюся в пробирке: сцинтиграфия, сканирование, позитронно-эмиссионная томография (ПЭТ), однофотонная эмиссионная томография (ОФЭКТ), радиометрия, радиография;
  • тепловая, связанная с использованием инфракрасного излучения: термография, тепловая томография.

Современные методы лучевой диагностики позволяют получать плоские и объемные изображения внутренних органов человека, поэтому их называют интраскопическими («intra» – «внутри чего-либо»). Они предоставляют медикам около 90 % информации, необходимой для постановки диагнозов.

В каких случаях противопоказана лучевая диагностика

Исследования такого типа не рекомендуется назначать пациентам, пребывающим в коме и тяжелом состоянии, сочетающемся с лихорадкой (повышенной до 40-41 ̊С температурой тела и ознобом), страдающим от острой печеночной и почечной недостаточности (утраты органами способности в полной мере выполнять свои функции), психических заболеваний, обширных внутренних кровотечений, открытого пневмоторакса (когда воздух во время дыхания свободно циркулирует между легкими и внешней средой через повреждение грудной клетки).

Однако иногда требуется проведение КТ головного мозга по неотложным показаниям, например, пациенту в коме при дифференциальной диагностике инсультов, субдуральных (область между твердой и паутинной мозговыми оболочками) и субарахноидальных (полость между мягкой и паутинной мозговыми оболочками) кровоизлияний.

Все дело в том, что КТ проводится очень быстро, и гораздо лучше «видит» объемы крови внутри черепа.

Это позволяет принять решение о необходимости срочного нейрохирургического вмешательства, а при проведении КТ можно оказывать пациенту реанимационное пособие.

Рентгенологические и радиоизотопные исследования сопровождаются определенным уровнем лучевой нагрузки на организм пациента. Так как доза радиации, хоть и небольшая, способна негативно сказаться на развитии плода, рентгенологическое и радиоизотопное лучевое обследование при беременности противопоказано. Если один из этих видов диагностики назначен женщине в период лактации, ей рекомендуется на 48 часов после процедуры прекратить грудное вскармливание.

Магнитно-резонансные исследования не связаны с радиацией, поэтому разрешены беременным женщинам, но все же их проводят с осторожностью: в ходе процедуры есть риск чрезмерного нагревания околоплодных вод, что может навредить ребенку. То же самое касается и инфракрасной диагностики.

Абсолютным противопоказанием к магнитно-резонансному исследованию является наличие у пациента металлических имплантатов, кардиостимулятора.

Ультразвуковая диагностика противопоказаний не имеет, поэтому разрешена и детям, и беременным. Только больным, у которых имеются повреждения прямой кишки, не рекомендуется проводить трансректальное ультразвуковое исследование (ТРУЗИ).

Где используются лучевые методы обследования

Широкое применение получила лучевая диагностика в неврологии, гастроэнтерологии, кардиологии, ортопедии, отоларингологии, педиатрии и других отраслях медицины. Об особенностях ее использования, в частности, о ведущих инструментальных методах исследования, назначаемых пациентам с целью выявления заболеваний различных органов и их систем, речь пойдет дальше.

Применение лучевой диагностики в терапии

Лучевая диагностика и терапия – тесно связанные друг с другом отрасли медицины. Как свидетельствует статистика, в число проблем, с которыми чаще всего обращаются пациенты к врачам-терапевтам, входят заболевания дыхательной и мочевыводящей систем.

Основным методом первичного обследования органов грудной клетки продолжает оставаться рентгенография.
Это связано с тем, что рентгенологическая лучевая диагностика заболеваний органов дыхания недорогостоящая, быстрая и высокоинформативная.

Независимо от предполагаемого заболевания, сразу делают обзорные снимки в двух проекциях – прямой и боковой во время глубокого вдоха. Оценивают характер затемнения/просветления легочных полей, изменения сосудистого рисунка и корней легких. Дополнительно могут быть выполнены изображения в косой проекции и на выдохе.

Для определения деталей и характера патологического процесса часто назначают рентгенологические исследования с контрастом:

  • бронхографию (контрастирование бронхиального дерева);
  • ангиопульмонографию (контрастное исследование сосудов малого круга кровообращения);
  • плеврографию (контрастирование плевральной полости) и другие методы.

Лучевая диагностика при пневмонии, подозрении на скопление жидкости в плевральной полости или тромбоэмболию (закупорку) легочной артерии, наличие опухолей в зоне средостения и субплевральных отделах легких часто проводится с помощью УЗИ.

Если перечисленные выше способы не позволили обнаружить существенных изменений в легочной ткани, но при этом у пациента наблюдается тревожная симптоматика (одышка, кровохарканье, наличие атипичных клеток в мокроте), назначается КТ легких. Лучевая диагностика туберкулеза легких такого типа позволяет получать объемные послойные изображения тканей и обнаруживать заболевание даже на стадии его зарождения.

Если необходимо исследовать функциональные способности органа (характер вентиляции легких), в том числе и после трансплантации, провести дифференциальную диагностику между добро- и злокачественными новообразованиями, проверить легкие на наличие метастазов рака другого органа, проводится радиоизотопная диагностика (сцинтиграфия, ПЭТ или используются другие методы).

В задачи службы лучевой диагностики, функционирующей при местных и региональных департаментах охраны здоровья, входит контроль соблюдения медицинским персоналом стандартов исследований. Это необходимо, так как при нарушении порядка и периодичности проведения диагностических процедур чрезмерное облучение может стать причиной ожогов на теле, поспособствовать развитию злокачественных новообразований и уродств у детей в следующем поколении.

Если радиоизотопные и рентгенологические исследования выполняются правильно, дозы излучаемой радиации незначительные, неспособные вызывать нарушения в работе организма взрослого человека. Инновационное цифровое оборудование, которое пришло на смену старым рентгеновским аппаратам, позволило существенно снизить уровень лучевой нагрузки. К примеру, доза облучения при маммографии варьируется в диапазоне от 0,2 до 0,4 мЗв (миллизиверта), при рентгене органов грудной клетки – от 0,5 до 1,5 мЗв, при КТ головного мозга – от 3 до 5 мЗв.

Максимально допустимая для человека доза облучения составляет 150 мЗв в год.

Применение рентгеноконтрастных веществ в лучевой диагностике помогает защитить зоны тела, которые не исследуются, от облучения. С этой целью перед рентгеном на пациента надевают свинцовый фартук, галстук. Чтобы радиофармацевтический препарат, введенный в организм перед радиоизотопной диагностикой, не накапливался и быстрее выводился вместе с мочой, больному рекомендуют пить много воды.

Подводя итоги

В современной медицине лучевая диагностика в неотложных состояниях, при выявлении острых и хронических заболеваний органов, обнаружении опухолевых процессов играет ведущую роль. Благодаря интенсивному развитию компьютерных технологий удается постоянно совершенствовать диагностические методики, делая их более безопасными для человеческого организма.

ГУ «Уфимский НИИ глазных болезней» АН РБ, г. Уфа

Открытие рентгеновских лучей положило начало новой эре в медицинской диагностике — эре рентгенологии. Современные методы лучевой диагностики подразделяются на рентгенологический, радионуклидный, магнитно-резонансный, ультразвуковой.
Рентгенологический метод — это способ изучения строения и функции различных органов и систем, основанный на качественном и количественном анализе пучка рентгеновского излучения, прошедшего через тело человека. Рентгенологическое исследование может проводиться в условиях естественной контрастности или искусственного контрастирования.
Простой и необременительной для пациента является рентгенография. Рентгенограмма является документом, который можно хранить продолжительное время, использовать для сопоставления с повторными рентгенограммами и предъявлять для обсуждения неограниченному числу специалистов. Показания к рентгенографии должны быть обоснованы, так как рентгеновское излучение сопряжено с лучевой нагрузкой.
Компьютерная томография (КТ) — это послойное рентгенологическое исследование, основанное на компьютерной реконструкции изображения, получаемого при круговом сканировании объекта узким пучком рентгеновского излучения. Компьютерный томограф способен различать ткани, отличающиеся друг от друга по плотности всего на половину процента. Поэтому компьютерный томограф дает примерно в 1000 раз больше информации, чем обычный рентгеновский снимок. При спиральной КТ излучатель движется по спирали по отношению к телу пациента и захватывает за несколько секунд определенный объем тела, который в последующем может быть представлен отдельными дискретными слоями. Спиральная КТ инициировала создание новых перспективных способов визуализации — компьютерной ангиографии, трехмерного (объемного) изображения органов, и, наконец, так называемой виртуальной эндоскопии, которая стала венцом современной медицинской визуализации.
Радионуклидный метод — это способ исследования функционального и морфологического состояния органов и систем с помощью радионуклидов и меченных ими индикаторов. Индикаторы — радиофармацевтические препараты (РФП) — вводят в организм больного, а затем с помощью приборов определяют скорость и характер перемещения, фиксации и выведения их из органов и тканей. Современными методами радионуклидной диагностики являются сцинтиграфия, однофотонная эмиссионная томография (ОФЭТ) и позитронная эмиссионная томография (ПЭТ), радиография и радиометрия. В основе методов лежит введение РФП, которые испускают позитроны или фотоны. Эти вещества, введенные в человеческий организм, скапливаются в областях увеличенного метаболизма и повышенных кровяных потоков.
Ультразвуковой метод — способ дистантного определения положения, формы, величины, структуры и движения органов и тканей, а также патологических очагов с помощью ультразвукового излучения. Он может зарегистрировать даже незначительные изменения плотности биологических сред. Благодаря этому ультразвуковой метод стал одним из наиболее популярных и доступных исследований в клинической медицине. Наибольшее распространение нашли три метода: одномерное исследование (эхография), двухмерное исследование (сонография, сканирование) и допплерография. Все они основаны на регистрации отраженных от объекта эхосигналов. При одномерном А-методе отраженный сигнал образует на экране индикатора фигуру в виде пика на прямой линии. Количество и расположение пиков на горизонтальной прямой соответствует расположению отражающих ультразвук элементов объекта. Ультразвуковое сканирование (В-метод) позволяет получать двухмерное изображение органов. Сущность метода заключается в перемещении ультразвукового пучка по поверхности тела во время исследования. Получаемая серия сигналов служит для формирования изображения. Оно возникает на дисплее и может быть зафиксировано на бумаге. Это изображение можно подвергнуть математической обработке, определяя размеры (площадь, периметр, поверхность и объем) исследуемого органа. Допплерография позволяет неинвазивно, безболезненно и информативно регистрировать и оценивать кровоток органа. Доказана высокая информативность цветного допплеровского картирования, которое используют в клинике для изучения формы, контуров и просвета кровеносных сосудов.
Магнитно-резонансная томография (МРТ) — исключительно ценный метод исследования. Вместо ионизирующего излучения используется магнитное поле и радиочастотные импульсы. Принцип действия основан на феномене ядерно-магнитного резонанса. Манипулируя градиентными катушками, создающими небольшие дополнительные поля, можно записывать сигналы от тонкого слоя тканей (до 1 мм) и легко изменять направление среза — поперечный, фронтальный и сагиттальный, получая трехмерное изображение. К основным достоинствам метода МРТ относятся: отсутствие лучевой нагрузки, возможность получать изображение в любой плоскости и выполнять трехмерные (пространственные) реконструкции, отсутствие артефактов от костных структур, высокая разрешающая способность визуализации различных тканей, практически полная безопасность метода. Противопоказанием к проведению МРТ является наличие в организме металлических инородных тел, клаустрофобия, судорожный синдром, тяжелое состояние пациента, беременность и лактация.
Развитие лучевой диагностики играет большую роль и в практической офтальмологии. Можно утверждать, что орган зрения — идеальный объект для КТ ввиду выраженных различий в поглощении излучения в тканях глаза, мышцах, нервах, сосудах и ретробульбарной жировой клетчатке. КТ позволяет лучшим образом изучить костные стенки глазниц, выявить патологические изменения в них. КТ применяют при подозрении на опухоль глазницы, при экзофтальме неясного генеза, травмах, инородных телах глазницы. МРТ дает возможность исследовать глазницу в разных проекциях, позволяет лучше разобраться в структуре новообразований внутри глазницы. Но эта методика противопоказана при попадании металлических инородных тел в глаз.
Основными показаниями к проведению УЗИ являются: повреждения глазного яблока, резкое снижение прозрачности светопроводящих структур, отслойка сосудистой оболочки и сетчатки, наличие инородных внутриглазных тел, опухоли, повреждения зрительного нерва, наличие участков обызвествлений в оболочках глаза и области зрительного нерва, динамическое наблюдение за проводимым лечением, изучение характеристик кровотока в сосудах орбиты, исследования перед МРТ или КТ.
Рентгенографию используют как скрининговый метод при травмах глазницы и поражениях ее костных стенок для выявления плотных инородных тел и определения их локализации, проводят диагностику заболеваний слезных путей. Большое значение имеет метод рентгенологического исследования смежных с глазницей придаточных пазух носа.
Так, в Уфимском научно-исследовательском институте глазных болезней за 2010 год проведено 3116 рентгеновских исследований, в т. ч. пациентам из поликлиники — 935 (34 %), из стационара — 1059 (30 %), из кабинета неотложной помощи — 1122 (36 %). Сделано 699 (22,4 %) специальных исследований, к которым относятся исследование слезоотводящих путей с контрастированием (321), бесскелетная рентгенография (334), выявление локализации инородных тел в орбите (39). Рентгенография органов грудной клетки при воспалительных заболеваниях орбиты и глазного яблока составила 18,3 % (213), а придаточных пазух носа — 36,3 % (1132).

Выводы . Лучевая диагностика является необходимой составной частью клинического обследования больных в офтальмологических клиниках. Многие достижения традиционного рентгенологического исследования все больше отступают перед совершенствующимися возможностями КТ, УЗИ, МРТ.