Липиды. Смотреть что такое "Липиды" в других словарях.


Липиды - что это такое? В переводе с греческого, слово "липиды" означает "мелкие частички жира". Представляют они собой группы соединений природной органики обширного характера, включающие в себя непосредственно жиры, а также жироподобные вещества. Являются частью всех без исключения живых клеток и подразделяются на простые и сложные категории. В состав простых липидов входит спирт и жирные кислоты, а сложные содержат высокомолекулярные компоненты. И те и другие связаны с биологическими мембранами, оказывают действие на активные ферменты, а также участвуют в формировании нервных импульсов, стимулирующих мышечные сокращения.

Жиры и гидрофобия

Одной из является создание энергетического резерва организма и обеспечение водооталкивающих свойств кожного покрова вкупе с термоизоляционной защитой. Некоторые жиросодержащие вещества, не имеющие жирных кислот, также отнесены к липидам, к примеру, это стерины и терпены. Липиды не поддаются воздействию водной среды, но легко растворяются в органических жидкостях типа хлороформа, бензола, ацетона.

Липиды, презентация которых периодически проводится на международных семинарах в связи с новыми открытиями, являются неисчерпаемой темой для исследований и научных изысканий. Вопрос "Липиды - что это такое?" никогда не теряет своей актуальности. Тем не менее, научный прогресс не стоит на месте. В последнее время выявлено несколько новых жирных кислот, которые находятся в биосинтетическом родстве с липидами. Классификация органических соединений может быть затруднена из-за схожести по определенным характеристикам, но при существенном различии других параметров. Чаще всего создается отдельная группа, после чего восстанавливается общая картина гармоничного взаимодействия родственных веществ.


Клеточные мембраны

Липиды - что это такое с точки зрения функционального предназначения? Прежде всего, они являются важнейшим компонентом живых клеток и тканей позвоночных животных. Большинство процессов в организме происходит при участии липидов, формирование клеточных мембран, взаимосвязь и обмен сигналами в межклеточной среде не обходятся без жирных кислот.

Липиды - что это такое, если их рассматривать с позиции спонтанно возникающих стероидных гормонов, фосфоинозитидов и простагландинов? Это, прежде всего, присутствие в плазме крови насыщенных жирных кислот, которые, по определению, являются отдельными компонентами липидных структур. Из-за гидрофобных свойств последних организм вынужден вырабатывать сложнейшие системы их транспортировки. Жирные кислоты липидов в основном переносятся в комплексе с альбуминами, а липопротеиды, растворимые в воде, транспортируются обычным порядком.


Классификация липидов

Распределение соединений, имеющих биологическую природу, по категориям - это процесс, связанный с некоторыми проблемами спорного характера. Липиды в связи с биохимическими и структурными свойствами могут быть отнесены в равной степени к разным категориям. Основные классы липидов включают в себя простые и сложные соединения.

К простым относятся:

  • Глицериды - эфиры глицеринового спирта и жирных кислот высшей категории.
  • Воски - эфир высшей жирной кислоты и 2-атомного спирта.

Сложные липиды:

  • Фосфолипидные соединения - с включением азотистых компонентов, глицерофосфолипиды, офинголипиды.
  • Гликолипиды - расположенные в наружных биологических слоях организма.
  • Стероиды - высокоактивные вещества животного спектра.
  • Сложные жиры - стеролы, липопротеины, сульфолипиды, аминолипиды, глицерол, углеводороды.

Функционирование

Липидные жиры выполняют роль материала для клеточных мембран. Участвуют в транспортировке различных веществ по периферии организма. Жировые прослойки на основе липидных структур помогают защитить тело от переохлаждения. Обладают функцией энергетического накопления "про запас".

Запасы жиров концентрируются в цитоплазме клеток в форме капель. и человек в том числе, обладают специальными клетками - адипоцитами, которые способны содержать в себе достаточно много жира. Размещение жировых накоплений в адипоцитах происходит благодаря липоидным ферментам.


Биологические функции

Жир не только надежный источник энергии, он также обладает теплоизолирующими свойствами, чему способствует биология. Липиды при этом позволяют достичь нескольких полезных функций, таких как естественное охлаждение организма или, наоборот, его теплоизоляция. В северных регионах, отличающихся низкими температурами, все животные накапливают жир, который откладывается по всему телу равномерно, и таким образом создается естественная защитная прослойка, выполняющая функцию теплозащиты. Особенно важно это для крупных морских животных: китов, моржей, тюленей.

Животные, обитающие в жарких странах, тоже накапливают но у них они не распределяются по всему телу, а сосредотачиваются в определенных местах. Например, у верблюдов жир собирается в горбах, у пустынных зверьков - в толстых, коротких хвостиках. Природа тщательно следит за правильным размещением и жира, и воды в живых организмах.


Структурная функция липидов

Все процессы, связанные с жизнедеятельностью организма, подчиняются определенным законам. Фосфолипиды являются основой биологического слоя мембран клеток, а холестерин регулирует текучесть этих мембран. Таким образом, большинство живых клеток находится в окружении с двойным слоем липидов. Такая концентрация необходима для нормальной клеточной деятельности. В одной микрочастице биомембраны содержится более миллиона липидных молекул, которые обладают двойными характеристиками: они одновременно гидрофобные и гидрофильные. Как правило, эти взаимоисключающие свойства носят неравновесный характер, и поэтому их функциональное назначение выглядит вполне логично. Липиды в клетке - это эффективный природный регулятор. Гидрофобный слой обычно доминирует и защищает клеточную мембрану от проникновения вредоносных ионов.

Глицерофосфолипиды, фосфатидилэтаноламин, фосфатидилхолин, холестерол также способствуют непроницаемости клеток. В тканевых структурах располагаются другие мембранные липиды, это сфингомиелин и сфингогликолипид. Каждое вещество выполняет определенную функцию.

Липиды в диете человека

Триглицериды - жиры нейтрального характера, являются эффективным источником энергии. кислотами обладают мясо и молочные продукты. А кислоты жирные, но ненасыщенные, содержатся в орехах, подсолнечном и оливковом масле, семечках и зернах кукурузы. Чтобы в организме не повышался уровень холестерина, рекомендуется ежедневную норму животных жиров ограничить 10 процентами.

Липиды и углеводы

Многие организмы животного происхождения "укладывают" жиры в определенных точках, подкожной клетчатке, в складках кожного покрова, других местах. Окисление липидов таких жировых отложений происходит медленно, и поэтому процесс их перехода в углекислый газ и воду позволяет получить значительное количество энергии, почти в два раза больше, чем могут дать углеводы. Кроме того, гидрофобные свойства жиров избавляют от необходимости использования большого количества воды для стимулирования гидратации. Переход жиров в энергетическую фазу происходит "всухую". Вместе с тем жиры действуют гораздо медленнее в плане высвобождения энергии, и больше подходят для животных в состоянии спячки. Липиды и углеводы как бы дополняют друг друга в процессе жизнедеятельности организма.

Которые нужны всему живому. В этой статье мы рассмотрим строение и функции липидов. Они бывают разнообразными как по структуре, так и по функциям.

Строение липидов (биология)

Липид — это сложное органическое химическое соединение. Оно состоит из нескольких компонентов. Давайте рассмотрим строение липидов более подробно.

Простые липиды

Строение липидов этой группы предусматривает наличие двух компонентов: спирта и жирных кислот. Обычно в химический состав таких веществ входят только три элемента: карбон, гидроген и оксиген.

Разновидности простых липидов

Они делятся на три группы:

  • Алкилацилаты (воски). Это высших жирных кислот и одно- или двухатомных спиртов.
  • Триацилглицерины (жиры и масла). Строение липидов этого вида предусматривает наличие в составе глицерина (трехатомного спирта) и остатков высших жирных кислот.
  • Церамиды. Сложные эфиры сфингозина и жирных кислот.

Сложные липиды

Вещества данной группы состоят не из трех элементов. Помимо них, они включают в свой состав чаще всего сульфур, нитроген и фосфор.

Классификация сложных липидов

Их также можно разделить на три группы:

  • Фосфолипиды. Строение липидов этой группы предусматривает, помимо остатков и высших жирных кислот, наличие остатков фосфорной кислоты, к которым присоединены добавочные группы различных элементов.
  • Гликолипиды. Это химические вещества, образующиеся в результате соединения липидов с углеводами.
  • Сфинголипиды. Это производные алифатических аминоспиртов.

Первые два типа липидов, в свою очередь, разделяются на подгруппы.

Так, разновидностями фосфолипидов можно считать фосфоглицеролипиды (содержат в своем составе глицерин, остатки двух жирных и аминоспирт), кардиолипины, плазмалогены (содержат в своем составе ненасыщенный одноатомный высший спирт, фосфорную кислоту и аминоспирт) и сфингомиелины (вещества, которые состоят из сфингозина, жирной кислоты, фосфорной кислоты и аминоспирта холина).

К видам гликолипидов относятся цереброзиды (кроме сфингозина и жирной кислоты, содержат галактозу либо глюкозу), ганглиозиды (содержат олигосахарид из гексоз и сиаловых кислот) и сульфатиды (к гексозе прикреплена серная кислота).


Роль липидов в организме

Строение и функции липидов взаимосвязаны. Благодаря тому, что в их молекулах одновременно присутствуют полярные и неполярные структурные фрагменты, эти вещества могут функционировать на границе раздела фаз.

Липиды обладают восемью основными функциями:

  1. Энергетическая. За счет окисления этих веществ организм получает более 30 процентов всей необходимой ему энергии.
  2. Структурная. Особенности строения липидов позволяют им быть важной составляющей оболочек. Они входят в состав мембран, выстилают различные органы, образуют мембраны нервных тканей.
  3. Запасающая. Данные вещества являются формой сбережения организмом жирных кислот.
  4. Антиокисдантная. Строение липидов позволяет им выполнять и такую роль в организме.
  5. Регуляторная. Некоторые липиды являются посредниками гормонов в клетках. Кроме того, из липидов формируются некоторые гормоны, а также вещества, стимулирующие иммуногенез.
  6. Защитная. Подкожная прослойка жира обеспечивает термическую и механическую защиту организма животного. Что касается растений, то из восков формируется защитная оболочка на поверхности листьев и плодов.
  7. Информационная. Липиды ганглиозиды обеспечивают контакты между клетками.
  8. Пищеварительная. Из липида холестерина формируются участвующие в процессе переваривания пищи.


Синтез липидов в организме

Большинство веществ этого класса синтезируются в клетке из одного и того же исходного вещества — уксусной кислоты. Регулируют обмен жиров такие гормоны, как инсулин, адреналин и гормоны гипофиза.

Существуют также липиды, которые организм не способен производить самостоятельно. Они обязательно должны попадать в организм человека с пищей. Содержатся они в основном в овощах, фруктах, зелени, орехах, злаках, подсолнечном и оливковом маслах и других продуктах растительного происхождения.

Липиды-витамины

Некоторые витамины по своей химической природе относятся к классу липидов. Это витамины А, D, Е и К. Они должны поступать в организм человека с пищей.

Роль витаминов-липидов в организме
Витамин Функции Проявление недостатка Источники
Витамин А (ретинол) Участвует в росте и развитии эпителиальной ткани. Входит в состав родопсина — зрительного пигмента. Сухость и шелушение кожи. Нарушение зрения при плохом освещении. Печень, шпинат, морковь, петрушка, красный перец, абрикосы.
Витамин К (филлохинон) Участвует в обмене кальция. Активирует белки, ответственные за свертывание крови, принимает участие в формировании костной ткани. Окостенение хрящей, нарушение свертываемости крови, отложение солей на стенках сосудов, деформация костей. Дефицит витамина К случается очень редко. Синтезируется бактериями кишечника. Также содержится в листьях салата, крапивы, шпината, капусты.
Витамин D (кальциферол) Принимает участие в обмене кальция, формировании костной ткани и эмали зубов. Рахит Рыбий жир, желток яиц, молоко, сливочное масло. Синтезируется в коже под воздействием ультрафиолета.
Витамин Е (токоферол) Стимулирует иммунитет. Участвует в регенерации тканей. Защищает мембраны клеток от повреждений. Повышение проницаемости мембран клеток, снижение иммунитета. Овощи, растительные масла.

Вот мы и рассмотрели строение и свойства липидов. Теперь вы знаете, какими бывают эти вещества, в чем заключаются отличия разных из групп, какую роль липиды выполняют в организме человека.

Заключение

Липиды — сложные органические вещества, которые делятся на простые и сложные. Они выполняют в организме восемь функций: энергетическую, запасающую, структурную, антиоксидантную, защитную, регуляторную, пищеварительную и информационную. Кроме того, существуют липиды-витамины. Они выполняют множество биологических функций.

  • Липиды – это жироподобные вещества, присутствующие в вашей крови и тканях тела.
  • Ваш организм нуждается в небольшом количестве липидов для нормальной работы.

Как измерить количество липидов в крови

  • С помощью анализа крови под названием «липидный профиль».
  • Этот анализ рекомендуют делать утром на голодный желудок.

Что произойдет, если уровень липидов слишком высок

Избыточное количество липидов в крови может вызвать жировые отложения на стенках артерий (холестериновые бляшки), увеличивая риск развития сердечно-сосудистых заболеваний.

Какие существуют виды липидов

Холестерин является основным липидом. Он состоит из различных составляющих, таких как:

  • Липопротеины низкой плотности (ЛПНП) , или «плохой» холестерин, является основным липидом, который вызывает накопление жиров на стенках артерий, что со временем приводит к их значительному сужению и развитию такого заболевания, как атеросклероз ,со всеми вытекающими последствиями в виде инфарктов миокарда и инсультов, вплоть до летального исхода.
  • Липопротеины высокой плотности (ЛПВП) , или «хороший» холестерин, который помогает предотвратить накопление холестерина на стенках ваших артерий.
  • Триглицериды являются еще одним липидом, который может привести к увеличению риска развития сердечно-сосудистых заболеваний.

Каков нормальный уровень липидов

  • Общий уровень холестерина должен быть меньше, чем 200.
  • Уровень ЛПВП должен быть 40 или выше.
  • Уровень ЛПНП должен быть меньше 100. Спросите об этом вашего врача.
  • Уровень триглицеридов должен быть меньше 150.

Что можно сделать, если уровень липидов в крови далек от нормы

  • Ваш врач может порекомендовать вам придерживаться диеты с низким содержанием насыщенных жиров и холестерина.
  • Вам также может понадобиться повысить уровень физической активности.
  • В некоторых случаях, возможно, также необходимо принимать лекарства, чтобы помочь снизить уровень липидов в крови.

Причины нарушения уровня липидов в крови и пути решения

Уровень холестерина ЛПНП может быть повышен путем потребления продуктов, содержащих насыщенные жиры (присутствуют в животных жирах, молочных жирах и пальмовом масле); частично гидрогенизированных жиров, таких как кондитерский жир (добавляется в жаренные продукты быстрого питания (фаст-фуд), кондитерские изделия, а также некоторые закуски, такие как картофельные чипсы); и холестерина (слишком много содержится в яичных желтках, мясе, печени, а также в кальмарах или креветках).

Триглицериды могут быть снижены путем уменьшения массы тела; увеличения физической активности; сокращения потребления простых сахаров и избытка углеводов, присутствующих в рационе питания; контроля уровня глюкозы в крови у больных сахарным диабетом; приема препаратов фибриновой кислоты (Гемфиброзил, Фенофибрат); приема никотиновой кислоты и рыбьего жира (в высоких дозах).

Низкий уровень холестерина ЛПВП увеличивает риск развития ишемической болезни сердца. Это чаще всего вызвано генетическими факторами, но также снижение его уровня может быть связано с курением; абдоминальным ожирением; малой физической активностью; резистентностью к инсулину и сахарным диабетом; а также приемом внутрь андрогенов (мужских половых гормонов).

ЛПВП холестерин может быть повышен путем отказа от курения; существенного увеличения физической активности; снижения массы тела; значительного снижения употребления алкоголя; снижения повышенного уровня триглицеридов в крови; постменопаузального применения эстрогена; приема ниацина в умеренных - высоких дозах; приема препаратов фибриновой кислоты; статинов; и секвестрантов желчных кислот.

Липиды (от греч. lipos – жир) – это гетерогенная группа органических веществ, нерастворимых в воде, но растворимых в аполярных органических растворителях (хлороформ, бензол, эфир, ацетон, этанол и др.).

1. Биологические функции липидов

1.Структурная . Участвуют в структурно-функциональной организации мембраннных систем клетки.

2.В качестве структурных компонентов клетки участвуют в передаче нервного импульса (в нервной ткани содержится 20–25 % фосфолипидов).

3.Энергетическая . Липиды являются резервом энергетического топлива. Так, например, триацилглицериды (ТАГ) при расщеплении 1 г дают 38,9 кДж энергии (это в 2,5 раза больше, чем при сгорании такого же количества углеводов или белков).

4.Липиды так же, как белки и углеводы, являются источником эндогенной воды. При окислении 100 г жира образуется 107,1 г воды, углеводов – 55,5 г, белков – 41,3 г.

5.Защитная . Жировая ткань защищает внутренние органы от травм. Кожный жир смазывает покровы, предохраняет их от высыхания и растрескивания. Жиры участвуют в образовании липидных компонентов кожи позвоночных, восковой пленки на поверхности листьев и плодов, предохраняющей их от потери воды, в образовании клеточных стенок бактерий и кутикулы насекомых.

6.Терморегуляторная . Жиры участвуют в процессах терморегуляции, защищая внутренние органы от охлаждения.

7.Транспортная . Транспортируют жирорастворимые компоненты в процессе всасывания.

2. Классификация липидов

До настоящего времени единой строго научной классификации нет, что объясняется многообразием структурных компонентов, входящих в их состав. Существует несколько классификаций.

В соответствии со структурной классификацией липиды подразделяют на однокомпонентные (липидные мономеры) и многокомпонентные. В свою очередь многокомпонентные липиды подразделяются на простые и сложные (липоиды).

К липидным мономерам относятся высшие углеводороды, высшие алифатические спирты, альдегиды, кетоны, изопреноиды и их производные, высшие аминоспирты (сфингозины), жирные кислоты, высшие полиолы.

Простые многокомпонентные липиды – это эфиры высокомолекулярных алкоголей и жирных кислот. К ним относятся ацилглицериды (жиры), воски, стериды.

Сложные липиды (липоиды) являются сложными эфирами, содержащими также азотистые основания и радикалы фосфорной кислоты. К ним относятся фосфолипиды, гликолипиды, липопротеиды.

По степени полярности липиды подразделяются на нейтральные (неполярные) и полярные. Нейтральные липиды – это нейтральные жиры.

По отношению к щелочам выделяют омыляемые и неомыляемые липиды. Омыляемая фракция липидов подвергается щелочному гидролизу. Неомыляемые липиды – соединения, не подвергающиеся щелочному гидролизу (липидные мономеры, стерины, простые эфиры, жирорастворимые витамины).

По расположению в тканях и функциям липиды подразделяются на структурные (плазматические) и запасные (депозитные). Структурные липиды входят в состав клеточных мембран и протоплазмы. К ним относятся фосфо-, глико- и сульфолипиды. Депозитные липиды являются лабильной составной частью тканей, их содержание находится в прямой зависимости от упитанности организма (жиры).

Ряд авторов подразделяет липиды на три основные группы: нейтральные липиды, фосфолипиды и сфинголипиды.

Незаменимые (эссенциальные ) жирные кислоты

Линолевая и линоленовая кислоты не синтезируются в организме человека, арахидоновая – синтезируется из линолевой с помощью витамина В6.

Воски

Воски – это сложные эфиры высших одноосновных жирных кислот () и первичных одноатомных высокомолекулярных спиртов (). Химически малоактивны, устойчивы к действию бактерий. Ферменты их не расщепляют.

Общая формула воска:

R1–O–CO–R2,

где R1O- – остаток высокомолекулярного одноатомного первичного спирта; R2CO – остаток жирной кислоты, преимущественно с четным числом атомов С.

Воски широко распространены в природе. Воски образуют защитное покрытие на листьях, стеблях, плодах, предохраняя их от смачивания водой, высыхания, действия микроорганизмов. Воски образуют защитную смазку на коже, шерсти, перьях, содержатся в наружном скелете насекомых. Они являются важным компонентом воскового налета виноградной ягоды – прюина. В оболочках семян сои содержание воска 0,01 % от массы оболочки, в оболочках семян подсолнечника – 0,2 %, в оболочке риса – 0,05 %.

Характерным примером воска является пчелиный воск, содержащий спирты с 24–30 атомами С (мирициловый спирт C30H61OH), кислоты CH3(CH2)n COOH, где n = 22–32, и пальмитиновую кислоту (C30H61 – O–СO–C15H31).

Спермацет

Примером животного воска является воск спермацет. Сырой (технический) спермацет получают из головной спермацетовой подушки кашалотов (или других зубатых китов). Сырой спермацет состоит из белых чешуйчатых кристаллов спермацета и спермацетового масла (спермоля).

Чистый спермацет представляет собой эфир цетилового спирта (C16H33OH) и пальмитиновой кислоты (С15Н31СО2Н). Формула чистого спермацета С15Н31СО2C16H33.

Спермацет применяется в медицине как компонент мазей, обладающих заживляющим действием.

Спермоль – жидкий воск, светло-желтая маслянистая жидкость, смесь жидких эфиров, содержащих олеиновую кислоту C17H33СООН и олеиновый спирт C18H35. Формула спермоля C17H33СО–О–C18H35. Температура плавления жидкого спермацета 42…47 0С, спермацетового масла – 5…6 0С. Спермацетовое масло содержит больше ненасыщенных жирных кислот (иодное число 50–92), чем спермацет (иодное число 3–10).

Стерины и стериды

Стерины (стеролы ) – это высокомолекулярные полициклические спирты, неомыляемая фракция липидов. Представителями являются: холестерин или холестерол, оксихолестерин или оксихолестерол, дегидрохолестерин или дегидрохолестерол, 7-дегидрохолестерин или 7-дегидрохолестерол, эргостерин или эргостерол.

В основе строения стеринов лежит кольцо циклопентанпергидрофенантрена, содержащее полностью гидрированный фенантрен (три циклогексановых кольца) и циклопентан.

Стериды – сложные эфиры стеринов – являются омыляемой фракцией.

Стероиды – это биологически активные вещества, основой строения которых являются стерины.

В ХУП веке из желчных камней был впервые выделен холестерин (от греч. сhole – желчь).

Он содержится в нервной ткани, мозге, печени, является предшественником биологически активных соединений стероидов (например: желчных кислот, стероидных гормонов, витаминов группы D) и биоизолятором, защищающим структуры нервных клеток от электрического заряда нервных импульсов. Холестерин в организме находится в свободной (90 %) форме и в виде эфиров. Имеет эндо- и экзогенную природу. Эндогенный холестерин синтезируется в организме человека (70–80 % холестерина синтезируется в печени и других тканях). Экзогенный холестерин – это холестерин, поступающий с пищей.

Избыток холестерина вызывает появление атеросклеротических бляшек на стенках артерий (атеросклероз). Нормальный уровень
200 мг холестерина на 100 мл крови. При повышении уровня холестерина в крови возникает опасность заболевания атеросклерозом.

Суточное потребление холестерина с пищей не должно превышать 0,5 г.

Большее количество холестерина содержится в яйцах, сливочном масле, субпродуктах. У рыб высокое содержание холестерина обнаружено в икре (290–2200 мг/100 г) и молоках (250–320 мг/100 г).

Жиры (ТАГ, триацилглицериды )

Жиры представляют собой сложные эфиры глицерина и высших жирных кислот, являются омыляемой фракцией.

В зависимости от состава жирных кислот ТАГ бывают простыми (имеют одинаковые остатки жирных кислот) и смешанными (имеют разные остатки жирных кислот). Природные жиры и масла содержат в основном смешанные ТАГ.

Жиры подразделяются на твердые и жидкие. Твердые жиры содержат насыщенные карбоновые кислоты, к ним относятся животные жиры. Жидкие жиры содержат ненасыщенные кислоты, к ним относятся растительные масла, рыбий жир.

Для жиров рыб характерны полиеновые жирные кислоты, имеющие линейную цепь и содержащие 4–6 двойных связей.

Высокая биологическая ценность рыбьего жира определяется тем, что рыбий жир содержит:

  • биологически активные полиеновые жирные кислоты (докозагексаеновая, эйкозапентаеновая). Полиеновые кислоты уменьшают риск возникновения тромбоза, атеросклероза;
  • витамин А;
  • витамин Д;
  • витамин Е;
  • микроэлемент селен.

Жиры рыб подразделяются на низковитаминные и высоковитаминные. В низковитаминных рыбьих жирах содержание витамина А меньше 2000 МЕ в 1 г., в высоковитаминных – превышает 2000 МЕ в 1 г. Кроме того, промышленным способом вырабатывают концентраты витамина А – жиры, в которых содержание витамина А > 104 МЕ
в 1 г.

Показатели качества жиров

Для оценки качества жиров используются следующие физико-химические константы.

1. Кислотное число.

Характерным свойством жиров является их способность к гидролизу. Продуктами гидролиза являются свободные жирные кислоты, глицерин, моноацилглицериды и диацилглицериды.

Ферментативный гидролиз жиров протекает с участием липазы. Это обратимый процесс. Для оценки степени гидролиза и количества свободных жирных кислот определяют кислотное число.

Кислотное число – это количество миллиграммов КОН, идущее на нейтрализацию всех свободных жирных кислот, которые содержатся в 1 г жира. Чем больше кислотное число, тем выше содержание свободных жирных кислот, тем интенсивнее идет процесс гидролиза. Кислотное число возрастает при хранении жира, т. е. является показателем гидролитической порчи.

Кислотное число медицинского жира должно быть не более 2,2, витаминизированного жира, предназначенного для ветеринарных целей, – не более 3, пищевого жира – 2,5.

  1. Пероксидное число

Пероксидное число характеризует процесс окислительной порчи жиров, в результате которой образуются пероксиды.

Пероксидное число определяется количеством граммов иода, выделенным из иодида калия в присутствии ледяной уксусной кислоты, выделяя из него I2; образование свободного йода фиксируется с помощью крахмального клейстера:

ROOH + 2KI + H2O = 2KOH + I2 + ROH.

Для повышения чувствительности исследования определение пероксидного числа проводят в кислой среде, действуя на пероксиды не иодистым калием, а иодистоводородной кислотой, образующейся из иодида калия при воздействии кислоты:

KI + CH3COOH = HI + CH3COOK

ROOH + 2HI = I2 + H2O + ROH

Выделившийся иод немедленно оттитровывают раствором тиосульфата натрия.

3. Водородное число

Водородное число, так же, как и иодное, является показателем степени ненасыщенности жирных кислот.

Водородное число – количество миллиграммов водорода, необходимое для насыщения 100 г исследуемого жира.

1. Число омыления

Число омыления – это количество миллиграммов КОН, необходимое для нейтрализации всех свободных и связанных кислот, содержащихся в 1 г жира

Число омыления характеризует природу жира: чем меньше молярная масса ТАГ, тем больше число омыления. Число омыления характеризует среднюю молекулярную массу глицеридов и зависит от молекулярной массы жирных кислот.

Число омыления и кислотное число характеризуют степень гидролитической порчи жира. На величину числа омыления влияет содержание неомыляемых липидов.

1. Альдегидное число

Альдегидное число характеризует окислительную порчу жиров, содержание альдегидов в жире. Альдегидное число определяется фотоколориметрическим методом, основанном на взаимодействии карбонильных соединений с бензидином; определение оптической плотности проводится при длине волны 360 нм. Для построения калибровочной кривой используется коричный альдегид (b-фенилакролеин C6H5CH=CHCHO). Альдегидное число выражается в миллиграммах коричного альдегида на 100 г жира. Альдегидное число – показатель качества вяленой рыбы, а также второго этапа окислительной порчи жиров.

2. Эфирное число

Эфирное число – это количество милиграммов КОН, необходимое для нейтрализации освобождающихся при омылении эфирных связей жирных кислот (связанных жирных кислот) в 1 г жира. Эфирное число определяют по разности числа омыления и кислотного числа. Эфирное число характеризует природу жира.

Сложные липиды (липоиды)

К сложным липидам относятся фосфолипиды, гликолипиды и липопротеиды.

Фосфолипиды – это липиды, молекулы которых состоят из остатков спиртов (глицерина, сфингозина), карбоновых кислот, фосфорной кислоты, азотистых оснований и остатков аминокислот. В молекуле фосфолипидов имеются заместители двух типов: гидрофильные и гидрофобные. Гидрофильными (полярными) группировками являются остатки фосфорной кислоты и азотистого основания, гидрофобными (неполярными) – углеводородные радикалы. Фосфолипиды – это основной компонент клеточных мембран. Содержатся в нервной ткани, мозге, необходимы для нормального функционирования центральной нервной системы. Фосфолипиды являются обязательной составной частью растений.

Фосфатидные кислоты – ключевые промежуточные соединения при биосинтезе всех классов фосфолипидов в организме.

Фосфолипиды подразделяются на глицерофосфатиды (фосфоглицериды) и сфингофосфатиды.

Фосфоглицериды – это фосфолипиды, молекулы которых включают спирт глицерин.

Представителями глицерофосфатидов являются кефалин и лецитин.

Самый распространенный компонент большинства мембран животных клеток (мозг, надпочечники, эритроциты).

Сфинголипиды – сложные эфиры алифатического аминоспирта сфигозина.

Сфингомиелины – фосфорсодержащие сфинголипиды – содержатся в мозге, нервной ткани.

Фосфоплазмалогены – фосфорсодержащие плазмалогены, которые входят в состав мембран клеток головного и спинного мозга, сердечной мышцы. Так, фосфолипиды составляют 25–30 % сухой массы мозга, из которых на долю плазмалогенов приходится 50–90 %. Плазмалогены присутствуют в различных видах простейших, морских и сухопутных беспозвоночных, рыбах, микроорганизмах, растениях.

Гликолипиды – это комплексы липидов с углеводами (углеводы – гексозамины и сиаловые кислоты). Гликолипиды подразделяются на цереброзиды и ганглиозиды. Они широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга, они локализованы на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности. Главной формой гликолипидов в животных тканях являются гликосфинголипиды, которые содержат церамид. Простейшими соединениями этой группы является галактозилцерамид и глюкозилцерамид. Галактозилцерамид – это главный гликосфинголипид мозга и других нервных тканей. В его состав входят С24-жирные кислоты. Ганглеозиды – это более сложные гликосфинголипиды, образующиеся из глюкозилцерамида и содержащие одну или несколько молекул сиаловой кислоты. В тканях человека доминирующей сиаловой кислотой является нейраминовая кислота.

Липопротеиды – это комплексы липидов с белками. По строению это сферические частицы, наружная оболочка которых образована белками, а внутренняя часть – липидами. Функция липопротеидов – транспорт липидов по крови. В зависимости от количества белка и липидов липопротеиды подразделяются на хиломикроны, липопротеиды низкой плотности (ЛПНП) и липопротеиды высокой плотности (ЛПВП).

Хиломикроны – наиболее крупные из липопротеидов – содержат 98–99 % липидов и 1–2 % белка. Образуются в клетках слизистой кишечника, обеспечивают транспорт липидов из кишечника в лимфу, а затем – в кровь.

Молекулам.

В химическом отношении большинство липидов представляет собой сложные эфиры высших карбоновых кислот и ряда спиртов. Наиболее известны среди них жиры . Каждая молекула жира образована молекулой трехатомного спирта глицерола и присоединенными к ней эфирными связями трех молекул высших карбоновых кислот. Согласно принятой номенклатуре, жиры называют триацилглщеролами.

Атомы углерода в молекулах высших карбоновых кислот могут быть соединены друг с другом как простыми, так и двойными связями. Из предельных (насыщенных) высших карбоновых кислот наиболее часто в состав жиров входят пальмитиновая, стеариновая, арахиновая; из непредельных (ненасыщенных) - олеиновая и линолевая.

Степень ненасыщенности и длина цепей высших карбоновых кислот (т. е. число атомов углерода) определяют физические свойства того или иного жира.

Жиры с короткими и непредельными кислотными цепями имеют низкую температуру плавления. При комнатной температуре это жидкости (масла) либо мазеподобные вещества (жиры). И наоборот, жиры с длинными и насыщенными цепями высших карбоновых кислот при комнатной температуре становятся твердыми. Вот почему при гидрировании (насыщении кислотных цепей атомами водорода по двойным связям) жидкое арахисовое масло, например, становится мазеобразным, а подсолнечное масло превращается в твердый маргарин. По сравнению с обитателями южных широт в организме животных , обитающих в холодном климате (например, у рыб арктических морей), обычно содержится больше ненасыщенных триацилглицеролов. По этой причине тело их остается гибким и при низких температурах.

В фосфолипидах одна из крайних цепей высших карбоновых кислот триацилглицерола замещена на группу, содержащую фосфат. Фосфолипиды имеют полярные головки и неполярные хвосты. Группы, образующие полярную головку, гидрофильны, а неполярные хвостовые группы гидрофобны. Двойственная природа этих липидов обусловливает их ключевую роль в организации биологических мембран .

Еще одну группу липидов составляют стероиды (стеролы). Эти вещества построены на основе спирта холестерола. Стеролы плохо растворимы в воде и не содержат высших карбоновых кислот. К ним относятся желчные кислоты, холестерол, половые гар-моны, витамин D и др.

К липидам также относятся терпены (ростовые вещества растений - гиббереллины; каротиноиды - фотосинтетичские пигменты ; эфирные масла растений, а также воска).

Липиды могут образовывать комплексы с другими биологическими молекулами - белками и сахарами.

Функции липидов следующие:

  1. Структурная. Фосфолипиды вместе с белками образуют биологические мембраны . В состав мембран входят также стеролы.
  2. Энергетическая. При окислении жиров высвобождается большое количество энергии, которая идет на образование АТФ . В форме липидов хранится значительная часть энергетических запасов организма, которые расходуются при недостатке питательных веществ. Животные , впадающие в спячку, и растения накапливают жиры и масла и расходуют их на поддержание процессов жизнедеятельности. Высокое содержание липидов в семенах растений обеспечивает развитие зародыша и проростка до их перехода к самостоятельному питанию. Семена многих растений (кокосовой пальмы , клещевины , подсолнечника , сои, рапса и др.) служат сырьем для получения растительного масла промышленным способом.
  3. Защитная и теплоизоляционная. Накапливаясь в подкожной клетчатке и вокруг некоторых органов (почек, кишечника), жировой слой защищает организм животных и его отдельные органы от механических повреждений. Кроме того, благодаря низкой теплопроводности слой подкожного жира помогает сохранить тепло, что позволяет, например, многим животным обитать в условиях холодного климата. У китов, кроме того, он играет еще и другую роль - способствует плавучести.
  4. Смазывающая и водоотталкивающая. Воск покрывает кожу, шерсть, перья , делает их более эластичными и предохраняет от влаги. Восковой налет имеют листья и плоды многих растений.
  5. Регуляторная. Многие гормоны являются производными хо-лестерола, например половые (тестостерон у мужчин и прогестерон у женщин) и кортикостероиды (альдостерон). Производные холестерола, витамин D играют ключевую роль в обмене кальция и фосфора. Желчные кислоты участвуют в процессах пищеварения (эмульгирование жиров) и всасывания высших карбоновых кислот.

Липиды являются также источником образования метаболической воды. Окисление 100 г жира дает примерно 105 г воды. Эта вода очень важна для некоторых обитателей пустынь, в частности для верблюдов , способных обходиться без воды в течение 10-12 суток: жир, запасенный в горбе, используется именно в этих целях. Необходимую для жизнедеятельности воду медведи, сурки и другие животные, впадающие в спячку, получают в результате окисления жира.

В миелиновых оболочках аксонов нервных клеток липиды являются изоляторами при проведении нервных импульсов.

Воск используется пчелами в строительстве сот.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов "Пособие по биологии для поступающих в ВУЗы"