Postęp arytmetyczny jest ciągiem liczbowym. Wzór na n-ty wyraz ciągu arytmetycznego


Niektórzy traktują słowo „postęp” z ostrożnością, jako bardzo złożone pojęcie z dziedzin matematyki wyższej. Tymczasem najprostszym postępem arytmetycznym jest praca taksometru (o ile jeszcze istnieją). A zrozumienie istoty (a w matematyce nie ma nic ważniejszego niż „zrozumienie istoty”) ciągu arytmetycznego nie jest takie trudne, po przeanalizowaniu kilku elementarnych pojęć.

Matematyczny ciąg liczb

Sekwencję liczbową nazywa się zwykle serią liczb, z których każda ma swój własny numer.

a 1 jest pierwszym członkiem sekwencji;

oraz 2 jest drugim wyrazem ciągu;

a 7 jest siódmym elementem ciągu;

oraz n oznacza n-ty element ciągu;

Jednak nie interesuje nas żaden dowolny zestaw liczb i liczb. Skupimy naszą uwagę na ciągu liczbowym, w którym wartość n-tego wyrazu jest powiązana z jego liczbą porządkową za pomocą dającej się jasno sformułować matematycznie zależności. Innymi słowy: wartość liczbowa n-tej liczby jest jakąś funkcją n.

a jest wartością elementu ciągu liczbowego;

n - jego numer seryjny;

f(n) jest funkcją, gdzie argumentem jest liczba porządkowa w ciągu numerycznym n.

Definicja

Postęp arytmetyczny nazywa się zwykle ciągiem liczbowym, w którym każdy kolejny wyraz jest większy (mniejszy) od poprzedniego o tę samą liczbę. Wzór na n-ty wyraz ciągu arytmetycznego jest następujący:

a n - wartość bieżącego elementu członkowskiego postęp arytmetyczny;

a n+1 - wzór na następną liczbę;

d - różnica (pewna liczba).

Łatwo ustalić, że jeśli różnica będzie dodatnia (d>0), to każdy kolejny element rozpatrywanego szeregu będzie większy od poprzedniego i taki postęp arytmetyczny będzie rosnący.

Na poniższym wykresie łatwo zobaczyć dlaczego sekwencja liczb zwane „rosnącym”.

W przypadkach, gdy różnica jest ujemna (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Określona wartość elementu członkowskiego

Czasami konieczne jest określenie wartości dowolnego dowolnego wyrazu n ciągu arytmetycznego. Można to zrobić, obliczając sekwencyjnie wartości wszystkich członków ciągu arytmetycznego, zaczynając od pierwszego do żądanego. Jednak ta ścieżka nie zawsze jest akceptowalna, jeśli na przykład konieczne jest znalezienie wartości pięciotysięcznego lub ośmiomilionowego wyrazu. Tradycyjne obliczenia zajmą dużo czasu. Jednakże konkretny postęp arytmetyczny można badać za pomocą pewnych wzorów. Istnieje również wzór na n-ty wyraz: wartość dowolnego wyrazu ciągu arytmetycznego można wyznaczyć jako sumę pierwszego wyrazu ciągu z różnicą postępu, pomnożoną przez liczbę żądanego wyrazu, pomniejszoną przez jeden.

Formuła jest uniwersalna dla progresji rosnącej i malejącej.

Przykład obliczenia wartości danego wyrazu

Rozwiążmy następujący problem znalezienia wartości n-tego wyrazu ciągu arytmetycznego.

Warunek: istnieje postęp arytmetyczny z parametrami:

Pierwszy wyraz ciągu to 3;

Różnica w szeregach liczbowych wynosi 1,2.

Zadanie: musisz znaleźć wartość 214 wyrazów

Rozwiązanie: aby określić wartość danego wyrazu, korzystamy ze wzoru:

a(n) = a1 + d(n-1)

Podstawiając dane ze sformułowania problemu do wyrażenia, mamy:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Odpowiedź: 214. wyraz ciągu jest równy 258,6.

Zalety tej metody obliczeń są oczywiste – całe rozwiązanie zajmuje nie więcej niż 2 linie.

Suma danej liczby wyrazów

Bardzo często w danym szeregu arytmetycznym konieczne jest wyznaczenie sumy wartości niektórych jego odcinków. Aby to zrobić, nie ma również potrzeby obliczania wartości każdego terminu, a następnie ich dodawania. Metodę tę można zastosować, jeśli liczba wyrazów, których sumę należy znaleźć, jest niewielka. W innych przypadkach wygodniej jest zastosować następującą formułę.

Suma wyrazów ciągu arytmetycznego od 1 do n jest równa sumie pierwszego i n-tego wyrazu pomnożonej przez liczbę wyrazu n i podzielonej przez dwa. Jeżeli we wzorze wartość n-tego wyrazu zastąpimy wyrażeniem z poprzedniego akapitu artykułu, otrzymamy:

Przykład obliczeń

Na przykład rozwiążmy problem z następującymi warunkami:

Pierwszy wyraz ciągu wynosi zero;

Różnica wynosi 0,5.

Zadanie wymaga wyznaczenia sumy wyrazów szeregu od 56 do 101.

Rozwiązanie. Skorzystajmy ze wzoru na określenie wielkości progresji:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Najpierw wyznaczamy sumę wartości 101 wyrazów progresji, podstawiając podane warunki naszego problemu do wzoru:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2,525

Oczywiście, aby znaleźć sumę warunków progresji od 56. do 101., należy odjąć S 55 od S 101.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Zatem suma postępu arytmetycznego w tym przykładzie wynosi:

s 101 - s 55 = 2525 - 742,5 = 1782,5

Przykład praktycznego zastosowania postępu arytmetycznego

Na koniec artykułu wróćmy do przykładu ciągu arytmetycznego podanego w pierwszym akapicie – taksometru (licznik taksówki). Rozważmy ten przykład.

Wejście na taksówkę (co obejmuje 3 km przejazdu) kosztuje 50 rubli. Każdy kolejny kilometr płatny jest według stawki 22 rubli/km. Odległość do pokonania wynosi 30 km. Oblicz koszt podróży.

1. Odrzućmy pierwsze 3 km, których cena jest wliczona w koszt lądowania.

30 - 3 = 27 km.

2. Dalsze obliczenia to nic innego jak analizowanie szeregu liczb arytmetycznych.

Numer członkowski – liczba przejechanych kilometrów (minus pierwsze trzy).

Wartość elementu jest sumą.

Pierwszy człon tego problemu będzie równy 1 = 50 rubli.

Różnica w progresji d = 22 r.

interesująca nas liczba to wartość (27+1)-tego wyrazu ciągu arytmetycznego - stan licznika na końcu 27. kilometra wynosi 27,999... = 28 km.

za 28 = 50 + 22 ∙ (28 - 1) = 644

Obliczenia danych kalendarzowych dla dowolnie długiego okresu opierają się na wzorach opisujących określone ciągi liczbowe. W astronomii długość orbity jest geometrycznie zależna od odległości ciała niebieskiego od gwiazdy. Ponadto różne szeregi liczbowe są z powodzeniem stosowane w statystyce i innych stosowanych obszarach matematyki.

Innym rodzajem ciągu liczbowego jest ciąg geometryczny

Postęp geometryczny charakteryzuje się większym tempem zmian w porównaniu z postępem arytmetycznym. To nie przypadek, że w polityce, socjologii i medycynie, aby pokazać dużą prędkość rozprzestrzeniania się konkretnego zjawiska, na przykład choroby w czasie epidemii, mówi się, że proces ten rozwija się w postępie geometrycznym.

N-ty wyraz szeregu liczb geometrycznych różni się od poprzedniego tym, że jest mnożony przez jakąś stałą liczbę - mianownik, na przykład, pierwszy wyraz wynosi 1, mianownik jest odpowiednio równy 2, a następnie:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - wartość bieżącego wyrazu postępu geometrycznego;

b n+1 - wzór na kolejny wyraz ciągu geometrycznego;

q jest mianownikiem postępu geometrycznego (liczba stała).

Jeśli wykres postępu arytmetycznego jest linią prostą, to postęp geometryczny przedstawia nieco inny obraz:

Podobnie jak w przypadku arytmetyki, postęp geometryczny ma wzór na wartość dowolnego wyrazu. Dowolny n-ty wyraz postępu geometrycznego jest równy iloczynowi pierwszego wyrazu i mianownika postępu do potęgi n pomniejszonej o jeden:

Przykład. Mamy postęp geometryczny, którego pierwszy wyraz jest równy 3, a mianownik postępu jest równy 1,5. Znajdźmy piąty wyraz progresji

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Sumę danej liczby wyrazów oblicza się również za pomocą specjalnego wzoru. Suma n pierwszych wyrazów postępu geometrycznego jest równa różnicy między iloczynem n-tego wyrazu postępu i jego mianownika a pierwszym wyrazem postępu, podzielonej przez mianownik pomniejszony o jeden:

Jeżeli b n zastąpimy wzorem omówionym powyżej, wartość sumy pierwszych n wyrazów rozpatrywanego szeregu liczbowego będzie miała postać:

Przykład. Postęp geometryczny rozpoczyna się od pierwszego wyrazu równego 1. Mianownik jest ustawiony na 3. Znajdźmy sumę pierwszych ośmiu wyrazów.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280


Tak, tak: postęp arytmetyczny to nie zabawka dla Ciebie :)

Cóż, przyjaciele, jeśli czytacie ten tekst, to wewnętrzne dowody cap mówią mi, że jeszcze nie wiecie, czym jest postęp arytmetyczny, ale naprawdę (nie, w ten sposób: DUŻO!) chcecie się tego dowiedzieć. Dlatego nie będę Was dręczyć długimi wstępami i od razu przejdę do sedna.

Najpierw kilka przykładów. Przyjrzyjmy się kilku zestawom liczb:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Co łączy wszystkie te zestawy? Na pierwszy rzut oka nic. Ale rzeczywiście coś jest. Mianowicie: każdy kolejny element różni się od poprzedniego tą samą liczbą.

Oceńcie sami. Pierwszy zestaw to po prostu kolejne liczby, a każda następna jest o jeden większa od poprzedniej. W drugim przypadku różnica między sąsiednimi liczbami wynosi już pięć, ale różnica ta jest nadal stała. W trzecim przypadku są w ogóle korzenie. Jednak $2\sqrt(2)=\sqrt(2)+\sqrt(2)$ i $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, tj. i w tym przypadku każdy kolejny element po prostu zwiększa się o $\sqrt(2)$ (i nie bój się, że ta liczba jest irracjonalna).

Zatem: wszystkie takie ciągi nazywane są postępami arytmetycznymi. Podajmy ścisłą definicję:

Definicja. Ciąg liczb, w którym każda kolejna różni się od poprzedniej dokładnie o tę samą kwotę, nazywa się postępem arytmetycznym. Sama wielkość różnicy między liczbami nazywana jest różnicą progresji i najczęściej oznaczana jest literą $d$.

Notacja: $\left(((a)_(n)) \right)$ to sama progresja, $d$ to jej różnica.

I tylko kilka ważnych uwag. Po pierwsze, brana jest pod uwagę jedynie progresja zamówione sekwencja liczb: można je czytać ściśle w kolejności, w jakiej zostały zapisane – i nic więcej. Liczb nie można zmieniać ani zamieniać.

Po drugie, sama sekwencja może być skończona lub nieskończona. Na przykład zbiór (1; 2; 3) jest oczywiście skończonym ciągiem arytmetycznym. Ale jeśli napiszesz coś w duchu (1; 2; 3; 4; ...) - to już jest nieskończony postęp. Wielokropek po czwórce wydaje się wskazywać, że przed nami jeszcze kilka liczb. Na przykład nieskończenie wiele. :)

Chciałbym również zauważyć, że progresja może być rosnąca lub malejąca. Widzieliśmy już rosnące - ten sam zbiór (1; 2; 3; 4; ...). Oto przykłady progresji malejącej:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

OK, OK: ostatni przykład może wydawać się zbyt skomplikowany. Ale resztę, jak sądzę, rozumiesz. Dlatego wprowadzamy nowe definicje:

Definicja. Postęp arytmetyczny nazywa się:

  1. rosnący, jeśli każdy następny element jest większy od poprzedniego;
  2. zmniejsza się, jeśli wręcz przeciwnie, każdy kolejny element jest mniejszy niż poprzedni.

Ponadto istnieją tak zwane ciągi „stacjonarne” - składają się z tej samej powtarzającej się liczby. Na przykład (3; 3; 3; ...).

Pozostaje tylko jedno pytanie: jak odróżnić progresję rosnącą od malejącej? Na szczęście wszystko tutaj zależy tylko i wyłącznie od znaku liczby $d$, czyli: różnice w progresji:

  1. Jeśli $d \gt 0$, to postęp wzrasta;
  2. Jeśli $d \lt 0$, to postęp oczywiście maleje;
  3. Wreszcie mamy przypadek $d=0$ - w tym przypadku cały postęp sprowadza się do stacjonarnego ciągu identycznych liczb: (1; 1; 1; 1; ...) itd.

Spróbujmy obliczyć różnicę $d$ dla trzech podanych powyżej progresji malejących. Aby to zrobić, wystarczy wziąć dowolne dwa sąsiednie elementy (na przykład pierwszy i drugi) i odjąć liczbę po lewej stronie od liczby po prawej stronie. Będzie to wyglądać tak:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Jak widać, we wszystkich trzech przypadkach różnica faktycznie okazała się ujemna. A teraz, gdy już mniej więcej opracowaliśmy definicje, czas dowiedzieć się, jak opisuje się progresje i jakie mają właściwości.

Warunki progresji i formuła powtarzalności

Ponieważ elementów naszych ciągów nie można zamieniać miejscami, można je ponumerować:

\[\lewy(((a)_(n)) \prawy)=\lewy\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \Prawidłowy\)\]

Poszczególne elementy tego zbioru nazywane są elementami progresji. Są one oznaczone numerem: pierwszy członek, drugi członek itp.

Ponadto, jak już wiemy, sąsiednie wyrazy progresji powiązane są wzorem:

\[((a)_(n))-((a)_(n-1))=d\Strzałka w prawo ((a)_(n))=((a)_(n-1))+d \]

Krótko mówiąc, aby znaleźć $n$-ty wyraz progresji, musisz znać $n-1$-ty wyraz i różnicę $d$. Formuła ta nazywa się rekurencyjną, ponieważ za jej pomocą można znaleźć dowolną liczbę tylko znając poprzednią (a właściwie wszystkie poprzednie). Jest to bardzo niewygodne, dlatego istnieje bardziej przebiegła formuła, która redukuje wszelkie obliczenia do pierwszego członu i różnicy:

\[((a)_(n))=((a)_(1))+\lewo(n-1 \prawo)d\]

Prawdopodobnie spotkałeś się już z tą formułą. Lubią podawać to w różnego rodzaju podręcznikach i książkach z rozwiązaniami. I w każdym rozsądnym podręczniku do matematyki jest to jeden z pierwszych.

Radzę jednak trochę poćwiczyć.

Zadanie nr 1. Zapisz pierwsze trzy wyrazy ciągu arytmetycznego $\left(((a)_(n)) \right)$ jeśli $((a)_(1))=8,d=-5$.

Rozwiązanie. Znamy więc pierwszy wyraz $((a)_(1))=8$ i różnicę progresji $d=-5$. Użyjmy podanego wzoru i zamieńmy $n=1$, $n=2$ i $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \right)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \right)d=((a)_(1))+2d=8-10= -2. \\ \end(align)\]

Odpowiedź: (8; 3; −2)

To wszystko! Uwaga: nasz postęp maleje.

Oczywiście $n=1$ nie dało się zastąpić - pierwszy wyraz jest nam już znany. Jednak podstawiając jedność, byliśmy przekonani, że nawet dla pierwszego wyrazu nasza formuła działa. W innych przypadkach wszystko sprowadzało się do banalnej arytmetyki.

Zadanie nr 2. Zapisz pierwsze trzy wyrazy postępu arytmetycznego, jeśli jego siódmy wyraz jest równy –40, a siedemnasty wyraz jest równy –50.

Rozwiązanie. Zapiszmy warunek problemu w znany sposób:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\(\begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(align) \right.\]

\[\left\( \begin(align) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(align) \Prawidłowy.\]

Umieszczam znak systemowy, ponieważ te wymagania muszą być spełnione jednocześnie. Zauważmy teraz, że jeśli odejmiemy pierwsze od drugiego równania (mamy do tego prawo, ponieważ mamy układ), otrzymamy to:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(align)\]

Tak łatwo jest znaleźć różnicę w progresji! Pozostaje tylko zastąpić znalezioną liczbę dowolnym równaniem układu. Na przykład w pierwszym:

\[\begin(macierz) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(macierz)\]

Teraz, znając pierwszy termin i różnicę, pozostaje znaleźć drugi i trzeci wyraz:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(align)\]

Gotowy! Problem jest rozwiązany.

Odpowiedź: (-34; -35; -36)

Zwróć uwagę na interesującą właściwość progresji, którą odkryliśmy: jeśli weźmiemy wyrazy $n$th i $m$th i odejmiemy je od siebie, otrzymamy różnicę progresji pomnożoną przez liczbę $n-m$:

\[(a)_(n))-((a)_(m))=d\cdot \left(n-m \right)\]

Prosta, ale bardzo przydatna właściwość, którą zdecydowanie musisz znać - z jej pomocą możesz znacznie przyspieszyć rozwiązanie wielu problemów progresyjnych. Oto wyraźny przykład:

Zadanie nr 3. Piąty wyraz ciągu arytmetycznego wynosi 8,4, a dziesiąty wyraz to 14,4. Znajdź piętnasty wyraz tego ciągu.

Rozwiązanie. Ponieważ $((a)_(5))=8,4$, $((a)_(10))=14,4$ i musimy znaleźć $((a)_(15))$, zauważamy co następuje:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(align)\]

Ale według warunku $((a)_(10))-((a)_(5))=14,4-8,4=6$, zatem $5d=6$, z czego mamy:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(align)\]

Odpowiedź: 20,4

To wszystko! Nie musieliśmy tworzyć żadnych układów równań i obliczać pierwszego wyrazu i różnicy - wszystko zostało rozwiązane w zaledwie kilku linijkach.

Przyjrzyjmy się teraz innemu rodzajowi problemu - poszukiwaniu negatywnych i pozytywnych terminów progresji. Nie jest tajemnicą, że jeśli progresja narasta, a jej pierwszy wyraz jest ujemny, to prędzej czy później pojawią się w niej człony pozytywne. I odwrotnie: warunki progresji malejącej prędzej czy później staną się negatywne.

Jednocześnie nie zawsze można znaleźć ten moment „od razu”, przechodząc kolejno przez elementy. Często zadania są pisane w taki sposób, że bez znajomości wzorów obliczenia zajęłyby kilka kartek papieru – po prostu zasypialibyśmy w trakcie szukania odpowiedzi. Dlatego spróbujmy rozwiązać te problemy szybciej.

Zadanie nr 4. Ile wyrazów ujemnych znajduje się w postępie arytmetycznym -38,5; −35,8; ...?

Rozwiązanie. Zatem $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, skąd natychmiast znajdujemy różnicę:

Należy pamiętać, że różnica jest dodatnia, więc progresja wzrasta. Pierwszy wyraz jest ujemny, więc rzeczywiście w pewnym momencie natkniemy się na liczby dodatnie. Pytanie tylko, kiedy to nastąpi.

Spróbujmy dowiedzieć się, jak długo (tj. do jakiej liczby naturalnej $n$) pozostaje negatywność wyrazów:

\[\begin(align) & ((a)_(n)) \lt 0\Strzałka w prawo ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38,5+\left(n-1 \right)\cdot 2,7 \lt 0;\quad \left| \cdot 10 \prawo. \\ & -385+27\cdot \left(n-1 \right) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Strzałka w prawo ((n)_(\max ))=15. \\ \end(align)\]

Ostatnia linijka wymaga wyjaśnienia. Wiemy więc, że $n \lt 15\frac(7)(27)$. Z drugiej strony zadowalają nas tylko całkowite wartości liczby (co więcej: $n\in \mathbb(N)$), zatem największą dopuszczalną liczbą jest właśnie $n=15$, a w żadnym wypadku 16 .

Zadanie nr 5. W postępie arytmetycznym $(()_(5))=-150,(()_(6))=-147$. Znajdź numer pierwszego dodatniego wyrazu tego ciągu.

Byłby to dokładnie ten sam problem, co poprzedni, ale nie znamy $((a)_(1))$. Ale znane są wyrazy sąsiednie: $((a)_(5))$ i $((a)_(6))$, więc łatwo możemy znaleźć różnicę progresji:

Ponadto spróbujmy wyrazić wyraz piąty poprzez pierwszy i różnicę za pomocą standardowego wzoru:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(align)\]

Teraz postępujemy analogicznie do poprzedniego zadania. Przekonajmy się, w którym momencie naszego ciągu pojawią się liczby dodatnie:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Strzałka w prawo ((n)_(\min ))=56. \\ \end(align)\]

Minimalnym rozwiązaniem całkowitym tej nierówności jest liczba 56.

Uwaga: w ostatnim zadaniu wszystko sprowadzało się do ścisłej nierówności, zatem opcja $n=55$ nam nie będzie odpowiadać.

Teraz, gdy nauczyliśmy się rozwiązywać proste problemy, przejdźmy do bardziej złożonych. Ale najpierw przeanalizujmy inną bardzo przydatną właściwość postępów arytmetycznych, która w przyszłości zaoszczędzi nam dużo czasu i nierównych komórek. :)

Średnia arytmetyczna i równe wcięcia

Rozważmy kilka kolejnych wyrazów rosnącego postępu arytmetycznego $\left(((a)_(n)) \right)$. Spróbujmy zaznaczyć je na osi liczbowej:

Warunki ciągu arytmetycznego na osi liczbowej

Specjalnie zaznaczyłem dowolne terminy $((a)_(n-3)),...,((a)_(n+3))$, a nie jakieś $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$ itd. Ponieważ zasada, o której teraz opowiem, działa tak samo dla dowolnych „segmentów”.

A zasada jest bardzo prosta. Zapamiętajmy wzór powtarzalny i zapiszmy go dla wszystkich zaznaczonych terminów:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(align)\]

Równości te można jednak przepisać inaczej:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(align)\]

No i co? Oraz fakt, że terminy $((a)_(n-1))$ i $((a)_(n+1))$ leżą w tej samej odległości od $((a)_(n)) $ . A ta odległość jest równa $d$. To samo można powiedzieć o terminach $((a)_(n-2))$ i $((a)_(n+2))$ - są one również usunięte z $((a)_(n) )$ w tej samej odległości równej 2d$. Można tak ciągnąć w nieskończoność, ale znaczenie dobrze ilustruje rysunek


Warunki progresji leżą w tej samej odległości od centrum

Co to oznacza dla nas? Oznacza to, że $((a)_(n))$ można znaleźć, jeśli znane są sąsiednie liczby:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Wyprowadziliśmy doskonałe stwierdzenie: każdy wyraz ciągu arytmetycznego jest równy średniej arytmetycznej wyrazów sąsiednich! Co więcej: możemy cofnąć się od naszego $((a)_(n))$ w lewo i w prawo nie o jeden krok, ale o $k$ kroków - a formuła nadal będzie poprawna:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

Te. możemy łatwo znaleźć trochę $((a)_(150))$, jeśli znamy $((a)_(100))$ i $((a)_(200))$, ponieważ $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Na pierwszy rzut oka może się wydawać, że fakt ten nie daje nam niczego przydatnego. Jednak w praktyce wiele problemów jest specjalnie dostosowanych do stosowania średniej arytmetycznej. Spójrz:

Zadanie nr 6. Znajdź wszystkie wartości $x$, dla których liczby $-6((x)^(2))$, $x+1$ i $14+4((x)^(2))$ są kolejnymi wyrazami postęp arytmetyczny (w podanej kolejności).

Rozwiązanie. Ponieważ liczby te należą do ciągu, spełniony jest dla nich warunek średniej arytmetycznej: element centralny $x+1$ można wyrazić w postaci elementów sąsiednich:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(align)\]

Rezultatem jest klasyczne równanie kwadratowe. Odpowiedzią są jego pierwiastki: $x=2$ i $x=-3$.

Odpowiedź: −3; 2.

Zadanie nr 7. Znajdź wartości $$, dla których liczby $-1;4-3;(()^(2))+1$ tworzą ciąg arytmetyczny (w tej kolejności).

Rozwiązanie. Wyraźmy jeszcze raz wyraz średni za pomocą średniej arytmetycznej sąsiadujących wyrazów:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \prawo.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(align)\]

Znów równanie kwadratowe. I znowu mamy dwa pierwiastki: $x=6$ i $x=1$.

Odpowiedź 1; 6.

Jeśli w trakcie rozwiązywania problemu natkniesz się na jakieś brutalne liczby lub nie jesteś do końca pewien poprawności znalezionych odpowiedzi, istnieje wspaniała technika, która pozwala sprawdzić: czy poprawnie rozwiązaliśmy problem?

Załóżmy, że w zadaniu nr 6 otrzymaliśmy odpowiedzi −3 i 2. Jak możemy sprawdzić, czy te odpowiedzi są poprawne? Po prostu podłączmy je do stanu pierwotnego i zobaczmy, co się stanie. Przypomnę, że mamy trzy liczby ($-6(()^(2))$, $+1$ i $14+4(()^(2))$), które muszą tworzyć postęp arytmetyczny. Podstawmy $x=-3$:

\[\begin(align) & x=-3\Rightarrow \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(align)\]

Mamy liczby -54; −2; Liczba 50 różniących się o 52 jest niewątpliwie ciągiem arytmetycznym. To samo dzieje się dla $x=2$:

\[\begin(align) & x=2\Rightarrow \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(align)\]

Znowu progresja, ale z różnicą 27. Zatem problem został rozwiązany poprawnie. Chętni mogą sami sprawdzić drugi problem, ale od razu powiem: tam też wszystko jest w porządku.

Ogólnie rzecz biorąc, rozwiązując ostatnie problemy, natknęliśmy się na inny ciekawy fakt, o którym również należy pamiętać:

Jeśli trzy liczby są takie, że druga jest średnią arytmetyczną pierwszej i ostatniej, wówczas liczby te tworzą ciąg arytmetyczny.

W przyszłości zrozumienie tego stwierdzenia pozwoli nam dosłownie „skonstruować” niezbędne postępy w oparciu o warunki problemu. Zanim jednak zajmiemy się taką „konstrukcją”, warto zwrócić uwagę na jeszcze jeden fakt, który bezpośrednio wynika z tego, co zostało już omówione.

Grupowanie i sumowanie elementów

Wróćmy jeszcze raz do osi liczb. Zauważmy tam kilku członków postępu, pomiędzy którymi być może. jest wart wielu innych członków:

Na osi liczbowej zaznaczono 6 elementów

Spróbujmy wyrazić „lewy ogon” poprzez $((a)_(n))$ i $d$, a „prawy ogon” poprzez $((a)_(k))$ i $d$. To jest bardzo proste:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(align)\]

Teraz zauważ, że następujące kwoty są równe:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+((a)_(k))-2d= S. \end(align)\]

Mówiąc najprościej, jeśli na początek weźmiemy pod uwagę dwa elementy progresji, które w sumie są równe pewnej liczbie $S$, a następnie zaczniemy od tych elementów schodzić w przeciwnych kierunkach (do siebie lub odwrotnie, aby się oddalić), Następnie sumy elementów, na które się natkniemy, również będą równe$S$. Najłatwiej można to przedstawić graficznie:


Równe wcięcia dają równe kwoty

Zrozumienie tego faktu pozwoli nam rozwiązać problemy o zasadniczo wyższym poziomie złożoności niż te, które rozważaliśmy powyżej. Na przykład te:

Zadanie nr 8. Wyznacz różnicę ciągu arytmetycznego, w którym pierwszy wyraz wynosi 66, a iloczyn drugiego i dwunastego wyrazu jest najmniejszy z możliwych.

Rozwiązanie. Zapiszmy wszystko, co wiemy:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(align)\]

Nie znamy więc różnicy w progresji $d$. Właściwie całe rozwiązanie zostanie zbudowane wokół różnicy, ponieważ iloczyn $((a)_(2))\cdot ((a)_(12))$ można przepisać w następujący sposób:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \right)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \right)\cdot \left(d+6 \right). \end(align)\]

Dla tych w zbiorniku: wziąłem całkowity mnożnik 11 z drugiego nawiasu. Zatem pożądany iloczyn jest funkcją kwadratową w odniesieniu do zmiennej $d$. Rozważmy zatem funkcję $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - jej wykres będzie parabolą z gałęziami skierowanymi do góry, ponieważ jeśli rozszerzymy nawiasy, otrzymamy:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Jak widać współczynnik najwyższego wyrazu wynosi 11 - jest to liczba dodatnia, więc tak naprawdę mamy do czynienia z parabolą z gałęziami skierowanymi w górę:


wykres funkcji kwadratowej - parabola

Uwaga: ta parabola przyjmuje swoją minimalną wartość w wierzchołku z odciętą $((d)_(0))$. Oczywiście tę odciętą możemy obliczyć korzystając ze standardowego schematu (istnieje wzór $((d)_(0))=(-b)/(2a)\;$), ale znacznie rozsądniej byłoby to zauważyć że żądany wierzchołek leży na osi symetrii paraboli, zatem punkt $((d)_(0))$ jest w równej odległości od pierwiastków równania $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \right)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(align)\]

Dlatego nie spieszyło mi się szczególnie z otwieraniem zamków: w ich oryginalnej formie korzenie były bardzo, bardzo łatwe do znalezienia. Dlatego odcięta jest równa średniej arytmetycznej liczb -66 i -6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Co daje nam odkryta liczba? Dzięki niemu wymagany iloczyn przyjmuje najmniejszą wartość (swoją drogą nigdy nie obliczaliśmy $((y)_(\min ))$ - nie jest to od nas wymagane). Jednocześnie liczba ta jest różnicą pierwotnego postępu, tj. znaleźliśmy odpowiedź. :)

Odpowiedź: −36

Zadanie nr 9. Pomiędzy liczby $-\frac(1)(2)$ i $-\frac(1)(6)$ wstaw trzy liczby tak, aby razem z nimi tworzyły ciąg arytmetyczny.

Rozwiązanie. Zasadniczo musimy utworzyć sekwencję pięciu liczb, przy czym pierwsza i ostatnia liczba są już znane. Oznaczmy brakujące liczby za pomocą zmiennych $x$, $y$ i $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Zauważ, że liczba $y$ jest „środkiem” naszego ciągu - jest w równej odległości od liczb $x$ i $z$ oraz od liczb $-\frac(1)(2)$ i $-\frac (1)(6)$. A jeśli obecnie nie możemy uzyskać $y$ z liczb $x$ i $z$, to sytuacja wygląda inaczej przy końcach progresji. Przypomnijmy średnią arytmetyczną:

Teraz, znając $y$, znajdziemy pozostałe liczby. Zauważ, że $x$ leży pomiędzy liczbami $-\frac(1)(2)$ i $y=-\frac(1)(3)$, które właśnie znaleźliśmy. Dlatego

Stosując podobne rozumowanie, znajdujemy pozostałą liczbę:

Gotowy! Znaleźliśmy wszystkie trzy liczby. Zapiszmy je w odpowiedzi w kolejności, w jakiej należy je wstawić pomiędzy oryginalne liczby.

Odpowiedź: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Zadanie nr 10. Pomiędzy liczby 2 i 42 wstaw kilka liczb, które razem z tymi liczbami tworzą ciąg arytmetyczny, jeśli wiesz, że suma pierwszej, drugiej i ostatniej z wstawionych liczb wynosi 56.

Rozwiązanie. Jeszcze bardziej złożony problem, który jednak rozwiązuje się według tego samego schematu, co poprzednie - poprzez średnią arytmetyczną. Problem w tym, że nie wiemy dokładnie, ile liczb należy wstawić. Załóżmy więc dla pewności, że po wstawieniu wszystkiego będzie dokładnie $n$ liczb, a pierwsza z nich to 2, a ostatnia to 42. W tym przypadku wymagany postęp arytmetyczny można przedstawić w postaci:

\[\lewo(((a)_(n)) \prawo)=\lewo\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \prawo\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Należy jednak pamiętać, że liczby $((a)_(2))$ i $((a)_(n-1))$ otrzymuje się z liczb 2 i 42 na krawędziach o jeden krok ku sobie, tj. . do środka sekwencji. A to oznacza, że

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ale wtedy wyrażenie zapisane powyżej można przepisać w następujący sposób:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(align)\]

Znając $((a)_(3))$ i $((a)_(1))$, możemy łatwo znaleźć różnicę progresji:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Strzałka w prawo d=5. \\ \end(align)\]

Pozostaje tylko znaleźć pozostałe wyrazy:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(align)\]

Tym samym już w 9. kroku dotrzemy do lewego końca ciągu – liczby 42. W sumie należało wstawić tylko 7 liczb: 7; 12; 17; 22; 27; 32; 37.

Odpowiedź: 7; 12; 17; 22; 27; 32; 37

Zadania tekstowe z progresją

Podsumowując, chciałbym rozważyć kilka stosunkowo prostych problemów. No cóż, proste: dla większości uczniów, którzy uczą się matematyki w szkole i nie przeczytali tego, co jest napisane powyżej, te problemy mogą wydawać się trudne. Niemniej jednak tego typu problemy pojawiają się na egzaminie OGE i Unified State Exam z matematyki, dlatego polecam się z nimi zapoznać.

Zadanie nr 11. W styczniu zespół wyprodukował 62 części, a w każdym kolejnym miesiącu wyprodukował o 14 części więcej niż w miesiącu poprzednim. Ile części wyprodukował zespół w listopadzie?

Rozwiązanie. Oczywiście liczba części wymienionych według miesiąca będzie reprezentować rosnący postęp arytmetyczny. Ponadto:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \right)\cdot 14. \\ \end(align)\]

Listopad to 11 miesiąc roku, więc musimy znaleźć $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Tym samym w listopadzie wyprodukowane zostaną 202 części.

Zadanie nr 12. Pracownia introligatorska opatrzyła w styczniu 216 woluminów, a w każdym kolejnym miesiącu oprawiała o 4 woluminy więcej niż w miesiącu poprzednim. Ile książek oprawiono w grudniu na warsztatach?

Rozwiązanie. Wszystkie takie same:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \right)\cdot 4. \\ \end(align)$

Grudzień jest ostatnim, 12-tym miesiącem roku, więc szukamy $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Oto odpowiedź – w grudniu zostanie oprawionych 260 książek.

Cóż, jeśli doczytałeś tak daleko, spieszę ci pogratulować: pomyślnie ukończyłeś „kurs młodego wojownika” w postępach arytmetycznych. Możesz bezpiecznie przejść do następnej lekcji, gdzie przestudiujemy wzór na sumę progresji, a także ważne i bardzo przydatne konsekwencje z niego wynikające.

Zagadnienia postępu arytmetycznego istniały już w starożytności. Pojawili się i zażądali rozwiązania, ponieważ mieli praktyczną potrzebę.

Tak więc jeden z papirusów starożytnego Egiptu o treści matematycznej, papirus Rhinda (XIX w. p.n.e.), zawiera następujące zadanie: podzielić dziesięć miar chleba pomiędzy dziesięć osób, pod warunkiem, że różnica między każdą z nich wynosi jedną ósmą mierzyć."

A w dziełach matematycznych starożytnych Greków znajdują się eleganckie twierdzenia dotyczące postępu arytmetycznego. W ten sposób Hypsicles z Aleksandrii (II w., który zebrał wiele interesujących problemów i dodał czternastą księgę do Elementów Euklidesa) sformułował myśl: „W ciągu arytmetycznym mającym parzystą liczbę wyrazów suma wyrazów drugiej połowy jest większa niż suma składników pierwszej do kwadratu 1/2 liczby członków.”

Sekwencja jest oznaczona przez. Numery ciągu nazywane są jego członkami i są zwykle oznaczone literami z indeksami wskazującymi numer seryjny tego elementu (a1, a2, a3 ... czytaj: „pierwszy”, „drugi”, „trzeci” i tak dalej ).

Sekwencja może być nieskończona lub skończona.

Co to jest postęp arytmetyczny? Rozumiemy przez to ten uzyskany przez dodanie poprzedniego członu (n) o tej samej liczbie d, która jest różnicą postępu.

Jeśli d<0, то мы имеем убывающую прогрессию. Если d>0, wówczas progresję tę uważa się za rosnącą.

Postęp arytmetyczny nazywa się skończonym, jeśli weźmie się pod uwagę tylko jego kilka pierwszych wyrazów. Przy bardzo dużej liczbie członków jest to już niekończący się postęp.

Każdy postęp arytmetyczny definiuje się za pomocą następującego wzoru:

an =kn+b, podczas gdy b i k to pewne liczby.

Twierdzenie przeciwne jest całkowicie prawdziwe: jeśli ciąg jest dany podobnym wzorem, to jest to dokładnie ciąg arytmetyczny, który ma właściwości:

  1. Każdy wyraz progresji jest średnią arytmetyczną wyrazu poprzedniego i kolejnego.
  2. Odwrotnie: jeśli począwszy od drugiego, każdy wyraz jest średnią arytmetyczną poprzedniego i kolejnego wyrazu, tj. jeżeli warunek jest spełniony, to ciąg ten jest ciągiem arytmetycznym. Równość ta jest także oznaką postępu, dlatego też nazywa się ją zwykle cechą charakterystyczną postępu.
    W ten sam sposób prawdziwe jest twierdzenie odzwierciedlające tę właściwość: ciąg jest postępem arytmetycznym tylko wtedy, gdy ta równość jest prawdziwa dla dowolnego wyrazu ciągu, zaczynając od drugiego.

Właściwość charakterystyczną dla dowolnych czterech liczb ciągu arytmetycznego można wyrazić wzorem an + am = ak + al, jeśli n + m = k + l (m, n, k są liczbami postępu).

W postępie arytmetycznym dowolny niezbędny (N-ty) wyraz można znaleźć za pomocą następującego wzoru:

Na przykład: pierwszy wyraz (a1) w ciągu arytmetycznym jest dany i równy trzy, a różnica (d) jest równa cztery. Musisz znaleźć czterdziesty piąty wyraz tej progresji. a45 = 1+4(45-1)=177

Wzór an = ak + d(n - k) pozwala wyznaczyć n-ty wyraz ciągu arytmetycznego poprzez dowolny z jego k-tych wyrazów, pod warunkiem, że jest on znany.

Sumę wyrazów postępu arytmetycznego (czyli pierwszych n wyrazów postępu skończonego) oblicza się w następujący sposób:

Sn = (a1+an) n/2.

Jeśli znany jest również pierwszy termin, wówczas do obliczeń wygodna jest inna formuła:

Sn = ((2a1+d(n-1))/2)*n.

Sumę ciągu arytmetycznego zawierającego n wyrazów oblicza się w następujący sposób:

Wybór wzorów do obliczeń zależy od warunków zadania i danych wyjściowych.

Ciąg naturalny dowolnych liczb, takich jak 1,2,3,...,n,..., jest najprostszym przykładem postępu arytmetycznego.

Oprócz postępu arytmetycznego istnieje również postęp geometryczny, który ma swoje własne właściwości i cechy.

Zanim zaczniemy decydować problemy z postępem arytmetycznym, zastanówmy się, czym jest ciąg liczb, ponieważ postęp arytmetyczny jest szczególnym przypadkiem ciągu liczbowego.

Sekwencja numerów to zbiór liczb, którego każdy element ma swój własny numer seryjny. Elementy tego zbioru nazywane są elementami ciągu. Numer seryjny elementu sekwencji jest oznaczony indeksem:

Pierwszy element ciągu;

Piąty element ciągu;

- „n-ty” element ciągu, tj. element „stojący w kolejce” pod numerem n.

Istnieje związek pomiędzy wartością elementu sekwencji a jego numerem sekwencyjnym. Zatem sekwencję możemy traktować jako funkcję, której argumentem jest liczba porządkowa elementu ciągu. Inaczej mówiąc, możemy tak powiedzieć sekwencja jest funkcją argumentu naturalnego:

Kolejność można ustawić na trzy sposoby:

1 . Kolejność można określić za pomocą tabeli. W tym przypadku po prostu ustawiamy wartość każdego elementu sekwencji.

Na przykład Ktoś postanowił zająć się zarządzaniem czasem osobistym i na początek policzyć, ile czasu spędza na VKontakte w ciągu tygodnia. Zapisując czas w tabelce otrzyma sekwencję składającą się z siedmiu elementów:

Pierwszy wiersz tabeli wskazuje numer dnia tygodnia, drugi - czas w minutach. Widzimy to, czyli w poniedziałek Ktoś spędził na VKontakte 125 minut, czyli w czwartek - 248 minut, a czyli w piątek tylko 15.

2 . Sekwencję można określić za pomocą wzoru na n-ty wyraz.

W tym przypadku zależność wartości elementu ciągu od jego liczby wyraża się bezpośrednio w postaci wzoru.

Na przykład, jeśli , to

Aby znaleźć wartość elementu ciągu o podanej liczbie, podstawiamy numer elementu do wzoru na n-ty wyraz.

To samo robimy, jeśli chcemy znaleźć wartość funkcji, jeśli znana jest wartość argumentu. Podstawiamy wartość argumentu do równania funkcji:

Jeśli na przykład , To

Jeszcze raz zauważę, że w ciągu, w odróżnieniu od dowolnej funkcji numerycznej, argumentem może być tylko liczba naturalna.

3 . Sekwencję można określić za pomocą wzoru wyrażającego zależność wartości członka sekwencji o numerze n od wartości poprzednich członków. W tym przypadku nie wystarczy znać tylko numer elementu ciągu, aby znaleźć jego wartość. Musimy określić pierwszego członka lub kilku pierwszych członków sekwencji.

Rozważmy na przykład sekwencję ,

Możemy znaleźć wartości członków sekwencji kolejno, zaczynając od trzeciego:

Oznacza to, że za każdym razem, aby znaleźć wartość n-tego wyrazu ciągu, wracamy do dwóch poprzednich. Ta metoda określania sekwencji nazywa się nawracający, od słowa łacińskiego powtarzalne- Wróć.

Teraz możemy zdefiniować postęp arytmetyczny. Postęp arytmetyczny to prosty przypadek specjalny ciągu liczbowego.

Postęp arytmetyczny jest ciągiem liczbowym, którego każdy element, począwszy od drugiego, jest równy poprzedniemu dodanemu do tej samej liczby.


Numer jest wywoływany różnica postępu arytmetycznego. Różnica ciągu arytmetycznego może być dodatnia, ujemna lub równa zeru.

Jeśli tytuł="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} wzrastający.

Na przykład 2; 5; 8; jedenaście;...

Jeśli , to każdy wyraz postępu arytmetycznego jest mniejszy od poprzedniego i postęp jest malejące.

Na przykład 2; -1; -4; -7;...

Jeśli , to wszystkie wyrazy progresji są równe tej samej liczbie i progresja jest taka stacjonarny.

Na przykład 2;2;2;2;...

Główna właściwość postępu arytmetycznego:

Spójrzmy na zdjęcie.

Widzimy to

, i w tym samym czasie

Dodając te dwie równości, otrzymujemy:

.

Podzielmy obie strony równości przez 2:

Zatem każdy element ciągu arytmetycznego, zaczynając od drugiego, jest równy średniej arytmetycznej dwóch sąsiednich:

Co więcej, od

, i w tym samym czasie

, To

, i dlatego

Każdy wyraz ciągu arytmetycznego rozpoczynający się od title="k>l">, равен среднему арифметическому двух равноотстоящих. !}

Formuła wyrazu VII.

Widzimy, że wyrazy ciągu arytmetycznego spełniają następujące zależności:

i w końcu

Mamy wzór na n-ty wyraz.

WAŻNY! Dowolny element ciągu arytmetycznego można wyrazić za pomocą i. Znając pierwszy wyraz i różnicę ciągu arytmetycznego, możesz znaleźć dowolny jego wyraz.

Suma n wyrazów postępu arytmetycznego.

W dowolnym postępie arytmetycznym sumy wyrazów w jednakowej odległości od skrajnych są sobie równe:

Rozważmy postęp arytmetyczny z n wyrazami. Niech suma n warunków tego postępu będzie równa .

Uporządkujmy warunki progresji najpierw w kolejności rosnącej liczb, a następnie w kolejności malejącej:

Dodajmy parami:

Suma w każdym nawiasie wynosi , liczba par wynosi n.

Otrzymujemy:

Więc, sumę n wyrazów ciągu arytmetycznego można obliczyć korzystając ze wzorów:

Rozważmy rozwiązywanie problemów z postępem arytmetycznym.

1 . Sekwencję podaje wzór na n-ty wyraz: . Udowodnić, że ciąg ten jest postępem arytmetycznym.

Udowodnijmy, że różnica między dwoma sąsiednimi wyrazami ciągu jest równa tej samej liczbie.

Odkryliśmy, że różnica między dwoma sąsiednimi elementami ciągu nie zależy od ich liczby i jest stała. Zatem z definicji ciąg ten jest ciągiem arytmetycznym.

2 . Biorąc pod uwagę postęp arytmetyczny -31; -27;...

a) Znajdź 31 wyrazów progresji.

b) Ustal, czy liczba 41 wchodzi w tę progresję.

A) Widzimy to ;

Zapiszmy wzór na n-ty wyraz naszej progresji.

Ogólnie

W naszym przypadku , Dlatego

Postęp arytmetyczny nazwać ciąg liczb (warunki progresji)

W którym każdy kolejny termin różni się od poprzedniego nowym terminem, który jest również nazywany różnica stopnia lub progresji.

Zatem określając krok progresji i jego pierwszy człon, za pomocą wzoru można znaleźć dowolny jego element

Własności ciągu arytmetycznego

1) Każdy członek ciągu arytmetycznego, zaczynając od drugiej liczby, jest średnią arytmetyczną poprzednich i kolejnych członków ciągu arytmetycznego

Odwrotna sytuacja jest również prawdą. Jeżeli średnia arytmetyczna sąsiednich wyrazów nieparzystych (parzystych) ciągu jest równa wyrazowi znajdującemu się między nimi, to ten ciąg liczb jest postępem arytmetycznym. Korzystając z tego stwierdzenia, bardzo łatwo jest sprawdzić dowolną sekwencję.

Ponadto, dzięki właściwości postępu arytmetycznego, powyższy wzór można uogólnić na następujący

Łatwo to sprawdzić, pisząc wyrazy po prawej stronie znaku równości

Jest często stosowany w praktyce w celu uproszczenia obliczeń w problemach.

2) Sumę pierwszych n wyrazów ciągu arytmetycznego oblicza się ze wzoru

Zapamiętaj dobrze wzór na sumę postępu arytmetycznego, jest on niezbędny w obliczeniach i dość często spotykany w prostych sytuacjach życiowych.

3) Jeśli chcesz znaleźć nie całą sumę, ale część ciągu zaczynając od jego k-tego wyrazu, przyda Ci się następujący wzór na sumę

4) Praktyczne znaczenie ma znalezienie sumy n wyrazów ciągu arytmetycznego zaczynając od k-tej liczby. Aby to zrobić, użyj formuły

Na tym kończy się materiał teoretyczny i przechodzi się do rozwiązywania typowych problemów w praktyce.

Przykład 1. Znajdź czterdziesty wyraz ciągu arytmetycznego 4;7;...

Rozwiązanie:

Według stanu jaki mamy

Określmy krok progresji

Korzystając ze znanego wzoru, znajdujemy czterdziesty wyraz progresji

Przykład 2. Postęp arytmetyczny jest określony przez jego trzeci i siódmy wyraz. Znajdź pierwszy wyraz progresji i sumę dziesięciu.

Rozwiązanie:

Zapiszmy dane elementy progresji korzystając ze wzorów

Odejmujemy pierwsze od drugiego równania, w wyniku czego znajdujemy krok progresji

Podstawiamy znalezioną wartość do dowolnego z równań, aby znaleźć pierwszy wyraz ciągu arytmetycznego

Obliczamy sumę pierwszych dziesięciu wyrazów progresji

Bez stosowania skomplikowanych obliczeń znaleźliśmy wszystkie wymagane ilości.

Przykład 3. Postęp arytmetyczny jest dany przez mianownik i jeden z jego wyrazów. Znajdź pierwszy wyraz progresji, sumę jego 50 wyrazów, zaczynając od 50 i sumę pierwszych 100.

Rozwiązanie:

Zapiszmy wzór na setny element progresji

i znajdź pierwszą

Na podstawie pierwszego znajdujemy 50. wyraz progresji

Znalezienie sumy części progresji

i suma pierwszych 100

Kwota progresji wynosi 250.

Przykład 4.

Znajdź liczbę wyrazów ciągu arytmetycznego, jeśli:

a3-a1=8, a2+a4=14, Sn=111.

Rozwiązanie:

Zapiszmy równania w odniesieniu do pierwszego wyrazu i kroku progresji i określmy je

Otrzymane wartości podstawiamy do wzoru na sumę, aby określić liczbę wyrazów w sumie

Wprowadzamy uproszczenia

i rozwiąż równanie kwadratowe

Z dwóch znalezionych wartości tylko liczba 8 pasuje do warunków problemu. Zatem suma pierwszych ośmiu wyrazów progresji wynosi 111.

Przykład 5.

Rozwiązać równanie

1+3+5+...+x=307.

Rozwiązanie: To równanie jest sumą postępu arytmetycznego. Zapiszmy jego pierwszy wyraz i znajdźmy różnicę w postępie