Химия липидов. Липиды.


Липиды , жиры, триглицериды, триацилглицеролы, жирные кислоты – вот круг понятий, в которых хотелось бы разобраться в данной статье. Забегая наперед, заметим, что слова «жиры», «триглицериды» и «триацилглицеролы» - это синонимы, понятие липидов является наиболее широким из указанных, а жирные кислоты – составные части липидов.

Понятие липидов

Словом липиды обозначают некий класс или множество органических веществ, содержащихся во всех живых клетках. Из-за их очень большого химического разнообразия не дают строгого определения, а в нестрогом смысле говорят, что липиды – это нерастворимые в воде органические вещества, которые можно извлечь из клеток органическими растворителями - эфиром, хлороформом и бензолом. Естественно, что данное описание не точное. В настоящее время известно достаточное количество соединений, нерастворимых в неполярных растворителях или же, наоборот, хорошо растворимых в воде, которые, тем не менее, относят к липидам. В современной науке больше склоняются к таким определениям термина «липиды»: к липидам относят жирные кислоты и их производные или липиды - это сложные эфиры жирных кислот и какого-либо спирта.

Триацилглицерол

Жирные кислоты – компоненты липидов

Жирные кислоты - алифатические одноосновные карбоновые кислоты с открытой цепью. Общая формула жирных кислот имеет вид R-COOH. В липидах радикал R представлен обычно длинной цепью углеродных атомов. На рис. изображено строение двух наиболее распространенных жирных кислот. Длинная цепь из атомов углерода и водорода составляет углеводородный хвост молекулы жирной кислоты. Углеводородные хвосты определяют многие свойства липидов, в том числе и нерастворимость в воде.

Иногда в жирных кислотах имеются одна или несколько двойных связей (С=С) (например, в олеиновой кислоте). В этом случае жирные кислоты называются ненасыщенными. Жирные кислоты, в молекулах которых нет двойных связей, называются насыщенными. Наличие двойных связей влияет на температуру плавления и на физические свойства. Олеиновая кислота - основной компонент оливкового масла - при обычных температурах бывает жидкой (Тпл=13,4°С), тогда как пальмитиновая и стеариновая кислоты (Тпл=63,1°С и Тпл=69,6°С) при таких температурах остаются твердыми.

Образование триацилглицеролов

Большая часть липидов - это сложные эфиры спирта глицерола. Их называют поэтому глицеридами. У глицерола имеются три гидроксильные (-ОН) группы, каждая из которых способна вступать в реакцию конденсации с жирной кислотой, т. е. образовывать сложный эфир. Обычно в реакцию конденсации вступают все три гидроксильные группы глицерола, поэтому продукт реакции называют триглицеридом или триацилглицеролом. Триацилглицеролы принято называть еще просто жирами, т.е. жиры – это триацилглицеролы, один из видов липидов.

Свойства и функции триацилглицеролов

Триацилглицеролы - самые распространенные из липидов , встречающихся в природе. Их принято делить на жиры и масла в зависимости от того, остаются ли они твердыми при 20°С (жиры) или имеют при этой температуре жидкую консистенцию (масла). Температура плавления липида тем ниже, чем выше в нем доля ненасыщенных жирных кислот.

Триацилглицеролы неполярны и вследствие этого практически нерастворимы в воде. Их плотность ниже, чем у воды, поэтому в воде они всплывают.

Основная функция триацилглицеролов - служить энергетическим депо. Калорийность липидов выше калорийности углеводов. У позвоночных жир отлагается еще и под кожей - в так называемой подкожной клетчатке, где он служит для теплоизоляции. Одним из продуктов окисления жиров является вода. Эта метаболическая вода очень важна для некоторых обитателей пустыни.

Разнообразие липидов

Один из видов липидов , а именно триацилглицеролы, мы уже рассмотрели. Заметим, что к липидам относят также некоторые жирорастворимые вещества, в молекулы которых не входят жирные кислоты, например, терпены, стерины.

Фосфолипиды

Фосфолипидами называют липиды , содержащие фосфатную группу. Главная роль среди них принадлежит фосфоглицеридам, в молекуле которых первичная спиртовая группа (-СН2ОН) глицерола этерифицирована не жирной, а фосфорной кислотой (Н3РО4). Фосфолипиды - компоненты мембран.

Гликолипиды

Гликолипидами называют вещества, образующиеся в результате соединения липидов с углеводами. Гликолипиды - компоненты клеточных мембран, особенно в миелиновой оболочке нервных волокон и на поверхности нервных клеток, а также компоненты мембран хлоропластов.

Липопротеины

Из липопротеинов состоят мембраны; в форме липопротеинов переносятся с кровью и лимфой липиды, т. е. липопротеины - это транспортная форма липидов.

Воски

Воски - сложные эфиры высших жирных кислот и высших высокомолекулярных спиртов. Используются у растений и животных в качестве водоотталкивающего покрытия; образуют дополнительный защитный слой листьев растений, плодов и семян; покрывают кожу, шерсть и перья; входят в состав наружного скелета насекомых; из воска пчелы строят соты.

Стероиды

Стероидами являются желчные кислоты, например холевая кислота; соли желчных кислот способствуют эмульгированию липидов в процессе переваривания; половые гормоны, например эстроген, прогестерон, тестостерон; холестерол; витамин D и др.

Терпены

К терпенам относятся вещества, от которых зависит аромат эфирных масел растений, например ментол у мяты, камфора; гиббереллины - ростовые вещества растений; фитол, входящий в состав хлорофилла; каротиноиды - фотосинтетические и др.

Заключение

Как мы видим, липиды – это не только обширный класс органических веществ, но и группа очень важных в жизнедеятельности живых организмов химических соединений.

Химия липидов

Липиды – это органические вещества, которые плохо растворимыили нерастворимы в воде, но растворяются в органических растворителях; они являются настоящими или потенциальными эфирами жирных кислот.

Содержание липидов в организме человека составляет в среднем 10-20% от массы тела. Липиды можно условно разделить на два вида: протоплазматические и резервные. Протоплазматические (конституционные) входят в состав всех органов и тканей. Они составляют примерно 25% всех липидов организма и практически остаются на одном уровне в течение всех жизни. Резервные липиды запасаются в организме и количество их меняется в зависимости от различных условий.

Биологическое значение липидов в организме велико. Так, они обнаружены в составе всех органов и тканей. Наибольшее количество (до 90%) содержится в жировой ткани. В мозге липиды составляют половину массы органа.

Функции липидов в организме:

Ø Энергетическая – наряду с углеводами являются основным энергетическим топливом клетки. При сжигании 1 г липидов выделяется 38,9 кДж (или 9,3 ккал).

Ø Структурная – липиды (фосфолипиды, гликолипиды) вместе с белками входят в состав биологических мембран.

Ø Защитная – функция механической защиты, роль которой выполняет подкожная жировая клетчатка.

Ø Терморегуляторная – реализация этой функции осуществляется благодаря двум аспектам: а) жир плохо проводит тепло, поэтому является теплоизолятором; б) при охлаждении организма на генерирование тепла за счёт выделения энергии расходуются липиды.

Ø Регуляторная – ряд гормонов (половые, гормоны коры надпочечников) являются производными липидов.

Ø Липиды являются источником ненасыщенных высших жирных кислот – витамина F , одного из незаменимых факторов питания.

Ø Жир является источником эндогенной воды в организме. При окислении 100 г липидов образуется 107 г воды.

Ø Липиды выполняют функцию естественных растворителей. Они обеспечивают всасывание в кишечнике незаменимых жирных кислот и жирорастворимых витаминов.

Классификация липидов

Все липиды делятся на 2 группы: омыляемые и неомыляемые .



Различают два класса омыляемых липидов: простые и сложные липиды. Простые липиды получили свое название вследствие того, что состоят только из атомов С, Н и О. К ним относятся две группы соединений: нейтральные жиры и воски.

Простые липиды

К этой группе относятся вещества, представляющие собой сложные эфиры спиртов и высших жирных кислот. Из спиртов в составе липидов имеются: глицерин, олеиновый спирт и циклический спирт – холестерин.

Триацилглицерины (ТАГ) (триглицериды, нейтральные жиры). Являются сложными эфирами глицерина и трех молекул высших жирных кислот. ТАГ – основные компоненты аподоцитов жировой ткани, являющейся депо нейтральных жиров в организме человека и животных.

ТАГ имеют следующую структуру:

где R 1 , R 2, R 3 – остатки насыщенных и ненасыщенных жирных кислот.



Поскольку глицерин - это трехатом­ный спирт, жирные кислоты могут образовывать сложноэфир ные связи в трех местах. Соответственно в тканях организма встречаются моноацилглицериды, диацилглицериды и триацил глицериды.

Атомы углерода в молекуле глицерина пронумерованы в со­ответствии со стереохимической номенклатурой. Существует много различных типов триацилглицеридов, которые отлича­ются природой трех остатков жирных кислот, присоединенных к глицерину сложноэфирной связью. Если во всех трех поло­жениях находятся остатки одной и той же жирной кислоты, то такие триацилглицериды называются простыми . В этом слу­чае названия их определяются названием соответствующей жирной кислоты. Примерами простых триацилглицеридов мо­гут служить тристеароилглицерин (три остатка стеариновой кислоты в составе), трипальмитоилглицерин. Триацилглицери­ды, в составе которых содержатся остатки двух или трех раз­ных жирных кислот, называются смешанными.

Температура плавления нейтральных жиров (ТАГ) зависит от жир­но-кислотного состава. Она повышается с увеличением числа и длины жирно-кислотных компонентов. К примеру, при 20°С тристеарин и трипальмитин являются твердыми веществами, а триолеин и трилинолеин - жидкостью. Надо отметить, что три­ацилглицериды полностью нерастворимы в воде, так как в их составе отсутствуют полярные группы. Что касается диацил- и моноацилглицеридов, то они обладают полярностью вследствие наличия свободных гидроксильных групп. Поэтому они частич­но взаимодействуют с водой. Триацилглицериды растворимы в диэтиловом эфире, бензоле, хлороформе. Большинство нейтраль­ных жиров в организме животных содержит в своем составе преимущественно остатки пальмитиновой, стеариновой, олеи­новой и линолевой жирных кислот. При этом состав нейтраль­ного жира из различных тканей одного и того же организма может существенно различаться. Так, подкожный жир человека более богат насыщенными жирными кислотами, чем жир пе­чени, содержащий больше ненасыщенных жирных кислот.

Жиры масла и молока содержат наибольшее количество короткоцепочечных жирных кислот.

Жирные кислоты – это алифатические карбоновые кислоты. Они служат своеобразными строительными блоками для большинства липидов. В настоящее время из живых организмов выделено свыше 70 жирных кислот. Их можно разделить на две группы: 1) насыщенные жирные кислоты и 2) ненасыщенные жирные кислоты.

Из насыщенных жирных кислот в организме чаще встречаются пальмитиновая, стеариновая и реже – лигноцериновая, имеют в своем составе 24 углеродных атомов. Жирные кислоты, содержащие 10 и меньше атомов угле­рода редко встречаются в составе липидов живот­ных. Из ненасыщенных жирных кислот наиболее широко представлены в организме кислоты, состоящие из 18 углеродных атомов. К ним относятся олеиновая (имеет одну двойную связь), линолевая (две двойных связи), линоленовая (три двойных связи) и арахидоновая (имеет четыре двойных связи) кислоты. Линолевая и линоленовая в организме не синтезируются , и поэтому относятся к незаменимым факторам питания и должны регулярно поступать с пищей – растительными маслами, где они составляют до 95%.

В жирах человека преобладают пальмитиновая, миристиновая и в меньшем количестве стеариновая кислота, а из ненасыщенных – олеиновая, линолевая и линоленовая.

Физико-химические свойства липидов определяются свойствами входящих в их состав жирных кислот. Так, насыщенные жирные кислоты имеют высокую температуру плавления и соответственно животные жиры, состоящие в основном из этих кислот, плавятся при более высокой температуре. Жиры, в которых преобладают ненасыщенные кислоты (растительные масла), имеют более низкую температуру плавления. Ненасыщенность жирных кислот существенно влияет на их свойства. С увеличением числа двойных связей снижается тем­пература плавления жирных кислот, возрастает их раство­римость в неполярных растворителях и они более легко вступают в реакции, чем насыщенные. Так, ненасыщенные кислоты могут присоединять различные атомы по месту двойных связей. В организме олеиновая кислота, имеющая двойную связь, присоединяет два атома водорода и превращается в стеариновую. Все ненасыщенные жир­ные кислоты, встречающиеся в природе, при комнатной тем­пературе - жидкости.

Простагландиды – это производные жирных кислот с 20 углеродными атомами, имеющие в своем составе циклопентановое кольцо. Простагландины встречаются во всех тканях млекопитающих и обладают разнообразным биологическим действием. В настоящее время известно несколько групп простагландинов: A, B, E, F, I, D, H, G. Среди них преобладают простагландины F 2 и F 2α , предшественником которых является арахидоновая кислота. У человека все клетки и ткани, за исключением эритроцитов, синтезируют простагландины.

Механизм действия простагландинов на клетки до конца не выяснен. Биологическое действие простагландинов в организме заключается в следующем:

  • Влияние на сердечно-сосудистую систему – увеличение кровотока путем общего расширения сосудов с уменьшением периферического сопротивления. Кроме того, простагландины регулируют агрегацию тромбоцитов (простагландины группы F – ускоряют, а группы I – ингибируют).

  • Влияние на водно-электролитный обмен. Все простагландины усиливают ионный поток через мембраны эпителиальных клеток.

  • Влияние на нервную систему. Простагландины оказывают седативное и транквилизирующее действие, являются антагонистами противосудорожных препаратов.

  • Влияние на желудочно-кишечный тракт. Простагландины тормозят секрецию желудка и поджелудочной железы, усиливают моторику кишечника.

  • Влияние на репродуктивную систему.

Простагландины участвуют в воспалительном процессе, усиливая его в очаге воспаления. Ингибиторами образования простагландинов является ацетилсалициловая кислота и другие салицилаты. Аспирин инактивирует фермент, катализирующий превращение арахидоновой кислоты в простагландины. Этим объясняется противовоспалительное действие аспирина.

Воски – это сложные эфиры жирных кислот и высших одноатомных или двухатомных спиртов. Число углеродных атомов у таких спиртов составляет от 16 до 22. Это твердые вещества, выполняют в основном защитные функции. К воскам относятся так называемые природные воски , т.е. те, которые синтезируются живыми организмами (пчелиный воск; ланолин – воск, входящий в состав жира, покрывающий шерсть; воск, покрывающий листья растений).

Сложные липиды

В класс сложные липиды входят три группы соединений: фосфолипиды, гликолипиды и сульфолипиды.

Фосфолипиды – сложные липиды, содержащие фосфор. Кроме фосфорной кислоты в их молекулах присутствуют спирты, жирные кислоты, азотистые основания и некоторые другие соединения. Фосфолипиды имеют важное значение для организма: составляют основу биологических мембран, содержатся в большом количестве в нервной ткани (ткань мозга на 60-70% состоит из фосфолипидов), их много в печени и сердце.

В зависимости от входящего в их состав спирта они подразделяются на глицерофосфолипиды и сфингофосфолипиды.

Глицерофосфолипиды . Об­щая структурная формула глицерофосфолипидов включает в себя остаток спирта - глицерина, гидроксильные группы которого у первого и второго углеродных атомов образуют сложные эфир­ные связи с жирными кислотами. Гидроксильная группа у тре­ тьего углеродного атома образует сложноэфирную связь с остат­ ками фосфорной кислоты. Обычно к остатку фосфорной кисло­ ты присоединено какое-то азотсодержащее вещество (холина, серина, этаноламина). Общая фор­ мула глицерофосфолипидов выглядит следующим образом:

где R 1 – насыщенная жирная кислота, R 2 – ненасыщенная жирная кислота, R 3 – азотистое основание, которое дает название отдельным представителям глицерофосфатидов: так, холин дал название – фосфатидилхолину (лецитин); серин – фосфатидилсерину; этаноламин – фосфатидилэтаноламину (кефалин).



Простейшим глицерофосфолипидом является фосфатидная кислота . В тканях организма она содержится в незначительных коли­чествах, однако является важным промежуточным соединени­ем в синтезе триацилглицеридов и фосфолипидов. Наиболее широко представлены в клетках различных тканей фосфатидилхолин (лецитин) и фосфатидилэтаноламин (кефалин). У них к остатку фосфорной кислоты присоединены аминоспирты - холин и этаноламин. Эти два глицерофосфолипида метаболи­чески тесно связаны друг с другом. Они являются главными липидными компонентами большинства биологичес­ких мембран. В тканях находятся и другие глицерофосфолипиды. В фосфатидилсерине фосфорная кислота этерифицирована гидроксильной группой серина, а в фосфатидилинозите - шестиатомным спиртом - инозитом.

Производное фосфатидилинозита - фосфатидилинозит-4,5-бисфосфат является важным компонентом биологических мем­бран. При стимуляции соответствующим гормоном он расщеп­ляется. Продукты его расщепления (диацилглицерид и ипозитолтрифосфат) служат в качестве внутриклеточных мессснджеровдействия гормонов.

С глицерофосфолипидами метаболически очень тесно свя­заны лизофосфолипиды. Вих составе содержится только один остаток жирной кислоты. Примером может служить лизофосфатидилхолин, который играет важную роль в метаболизме фосфолипидов.

Сфингофосфолипиды . Они содержат в своем составе двухатомный ненасыщенный спирт сфингозин.

Представителем этой группы соединений, широко распространенным в организме является сфингомиелин. В его состав входят сфингозин, остаток жирной кислоты, остаток фосфорной кислоты и холин. Сфингомиелин обнаружен в мембранах растительных и животных клеток. Особенно богата сфингофосфолипидами нервная ткань, в частности мозг.

Роль фосфолипидов:

  • Участвуют в образовании мембран.

  • Влияют на функции мембран – избирательную проницаемость, реализацию внешних воздействий на клетку.

  • Формируют гидрофильную оболочку липопротеинов, способствую транспорту гидрофобных липидов.

Характерной особенностью фосфолипидов является их дифильность, т. е. способность растворяться как в водной среде, так и в нейтральных липидах. Это обусловлено наличием у фосфолипидов выраженных полярных свойств. При рН 7,0 их фосфатная группа всегда несет отрицательный заряд.

Остаток серина в молекуле фосфатидилсерина содержит альфа-амино- и карбоксильную группы. Следовательно, при рН 7,0 молекула фосфатидилсерина имеет две отрицательно и одну положительно заряженных группы и несет суммарный отри­цательный заряд. В то же время радикалы жирных кислот в со­ставе фосфолипидов не имеют электрического заряда в вод­ной среде и таким образом являются гидрофобной частью мо­лекулы фосфолипида. Наличие полярности за счет заряда по­лярных групп обусловливает гидрофильность. Поэтому на по­верхности раздела масло - вода фосфолипиды располага­ются таким образом, чтобы полярные группы находились в вод­ной фазе, а неполярные группы - в масляной. За счет этого в водной среде они образуют бимолекулярный слой, а при дости­жении некоторой критической концентрации - мицеллы.

На этом основано участие фосфолипидов в построении биологических мембран. Обработка находящегося в водной среде дифильного липида ультразвуком приводит к образова­нию липосом. Липосома - замкнутый липидный бислой, внутри которого оказывается часть водной среды. Липосомы находят применение в клинике, косметологии в качестве своеобразных контейнеров для переноса лекарств, питательных веществ к оп­ределенным органам и для комбинированного дей­ствия на кожу.

Гликолипиды – это сфинголипиды, содержащие углеводы.

Гликолипиды широко представлены в тканях. Особенно богаты ими миелиновые оболочки нервов. В состав гликолипидов входит спирт – сфингозин. Гликолипиды не содержат фосфорной кислоты. Молекулы их имеют полярные, гидрофильные углеводные группы (чаще всего D-галактозу).

Различают две группы гликолипидов: цереброзиды и ганглиозиды.

Цереброзиды : в состав молекулы входит спирт сфингозин, связанный сложноэфирной связью с остатком жирной кислоты (нервоновая, цереброновая, лигноцериновая) – этот комплекс называется церамид . Углеводная часть цереброзида представлена D-галактозой, которая присоединена к сфингозину. Обнаруженные в цереброзидах жирные кислоты необычны в том отношении, что они содержат 24 атома углерода. Чаще встречаются нервоновая, цереброновая и лигноцериновая кислоты. В состав цереброзидов других тканей (кроме, нервной ткани) вместо галактозы может входить глюкоза.

Ганглиозиды имеют сложное строение. В состав молекулы помимо сфингозина, входит олигосахарид, содержащий остатки глюкозы и галактозы, а также одна или несколько молекул сиаловых кислот (производные аминосахаров).

Сиаловые кислоты - это производные аминосахаров. Доми­нирующими в составе ганглиозидов являются N-ацетилглюкозамин и N-ацетилнейраминовая кислота.

Ганглиозиды обнаруживаются обычно на внешней поверхности клеточных мембран, особенно нервной.

Отмечено распределение цереброзидов и ганглиозидов в ткани мозга. Если в составе белого вещества преобладают цереброзиды, то в составе серого вещества – ганглиозиды.

Сульфолипиды – это гликолипиды, содержащие остаток серной кислоты.

Сульфолипиды (сульфатиды) имеют структуру, аналогичную цереброзидам, с той лишь разницей, что у 3-го углеродного атома галактозы вместо гидроксильной группы присоединен остаток серной кислоты.

Липопротеиды – комплексы липидов с белками. По строению это небольшого размера сферические частицы, наружная оболочка которых образована белками (что позволяет им передвигаться по крови), а внутренняя часть – липидами и их производными. Основная функция липопротеидов – транспорт по крови липидов. В зависимости от количества белка и липидов липопротеиды подразделяются на хиломикроны, липопротеиды очень низкой плотности (ЛПОНП) – пре-β-липопротеины, липопротеиды низкой плотности (ЛПНП) - β-липопротеины и липопротеиды высокой плотности (ЛПВП) –α-липопротеины.

Неомыляемые липиды

Неомыляемые липиды не гидролизуются щелочью с освобождением жирных кислот. Известны два основных типа неомыляемых липидов – высшие спирты и высшие углеводороды.

Высшие спирты

К высшим спиртам относятся холестерин и жирорастворимые витамины – А, D, E.

Стерины – это группа высокомолекулярных циклических спиртов, образующих с жирными кислотами сложные эфиры – стериды. Представителем стеринов является холестерин (одноатомных циклический спирт), впервые выделенный из желчных камней Э. Конради в 17 веке.

Холестерин является производным циклопентанпергидрофенантрена, содержащего три конденсированных циклогексановых колец, с которыми соединено циклопентановое кольцо.



Холестерин является кристаллическим нерастворимым в воде веществом, способным растворяться в органических растворителях.

Холестерин находится во всех клетках организма. Холестерин – один из главных компонентов плазматической мембраны и липопротеинов плазы крови, часто находится в организме в этерифированной форме (в виде эфиров жирных кислот) и служит исходным соединением для синтеза всех стероидов, функционирующих в организме (гормоны коры надпочечников, половые гормоны, витамин D 3). В растениях холестерин не обнаружен .

В организме холестерин выполняет важные функции:

  • Является предшественником многих биологически важных соединений: желчных кислот, стероидных гормонов, витамина Д, глюкокортикоидов и минералокортикоидов;

  • Входит в состав клеточных мембран;

  • Повышает устойчивость эритроцитов к гемолизу;

  • Служит своеобразным изолятором для нервных клеток, обеспечивая проведение нервных импульсов.

Высшие углеводороды

Высшие углеводороды – производные изопрена. К числу липидных компонентов, которые встречаются в клетках ив сравнительно небольшом количестве, относятся терпены . Их молекулы построены путем объединения нескольких молекул пятиуглеродного углеводорода – изопрена. Терпены, содержащие в своем составе две изопреновые группировки, называются монотерпенами, а содержащие три – секвитерпенами.

В растениях обнаружено большое количество моно- и секвитерпенов. Многие из них придают растениям свойственный им аромат и служат главными компонентами душистых масел, получаемых из таких растений. К группе высших терпенов принадлежат каротиноиды (предшественники витамина А). Природный каучук является политерпеном.

Липидами (от греч. lipos – эфир) называют сложную смесь эфироподобных органических соединений с близкими физико-химическими свойствами. Липиды широко используются при получении многих продуктов питания, являются важными компонентами пищевых продуктов, во многом определяя их пищевую и биологическую полноценность и вкусовые качества.

В растениях липиды накапливаются, главным образом, в семенах и плодах и варьируется от нескольких процентов в злаковых и крупяных культурах до десятков процентов в масличных культурах. У животных и рыб липиды концентрируются в подкожных, мозговой и нервной тканях. Содержание липидов в рыбе варьируется от 8 до 25%, у туш наземных животных оно сильно колеблется: 33% (свинина), 9,8% (говядина). В молоке различных видов животных содержание липидов колеблется от 1,7% в кобыльем молоке до 34,5% в молоке самки северного оленя.

Липиды не растворимы в воде (гидрофобны*), хорошо растворимы в органических растворителях (бензине, диэтиловом эфире, хлороформе и др.).

По химическому строению липиды являются производными жирных кислот, спиртов, альдегидов, построенных с помощью сложноэфирной, простой эфирной, фосфоэфирной, гликозидной связей. Липиды делят на две основные группы: простые и сложные липиды. К простым нейтральным липидам относят производные высших жирных кислот и спиртов: глицеролипиды, воски, эфиры холестерин, гликолипиды и другие соединения. Молекулы сложных липидов содержат в своем составе не только остатки высокомолекулярных карбоновых кислот, но и фосфорную, серную кислоты или азот.

Наиболее важная и распространенная группа простых нейтральных липидов – ацилглицерины (или глицериды) . Это сложные эфиры глицерина и высших карбоновых кислот. Они составляют основную массу липидов (иногда до 95%) и, по существу, именно их называют жирами или маслами. В состав жиров входят, главным образом, триацилглицерины (I), реже диацилглицерины (II) и моноацилглицерины (III):

Важнейшими представителями сложных липидов являются фосфолипиды – обязательные компоненты растений (0,3-1,7%). Их молекулы построены из остатков спиртов (глицерина, сфингозина), жирных кислот, фосфорной кислоты (Н3РО4), а также содержат азотистые основания, остатки аминокислот и некоторых других соединений.

Молекулы большинства фосфолипидов построены по общему принципу. В их состав входят, с одной стороны, гидрофобные, отличающиеся низким сродством к воде, с другой – гидрофильные группы (остатки фосфорной кислоты и азотистого основания). Они получили название «полярных головок». Благодаря этому свойству (амфифильность) фосфолипиды часто создают границу раздела (мембрану) между водой и гидрофобной фазой в системах живых организмов и пищевых продуктах.

Липиды выполняют не только энергетическую функцию (свободные липиды), но и выполняют структурную функцию: вместе с белками и углеводами входят в состав мембран клеток и клеточных структур. По массе структурные липиды со-ставляют значительно меньшую группу липидов (в масличных семенах 3-5%). Это трудноизвлекаемые «связанные» и «прочносвязанные» липиды.

Что такое липиды, какова классификация липидов, в чем состоит их строение и функции? Ответ на этот и многие другие вопросы дает биохимия, занимающаяся изучением этих и других веществ, имеющих большое значение для метаболизма.

Что это такое

Липиды представляют собой органические вещества, нерастворяемые в воде. Функции липидов в теле человека многообразны.

Липиды — это слово означает «мелкие частички жира»

Это прежде всего:

  • Энергетическая. Липиды служат субстратом для запасания и использования энергии. При расщеплении 1 грамма жиров выделяется примерно в 2 раза больше энергии, чем при расщеплении белка или углеводов такого же веса.
  • Структурная функция. Структура липидов определяет строение мембран клеток нашего тела. Они располагаются таким образом, что гидрофильная часть молекулы находится внутри клетки, а гидрофобная ─ на ее поверхности. Благодаря этим свойствам липидов каждая клетка, с одной стороны, представляет собой автономную систему, отгороженную от внешнего мира, а с другой ─ каждая клетка может обмениваться молекулами с другими и с окружающей средой с помощью специальных транспортных систем.
  • Защитная. Поверхностный слой, что имеется у нас на коже и служит своеобразным барьером между нами и окружающим миром также составлен из липидов. Кроме того, они в составе жировой ткани обеспечивают функцию теплоизоляции и защиту от пагубных внешних воздействий.
  • Регуляторная. Они входят в состав витаминов, гормонов и других веществ, регулирующих многие процессы в организме.

Общая характеристика липидов исходит из особенностей строения. Они обладают двоякими свойствами, так как имеют в составе молекулы растворимую и нерастворимую части.


Поступление в организм

Липиды частично поступают в организм человека с пищей, частично способны синтезироваться эндогенно. Расщепление основной части пищевых липидов происходит в 12-перстной кишке под воздействием панкреатического сока, выделяемого поджелудочной железой и желчных кислот в составе желчи. Расщепившись, они ресинтезируются вновь в кишечной стенке и, уже в составе специальных транспортных частиц ─ липопротеинов, ─ готовы поступить в лимфатическую систему и общий кровоток.

С пищей ежедневно человеку необходимо получать около 50-100 граммов жиров, что зависит от состояния организма и уровня физической активности.

Классификация

Классификация липидов в зависимости от их способности образовывать мыла в определенных условиях разделяет их на следующие классы липидов:

  • Омыляемые. Так называются вещества, которые в среде с щелочной реакцией образуют соли карбокислот (мыла). В эту группу относятся простые липиды, сложные липиды. Как простые липиды, так и сложные важны организму, они имеют разное строение и, соответственно ему, липиды выполняют разные функции.
  • Неомыляемые. В щелочной среде не образуют солей карбоновых кислот. Сюда биологическая химия относит жирные кислоты, производные полиненасыщенных жирных кислот ─ эйкозаноиды, холестерин, как наиболее яркий представитель основного класса стеринов-липидов, а также производные его ─ стероиды и некоторые другие вещества, например, витамины А, Е и др.


Общая классификация липидов

Жирные кислоты

Веществами, которые относятся к группе так называемых простых липидов и имеют большое значение для организма являются жирные кислоты. В зависимости от наличия двойных связей в неполярном (нерастворимом в воде) углеродном «хвосте», жирные кислоты делят на насыщенные (двойных связей не имеют) и ненасыщенные (имеют одну или даже больше двойных углерод-углеродных связей). Примеры первых: стеариновая, пальмитиновая. Примеры ненасыщенных и полиненасыщенных жирных кислот: олеиновая, линолевая и др.

Именно ненасыщенные жирные кислоты особенно важны для нас и должны обязательно поступать с пищей.

Почему? Потому что они:

  • Служат компонентом для синтеза клеточных мембран, участвуют в образовании многих биологически активных молекул.
  • Помогают поддерживать работу эндокринной и половой систем в норме.
  • Помогают предупредить или замедлить развитие атеросклероза и многих его последствий.


Жирные кислоты делятся на две большие группы: ненасыщенные и насыщенные

Медиаторы воспаления и не только

Еще одним видом простых липидов являются такие важные медиаторы внутренней регуляции, как эйкозаноиды. Они имеют уникальное (как практически все в биологии) химическое строение и, соответственно этому, уникальные химические свойства. Главной основой для синтеза эйкозаноидов выступает арахидоновая кислота, которая является одной из важнейших ненасыщенных жирных кислот. Именно эйкозаноиды отвечают в организме за течение воспалительных процессов.

Кратко описать их роль в воспалении можно следующим образом:

  • Они изменяют проницаемость сосудистой стенки (а именно ─ повышают ее проницаемость).
  • Стимулируют выход лейкоцитов и других клеток иммунной системы в ткани.
  • С помощью химических веществ опосредуют перемещения клеток иммунитета, выброс ферментов и поглощение чужеродных для организма частиц.

Но на этом роль эйкозаноидов в теле человека не заканчивается, они также ответственны за систему свертывания крови. В зависимости от складывающейся ситуации эйкозаноиды могут расширить сосуды, расслабить гладкую мускулатуру, уменьшить агрегацию или, если потребуется, вызвать обратные эффекты: сужение сосудов, сокращение гладких мышечных клеток и тромбообразование.


Эйкозаноиды – обширная группа физиологически и фармакологически активных соединений

Проводились исследования, согласно которым, люди, в достаточном количестве получавшие главный субстрат синтеза эйкозаноидов ─ арахидоновую кислоту ─ с пищей (находится в рыбьем жире, рыбе, растительных маслах) меньше страдали от заболеваний сердечно-сосудистой системы. Вероятнее всего, это связано с тем, что такие люди имеют более совершенный обмен эйкозаноидов.

Вещества сложного строения

Сложные липиды ─ группа веществ, не менее важная для организма, чем простые липиды. Основные свойства этой группы жиров:

  • Участвуют в образовании клеточных мембран, наряду с простыми липидами, а также обеспечивают межклеточные взаимодействия.
  • Входят в состав миелиновой оболочки нервных волокон, необходимой для нормальной передачи нервного импульса.
  • Они являются одним из важных компонентов сурфактанта ─ вещества, обеспечивающего процессы дыхания, а именно предотвращающего спадание альвеол во время выдоха.
  • Многие из них играют роль рецепторов на поверхности клеток.
  • Значение некоторых сложных жиров, выделяемых из спинномозговой жидкости, нервной ткани, сердечной мышцы до конца не выяснена.

К простейшим представителям липидов этой группы относятся фосфолипиды, глико- и сфинголипиды.

Холестерин

Холестерин является веществом липидной природы с наиболее важным значением в медицине, так как нарушение именно его обмена негативно сказывается на состоянии всего организма.

Часть холестерина поступает внутрь с пищей, а часть ─ синтезируется в печени, надпочечниках, половых железах и коже.

Он также участвует в образовании клеточных мембран, синтезе гормонов и других химически активных веществ, а также участвует в метаболизме липидов в теле человека. Показатели именно холестерина в крови часто исследуются врачами, так как они показывают состояние обмена липидов в организме человека в целом.

Липиды имеют свои особые транспортные формы ─ липопротеины. С их помощью они могут переноситься с током крови, не вызывая эмболии.

Нарушения жирового обмена быстрее и ярче всего проявляются нарушениями обмена холестерина, преобладанием атерогенных его переносчиков (так называются липопротеины низкой и очень низкой плотности) над антиатерогенными (липопротеины с высокой плотностью).

Основным проявлением патологии липидного обмена является развитие атеросклероза.

Проявляет он себя сужением просвета артериальных сосудов по всему организму. В зависимости от преобладания в сосудах различных локализаций развивается сужение просвета коронарных сосудов (сопровождающееся стенокардией), сосудов головного мозга (с нарушениями запоминания, слуха, возможными головными болями, шумом в голове), сосудов почек, сосудов нижних конечностей, сосудов органов пищеварения с соответствующей симптоматикой.

Таким образом, липиды одновременно являются незаменимым субстратом для многих процессов в организме и, в то же время, при нарушении жирового обмена, могут стать причиной многих заболеваний и патологических состояний. Поэтому, жировой обмен требует за собой контроля и коррекции при возникновении такой необходимости.

, ацетон , хлороформ) и практически нерастворимых в воде, является слишком расплывчатым. Во-первых, такое определение вместо чёткой характеристики класса химических соединений говорит лишь о физических свойствах. Во-вторых, в настоящее время известно достаточное количество соединений, нерастворимых в неполярных растворителях или же, наоборот, хорошо растворимых в воде, которые, тем не менее, относят к липидам. В современной органической химии определение термина «липиды» основано на биосинтетическом родстве данных соединений - к липидам относят жирные кислоты и их производные . В то же время в биохимии и других разделах биологии к липидам по-прежнему принято относить и гидрофобные или амфифильные вещества другой химической природы . Это определение позволяет включать сюда холестерин, который вряд ли можно считать производным жирной кислоты.

Суточная потребность взрослого человека в липидах - 70-140 граммов.

Описание

Липиды - один из важнейших классов сложных молекул , присутствующих в клетках и тканях животных . Липиды выполняют самые разнообразные функции: снабжают энергией клеточные процессы, формируют клеточные мембраны , участвуют в межклеточной и внутриклеточной сигнализации. Липиды служат предшественниками стероидных гормонов , жёлчных кислот , простагландинов и фосфоинозитидов. В крови содержатся отдельные компоненты липидов (насыщенные жирные кислоты , мононенасыщенные жирные кислоты и полиненасыщенные жирные кислоты), триглицериды , холестерин , эфиры холестерина и фосфолипиды . Все эти вещества не растворимы в воде, поэтому в организме имеется сложная система транспорта липидов. Свободные (неэтерифицированные) жирные кислоты переносятся кровью в виде комплексов с альбумином . Триглицериды, холестерин и фосфолипиды транспортируются в форме водорастворимых липопротеидов . Некоторые липиды используются для создания наночастиц, например, липосом . Мембрана липосом состоит из природных фосфолипидов, что определяет их многие привлекательные качества. Они нетоксичны, биодеградируемы, при определенных условиях могут поглощаться клетками, что приводит к внутриклеточной доставке их содержимого. Липосомы предназначены для целевой доставки в клетки препаратов фотодинамической или генной терапии, а также компонентов другого назначения, например, косметического .

Классификация липидов

Классификация липидов, как и других соединений биологической природы, - весьма спорный и проблематичный процесс. Предлагаемая ниже классификация, хоть и широко распространена в липидологии, является далеко не единственной. Она основывается, прежде всего, на структурных и биосинтетических особенностях разных групп липидов.

Простые липиды

  • Предельные углеводороды с длинной алифатической цепочкой
  • Сфингозиновые основания

Сложные липиды

  • Полярные
    • Фосфогликолипиды
    • Мышьяколипиды
  • Нейтральные
    • Ацилглицериды
      • Триглицериды (Жиры)
      • Диглицериды
      • Моноглицериды
    • Эфиры стеринов
    • N-ацетилэтаноламиды

Оксилипиды

  • Оксилипиды липоксигеназного пути
  • Оксилипиды циклооксигеназного пути

Строение

Молекулы простых липидов состоят из спирта, жирных кислот, сложные - из спирта, высокомолекулярных жирных кислот, возможны остатки фосфорной кислоты, углеводов, азотистых оснований и др. Строение липидов зависит в первую очередь от пути их биосинтеза . Для подробного ознакомления следует перейти по ссылкам, указанным в схеме классификации.

Биологические функции

Энергетическая (резервная) функция

Многие жиры, в первую очередь триглицериды, используются организмом как источник энергии. При полном окислении 1 г жира выделяется около 9 ккал энергии, примерно вдвое больше, чем при окислении 1 г углеводов (4.1 ккал). Жировые отложения используются в качестве запасных источников питательных веществ, прежде всего животными, которые вынуждены носить свои запасы на себе. Растения чаще запасают углеводы, однако в семенах многих растений высоко содержание жиров (растительные масла добывают из семян подсолнечника, кукурузы, рапса, льна и других масличных растений).

Функция теплоизоляции

Жир - хороший теплоизолятор, поэтому у многих теплокровных животных он откладывается в подкожной жировой ткани, уменьшая потери тепла. Особенно толстый подкожный жировой слой характерен для водных млекопитающих (китов, моржей и др.). Но в то же же время у животных, обитающих в условиях жаркого климата (верблюды, тушканчики) жировые запасы откладываются на изолированных участках тела (в горбах у верблюда, в хвосте у жирнохвостых тушканчиков), в качестве резервных запасов воды, так как вода - один из продуктов окисления жиров.

Структурная функция

Увеличения плавучести

Самые разные организмы - от диатомовых водорослей до акул - используют резервные запасы жира как средство снижения среднего удельного веса тела и, таким образом, увеличения плавучести. Это позволяет снизить расходы энергии на удержание в толще воды.

Литература

На иностранных языках

  • Gunstone, F. D. Fatty acids and lipid chemistry. - London: Blackie Academic and Professional, 1996. 252 pp.
  • Chapter 12 in «Biochemistry» by Jeremy M. Berg, John L. Tymoczko and Lubert Stryer (2002) W. H. Freeman and Co.
  • Alberts, B., et al. (2004) «Essential Cell Biology, 2nd Edition.» Garland Science. ISBN 0-8153-3480-X
  • Solomon, Eldra P., et. al. (2005) «Biology, 7th Edition.» Thomson, Brooks/Cole.
  • «Advanced Biology - Principles and Applications.» C.J. Clegg and D.G. Mackean. ISBN 0-7195-7670-9
  • Georg Löffler, Petro E. Petrides: Biochemie und Pathobiochemie. Springer, Berlin 2003, ISBN 3-540-42295-1
  • Florian Horn, Isabelle Moc, Nadine Schneider: Biochemie des Menschen. Thieme, Stuttgart 2005, ISBN 3-13-130883-4
  • Charles E. Mortimer, Ulrich Müller: Chemie. Thieme, Stuttgart 2003,