Aritmetička progresija je niz brojeva. Formula za n-ti član aritmetičke progresije


Neki ljudi s oprezom tretiraju riječ „progresija“, kao vrlo složen termin iz grana više matematike. U međuvremenu, najjednostavnija aritmetička progresija je rad taksimetra (gdje još postoje). A razumijevanje suštine (a u matematici nema ništa važnije od "razumijevanja suštine") aritmetičkog niza nije tako teško, analizirajući nekoliko elementarnih koncepata.

Matematički niz brojeva

Numerički niz se obično naziva nizom brojeva, od kojih svaki ima svoj broj.

a 1 je prvi član niza;

i 2 je drugi član niza;

i 7 je sedmi član niza;

i n je n-ti član niza;

Međutim, ne zanima nas bilo koji proizvoljan skup brojeva i brojeva. Pažnju ćemo usmjeriti na numerički niz u kojem je vrijednost n-og člana povezana s njegovim rednim brojem odnosom koji se može jasno matematički formulirati. Drugim riječima: brojčana vrijednost n-tog broja je neka funkcija od n.

a je vrijednost člana numeričkog niza;

n - njegov serijski broj;

f(n) je funkcija, gdje je redni broj u numeričkom nizu n argument.

Definicija

Aritmetičkom progresijom se obično naziva numerički niz u kojem je svaki sljedeći član veći (manji) od prethodnog za isti broj. Formula za n-ti član aritmetičkog niza je sljedeća:

a n - vrijednost trenutnog člana aritmetička progresija;

a n+1 - formula sledećeg broja;

d - razlika (određeni broj).

Lako je utvrditi da ako je razlika pozitivna (d>0), tada će svaki sljedeći član razmatranog niza biti veći od prethodnog i takva će se aritmetička progresija povećavati.

Na donjem grafikonu lako je vidjeti zašto numerički niz nazvano "povećanje".

U slučajevima kada je razlika negativna (d<0), каждый последующий член по понятным причинам будет меньше предыдущего, график прогрессии станет «уходить» вниз, арифметическая прогрессия, соответственно, будет именоваться убывающей.

Navedena vrijednost člana

Ponekad je potrebno odrediti vrijednost bilo kojeg proizvoljnog člana a n aritmetičke progresije. To se može učiniti uzastopnim izračunavanjem vrijednosti svih članova aritmetičke progresije, počevši od prvog do željenog. Međutim, ovaj put nije uvijek prihvatljiv ako je, na primjer, potrebno pronaći vrijednost petohiljaditog ili osammilionitog člana. Tradicionalni proračuni će oduzeti dosta vremena. Međutim, određena aritmetička progresija može se proučavati korištenjem određenih formula. Postoji i formula za n-ti član: vrijednost bilo kojeg člana aritmetičke progresije može se odrediti kao zbir prvog člana progresije s razlikom progresije, pomnoženom brojem željenog člana, umanjenom za jedan.

Formula je univerzalna za povećanje i smanjenje progresije.

Primjer izračunavanja vrijednosti datog pojma

Rešimo sledeći problem nalaženja vrednosti n-tog člana aritmetičke progresije.

Uvjet: postoji aritmetička progresija s parametrima:

Prvi član niza je 3;

Razlika u nizu brojeva je 1,2.

Zadatak: potrebno je pronaći vrijednost 214 pojmova

Rješenje: da bismo odredili vrijednost datog pojma, koristimo formulu:

a(n) = a1 + d(n-1)

Zamjenom podataka iz iskaza problema u izraz, imamo:

a(214) = a1 + d(n-1)

a(214) = 3 + 1,2 (214-1) = 258,6

Odgovor: 214. član niza je jednak 258,6.

Prednosti ove metode proračuna su očigledne - cijelo rješenje ne traje više od 2 reda.

Zbir datog broja pojmova

Vrlo često je u datom aritmetičkom nizu potrebno odrediti zbir vrijednosti nekih njegovih segmenata. Da biste to učinili, također nije potrebno izračunati vrijednosti svakog pojma i zatim ih zbrajati. Ova metoda je primjenjiva ako je mali broj pojmova čiji zbir treba pronaći. U drugim slučajevima, prikladnije je koristiti sljedeću formulu.

Zbir članova aritmetičke progresije od 1 do n jednak je zbiru prvog i n-tog člana, pomnoženog sa brojem člana n i podijeljenog sa dva. Ako se u formuli vrijednost n-tog člana zamijeni izrazom iz prethodnog stava članka, dobijamo:

Primjer izračuna

Na primjer, riješimo problem sa sljedećim uvjetima:

Prvi član niza je nula;

Razlika je 0,5.

Problem zahtijeva određivanje zbira članova niza od 56 do 101.

Rješenje. Koristimo formulu za određivanje količine progresije:

s(n) = (2∙a1 + d∙(n-1))∙n/2

Prvo određujemo zbir vrijednosti 101 člana progresije zamjenom datih uslova našeg problema u formulu:

s 101 = (2∙0 + 0,5∙(101-1))∙101/2 = 2,525

Očigledno, da bismo saznali zbir članova progresije od 56. do 101., potrebno je od S 101 oduzeti S 55.

s 55 = (2∙0 + 0,5∙(55-1))∙55/2 = 742,5

Dakle, zbir aritmetičke progresije za ovaj primjer je:

s 101 - s 55 = 2.525 - 742,5 = 1.782,5

Primjer praktične primjene aritmetičke progresije

Na kraju članka, vratimo se primjeru aritmetičkog niza datog u prvom pasusu - taksimetar (taxi mjerač automobila). Razmotrimo ovaj primjer.

Ukrcaj u taksi (koji uključuje 3 km putovanja) košta 50 rubalja. Svaki naredni kilometar se plaća po stopi od 22 rublje/km. Udaljenost putovanja je 30 km. Izračunajte cijenu putovanja.

1. Odbacimo prva 3 km čija je cijena uključena u cijenu slijetanja.

30 - 3 = 27 km.

2. Dalje izračunavanje nije ništa drugo do raščlanjivanje niza aritmetičkih brojeva.

Broj člana - broj prijeđenih kilometara (minus prva tri).

Vrijednost člana je zbir.

Prvi član u ovom zadatku će biti jednak a 1 = 50 rubalja.

Razlika progresije d = 22 r.

broj koji nas zanima je vrijednost (27+1)-og člana aritmetičke progresije - očitavanje brojila na kraju 27. kilometra je 27.999... = 28 km.

a 28 = 50 + 22 ∙ (28 - 1) = 644

Proračuni kalendarskih podataka za proizvoljno dug period zasnivaju se na formulama koje opisuju određene numeričke nizove. U astronomiji, dužina orbite geometrijski zavisi od udaljenosti nebeskog tijela do zvijezde. Osim toga, različiti brojevni redovi se uspješno koriste u statistici i drugim primijenjenim oblastima matematike.

Druga vrsta niza brojeva je geometrijska

Geometrijsku progresiju karakteriziraju veće stope promjene u odnosu na aritmetičku progresiju. Nije slučajno da se u politici, sociologiji i medicini, da bi se prikazala velika brzina širenja određene pojave, na primjer, bolesti tokom epidemije, kaže da se proces razvija geometrijskom progresijom.

N-ti član niza geometrijskih brojeva razlikuje se od prethodnog po tome što se množi s nekim konstantnim brojem - nazivnik, na primjer, prvi član je 1, nazivnik je odgovarajući jednak 2, zatim:

n=1: 1 ∙ 2 = 2

n=2: 2 ∙ 2 = 4

n=3: 4 ∙ 2 = 8

n=4: 8 ∙ 2 = 16

n=5: 16 ∙ 2 = 32,

b n - vrijednost trenutnog člana geometrijske progresije;

b n+1 - formula sledećeg člana geometrijske progresije;

q je imenilac geometrijske progresije (konstantni broj).

Ako je graf aritmetičke progresije prava linija, onda geometrijska progresija daje malo drugačiju sliku:

Kao iu slučaju aritmetike, geometrijska progresija ima formulu za vrijednost proizvoljnog člana. Svaki n-ti član geometrijske progresije jednak je umnošku prvog člana i nazivnika progresije na stepen n smanjen za jedan:

Primjer. Imamo geometrijsku progresiju sa prvim članom jednakim 3 i nazivnikom progresije jednakim 1,5. Nađimo 5. član progresije

b 5 = b 1 ∙ q (5-1) = 3 ∙ 1,5 4 = 15,1875

Zbir datog broja termina se također izračunava pomoću posebne formule. Zbir prvih n članova geometrijske progresije jednak je razlici između umnoška n-tog člana progresije i njegovog nazivnika i prvog člana progresije, podijeljen sa nazivnikom smanjenim za jedan:

Ako se b n zamijeni gore opisanom formulom, vrijednost zbroja prvih n članova niza brojeva koji se razmatra imat će oblik:

Primjer. Geometrijska progresija počinje sa prvim članom jednakim 1. Imenilac je postavljen na 3. Nađimo zbir prvih osam članova.

s8 = 1 ∙ (3 8 -1) / (3-1) = 3 280


Da, da: aritmetička progresija nije igračka za tebe :)

Pa, prijatelji, ako čitate ovaj tekst, onda mi interni cap-dokaz govori da još ne znate šta je aritmetička progresija, ali stvarno (ne, onako: JAOO!) želite da znate. Stoga vas neću mučiti dugim uvodima i prijeći ću odmah na stvar.

Prvo, par primjera. Pogledajmo nekoliko skupova brojeva:

  • 1; 2; 3; 4; ...
  • 15; 20; 25; 30; ...
  • $\sqrt(2);\ 2\sqrt(2);\ 3\sqrt(2);...$

Šta je zajedničko svim ovim setovima? Na prvi pogled ništa. Ali zapravo postoji nešto. naime: svaki sljedeći element se razlikuje od prethodnog za isti broj.

Procijenite sami. Prvi set su jednostavno uzastopni brojevi, svaki sljedeći je jedan više od prethodnog. U drugom slučaju, razlika između susjednih brojeva je već pet, ali je ta razlika i dalje konstantna. U trećem slučaju, korijeni su u potpunosti. Međutim, $2\sqrt(2)=\sqrt(2)+\sqrt(2)$, i $3\sqrt(2)=2\sqrt(2)+\sqrt(2)$, tj. i u ovom slučaju, svaki sljedeći element jednostavno se povećava za $\sqrt(2)$ (i ne bojte se da je ovaj broj iracionalan).

Dakle: svi takvi nizovi se nazivaju aritmetičke progresije. Hajde da damo striktnu definiciju:

Definicija. Niz brojeva u kojem se svaki sljedeći razlikuje od prethodnog za potpuno isti iznos naziva se aritmetička progresija. Sam iznos za koji se brojevi razlikuju naziva se razlika progresije i najčešće se označava slovom $d$.

Napomena: $\left(((a)_(n)) \right)$ je sama progresija, $d$ je njena razlika.

I samo nekoliko važnih napomena. Prvo, uzima se u obzir samo napredovanje naredio redosled brojeva: dozvoljeno je da se čitaju striktno onim redom kojim su napisani - i ništa drugo. Brojevi se ne mogu preurediti ili zamijeniti.

Drugo, sam niz može biti ili konačan ili beskonačan. Na primjer, skup (1; 2; 3) je očigledno konačna aritmetička progresija. Ali ako nešto napišete u duhu (1; 2; 3; 4; ...) - to je već beskonačna progresija. Čini se da trotočka iza četiri nagoveštava da predstoji još dosta brojeva. Beskonačno mnogo, na primjer. :)

Također bih želio napomenuti da se progresije mogu povećavati ili smanjivati. Već smo vidjeli sve veće - isti skup (1; 2; 3; 4; ...). Evo primjera opadajuće progresije:

  • 49; 41; 33; 25; 17; ...
  • 17,5; 12; 6,5; 1; −4,5; −10; ...
  • $\sqrt(5);\ \sqrt(5)-1;\ \sqrt(5)-2;\ \sqrt(5)-3;...$

U redu, u redu: posljednji primjer može izgledati previše komplikovano. Ali ostalo, mislim, razumete. Stoga uvodimo nove definicije:

Definicija. Aritmetička progresija se naziva:

  1. povećava se ako je svaki sljedeći element veći od prethodnog;
  2. smanjuje se ako je, naprotiv, svaki sljedeći element manji od prethodnog.

Osim toga, postoje takozvani "stacionarni" nizovi - oni se sastoje od istog broja koji se ponavlja. Na primjer, (3; 3; 3; ...).

Ostaje samo jedno pitanje: kako razlikovati rastuću progresiju od opadajuće? Srećom, ovdje sve zavisi samo od predznaka broja $d$, tj. razlike u napredovanju:

  1. Ako je $d \gt 0$, tada se progresija povećava;
  2. Ako je $d \lt 0$, onda se progresija očito smanjuje;
  3. Konačno, postoji slučaj $d=0$ - u ovom slučaju se cjelokupna progresija svodi na stacionarni niz identičnih brojeva: (1; 1; 1; 1; ...), itd.

Pokušajmo izračunati razliku $d$ za tri opadajuće progresije navedene gore. Da biste to učinili, dovoljno je uzeti bilo koja dva susjedna elementa (na primjer, prvi i drugi) i oduzeti broj s lijeve strane od broja s desne strane. To će izgledati ovako:

  • 41−49=−8;
  • 12−17,5=−5,5;
  • $\sqrt(5)-1-\sqrt(5)=-1$.

Kao što vidimo, u sva tri slučaja razlika je zapravo negativna. A sada kada smo manje-više shvatili definicije, vrijeme je da shvatimo kako su progresije opisane i koja svojstva imaju.

Termini progresije i formula recidiva

Budući da se elementi naših sekvenci ne mogu zamijeniti, mogu se numerisati:

\[\left(((a)_(n)) \right)=\left\( ((a)_(1)),\ ((a)_(2)),((a)_(3 )),... \desno\)\]

Pojedinačni elementi ovog skupa nazivaju se članovima progresije. Označeni su brojem: prvi član, drugi član itd.

Osim toga, kao što već znamo, susjedni termini progresije povezani su formulom:

\[((a)_(n))-((a)_(n-1))=d\Strelica desno ((a)_(n))=((a)_(n-1))+d \]

Ukratko, da biste pronašli $n$-ti član progresije, morate znati $n-1$-ti član i razliku $d$. Ova formula se naziva rekurentna, jer uz njenu pomoć možete pronaći bilo koji broj samo ako poznajete prethodni (i zapravo sve prethodne). Ovo je vrlo nezgodno, pa postoji lukavija formula koja sve izračune svodi na prvi član i razliku:

\[((a)_(n))=((a)_(1))+\left(n-1 \desno)d\]

Vjerovatno ste već naišli na ovu formulu. Vole da ga daju u svim vrstama priručnika i knjiga o rešenjima. I u svakom razumnom udžbeniku matematike jedan je od prvih.

Ipak, predlažem da malo vježbate.

Zadatak br. 1. Zapišite prva tri člana aritmetičke progresije $\left(((a)_(n)) \right)$ ako je $((a)_(1))=8,d=-5$.

Rješenje. Dakle, znamo prvi pojam $((a)_(1))=8$ i razliku progresije $d=-5$. Koristimo upravo datu formulu i zamijenimo $n=1$, $n=2$ i $n=3$:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)d; \\ & ((a)_(1))=((a)_(1))+\left(1-1 \right)d=((a)_(1))=8; \\ & ((a)_(2))=((a)_(1))+\left(2-1 \desno)d=((a)_(1))+d=8-5= 3; \\ & ((a)_(3))=((a)_(1))+\left(3-1 \desno)d=((a)_(1))+2d=8-10= -2. \\ \end(poravnati)\]

Odgovor: (8; 3; −2)

To je sve! Imajte na umu: naš napredak se smanjuje.

Naravno, $n=1$ se ne može zamijeniti - prvi član nam je već poznat. Međutim, zamjenom jedinstva, uvjerili smo se da i za prvi mandat naša formula funkcionira. U drugim slučajevima sve se svelo na banalnu aritmetiku.

Zadatak br. 2. Zapišite prva tri člana aritmetičke progresije ako je njen sedmi član jednak −40, a sedamnaesti član jednak −50.

Rješenje. Zapišimo uslov problema poznatim terminima:

\[((a)_(7))=-40;\quad ((a)_(17))=-50.\]

\[\left\( \begin(align) & ((a)_(7))=((a)_(1))+6d \\ & ((a)_(17))=((a) _(1))+16d \\ \end(poravnati) \desno.\]

\[\left\( \begin(poravnati) & ((a)_(1))+6d=-40 \\ & ((a)_(1))+16d=-50 \\ \end(poravnati) \desno.\]

Stavio sam sistemski znak jer ovi zahtjevi moraju biti ispunjeni istovremeno. Zapazimo da ako oduzmemo prvu od druge jednačine (imamo pravo na to, pošto imamo sistem), dobićemo ovo:

\[\begin(align) & ((a)_(1))+16d-\left(((a)_(1))+6d \right)=-50-\left(-40 \right); \\ & ((a)_(1))+16d-((a)_(1))-6d=-50+40; \\&10d=-10; \\&d=-1. \\ \end(poravnati)\]

Tako je lako pronaći razliku u progresiji! Sve što preostaje je zamijeniti pronađeni broj u bilo koju od jednačina sistema. Na primjer, u prvom:

\[\begin(matrica) ((a)_(1))+6d=-40;\quad d=-1 \\ \Downarrow \\ ((a)_(1))-6=-40; \\ ((a)_(1))=-40+6=-34. \\ \end(matrica)\]

Sada, znajući prvi član i razliku, ostaje da pronađemo drugi i treći član:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=-34-1=-35; \\ & ((a)_(3))=((a)_(1))+2d=-34-2=-36. \\ \end(poravnati)\]

Spremni! Problem je riješen.

Odgovor: (−34; −35; −36)

Obratite pažnju na zanimljivo svojstvo progresije koje smo otkrili: ako uzmemo $n$th i $m$th članove i oduzmemo ih jedan od drugog, dobićemo razliku progresije pomnoženu sa $n-m$ brojem:

\[((a)_(n))-((a)_(m))=d\cdot \lijevo(n-m \desno)\]

Jednostavna, ali vrlo korisna osobina koju svakako trebate znati - uz njenu pomoć možete značajno ubrzati rješavanje mnogih problema progresije. Evo jasnog primjera ovoga:

Zadatak br. 3. Peti član aritmetičke progresije je 8,4, a deseti član 14,4. Pronađite petnaesti član ove progresije.

Rješenje. Budući da je $((a)_(5))=8.4$, $((a)_(10))=14.4$, i moramo pronaći $((a)_(15))$, primjećujemo sljedeće:

\[\begin(align) & ((a)_(15))-((a)_(10))=5d; \\ & ((a)_(10))-((a)_(5))=5d. \\ \end(poravnati)\]

Ali po uslovu $((a)_(10))-((a)_(5))=14.4-8.4=6$, dakle $5d=6$, od čega imamo:

\[\begin(align) & ((a)_(15))-14,4=6; \\ & ((a)_(15))=6+14,4=20,4. \\ \end(poravnati)\]

Odgovor: 20.4

To je sve! Nije nam bilo potrebno da pravimo sistem jednačina i izračunavamo prvi član i razliku - sve je rešeno u samo par redova.

Pogledajmo sada drugu vrstu problema – traženje negativnih i pozitivnih pojmova progresije. Nije tajna da ako se progresija povećava, a njen prvi pojam je negativan, tada će se prije ili kasnije u njoj pojaviti pozitivni termini. I obrnuto: uslovi opadajuće progresije će prije ili kasnije postati negativni.

U isto vrijeme, nije uvijek moguće pronaći ovaj trenutak "naprijed" uzastopnim prolaskom kroz elemente. Često su problemi napisani na način da bez poznavanja formula za proračun bi trebalo nekoliko listova papira – jednostavno bismo zaspali dok bismo pronašli odgovor. Stoga, pokušajmo riješiti ove probleme na brži način.

Zadatak br. 4. Koliko negativnih članova ima u aritmetičkoj progresiji −38,5; −35,8; ...?

Rješenje. Dakle, $((a)_(1))=-38,5$, $((a)_(2))=-35,8$, odakle odmah nalazimo razliku:

Imajte na umu da je razlika pozitivna, pa se progresija povećava. Prvi član je negativan, tako da ćemo zaista u nekom trenutku naići na pozitivne brojeve. Pitanje je samo kada će se to dogoditi.

Pokušajmo saznati koliko dugo (tj. do kojeg prirodnog broja $n$) ostaje negativnost pojmova:

\[\begin(align) & ((a)_(n)) \lt 0\Strelica desno ((a)_(1))+\left(n-1 \right)d \lt 0; \\ & -38.5+\lijevo(n-1 \desno)\cdot 2.7 \lt 0;\quad \left| \cdot 10 \desno. \\ & -385+27\cdot \lijevo(n-1 \desno) \lt 0; \\ & -385+27n-27 \lt 0; \\ & 27n \lt 412; \\ & n \lt 15\frac(7)(27)\Strelica desno ((n)_(\max ))=15. \\ \end(poravnati)\]

Poslednji red zahteva neko objašnjenje. Dakle, znamo da je $n \lt 15\frac(7)(27)$. S druge strane, zadovoljavaju nas samo cjelobrojne vrijednosti broja (štaviše: $n\in \mathbb(N)$), pa je najveći dozvoljeni broj upravo $n=15$, a ni u kojem slučaju 16 .

Zadatak br. 5. U aritmetičkoj progresiji $(()_(5))=-150,(()_(6))=-147$. Pronađite broj prvog pozitivnog člana ove progresije.

Ovo bi bio potpuno isti problem kao i prethodni, ali ne znamo $((a)_(1))$. Ali susjedni pojmovi su poznati: $((a)_(5))$ i $((a)_(6))$, tako da možemo lako pronaći razliku progresije:

Uz to, pokušajmo izraziti peti član kroz prvi i razliku koristeći standardnu ​​formulu:

\[\begin(align) & ((a)_(n))=((a)_(1))+\left(n-1 \right)\cdot d; \\ & ((a)_(5))=((a)_(1))+4d; \\ & -150=((a)_(1))+4\cdot 3; \\ & ((a)_(1))=-150-12=-162. \\ \end(poravnati)\]

Sada nastavljamo po analogiji s prethodnim zadatkom. Hajde da saznamo u kojoj točki u našem nizu će se pojaviti pozitivni brojevi:

\[\begin(align) & ((a)_(n))=-162+\left(n-1 \right)\cdot 3 \gt 0; \\ & -162+3n-3 \gt 0; \\ & 3n \gt 165; \\ & n \gt 55\Strelica desno ((n)_(\min ))=56. \\ \end(poravnati)\]

Minimalno cjelobrojno rješenje ove nejednakosti je broj 56.

Napominjemo: u posljednjem zadatku sve se svelo na strogu nejednakost, tako da nam opcija $n=55$ neće odgovarati.

Sada kada smo naučili kako riješiti jednostavne probleme, prijeđimo na složenije. Ali prvo, proučimo još jedno vrlo korisno svojstvo aritmetičkih progresija, koje će nam uštedjeti mnogo vremena i nejednakih ćelija u budućnosti. :)

Aritmetička sredina i jednaka uvlačenja

Razmotrimo nekoliko uzastopnih članova rastuće aritmetičke progresije $\left(((a)_(n)) \right)$. Pokušajmo ih označiti na brojevnoj pravoj:

Uvjeti aritmetičke progresije na brojevnoj pravoj

Posebno sam označio proizvoljne termine $((a)_(n-3)),...,((a)_(n+3))$, a ne neke $((a)_(1)) ,\ ((a)_(2)),\ ((a)_(3))$, itd. Jer pravilo o kojem ću vam sada reći radi isto za sve "segmente".

A pravilo je vrlo jednostavno. Prisjetimo se ponavljajuće formule i zapišemo je za sve označene pojmove:

\[\begin(align) & ((a)_(n-2))=((a)_(n-3))+d; \\ & ((a)_(n-1))=((a)_(n-2))+d; \\ & ((a)_(n))=((a)_(n-1))+d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n+1))+d; \\ \end(poravnati)\]

Međutim, ove jednakosti se mogu drugačije napisati:

\[\begin(align) & ((a)_(n-1))=((a)_(n))-d; \\ & ((a)_(n-2))=((a)_(n))-2d; \\ & ((a)_(n-3))=((a)_(n))-3d; \\ & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(n+3))=((a)_(n))+3d; \\ \end(poravnati)\]

Pa, pa šta? A činjenica da pojmovi $((a)_(n-1))$ i $((a)_(n+1))$ leže na istoj udaljenosti od $((a)_(n)) $ . I ova udaljenost je jednaka $d$. Isto se može reći i za pojmove $((a)_(n-2))$ i $((a)_(n+2))$ - oni su također uklonjeni iz $((a)_(n) )$ na istoj udaljenosti jednakoj $2d$. Možemo nastaviti do beskonačnosti, ali značenje je dobro ilustrovano slikom


Uslovi progresije leže na istoj udaljenosti od centra

Šta ovo znači za nas? To znači da se $((a)_(n))$ može pronaći ako su susjedni brojevi poznati:

\[((a)_(n))=\frac(((a)_(n-1))+((a)_(n+1)))(2)\]

Izveli smo odličnu izjavu: svaki član aritmetičke progresije jednak je aritmetičkoj sredini njegovih susjednih članova! Štaviše: možemo se odmaknuti od našeg $((a)_(n))$ lijevo i desno ne za jedan korak, već za $k$ koraka - i formula će i dalje biti tačna:

\[((a)_(n))=\frac(((a)_(n-k))+((a)_(n+k)))(2)\]

One. lako možemo pronaći neke $((a)_(150))$ ako znamo $((a)_(100))$ i $((a)_(200))$, jer $(( a)_ (150))=\frac(((a)_(100))+((a)_(200)))(2)$. Na prvi pogled može izgledati da nam ta činjenica ne daje ništa korisno. Međutim, u praksi, mnogi problemi su posebno skrojeni za korištenje aritmetičke sredine. Pogledaj:

Zadatak br. 6. Pronađite sve vrijednosti $x$ za koje su brojevi $-6((x)^(2))$, $x+1$ i $14+4((x)^(2))$ uzastopni termini aritmetičku progresiju (po navedenom redoslijedu).

Rješenje. Pošto su ovi brojevi članovi progresije, za njih je zadovoljen uslov aritmetičke sredine: centralni element $x+1$ može se izraziti u terminima susednih elemenata:

\[\begin(align) & x+1=\frac(-6((x)^(2))+14+4((x)^(2)))(2); \\ & x+1=\frac(14-2((x)^(2)))(2); \\ & x+1=7-((x)^(2)); \\ & ((x)^(2))+x-6=0. \\ \end(poravnati)\]

Rezultat je klasična kvadratna jednadžba. Njegovi korijeni: $x=2$ i $x=-3$ su odgovori.

Odgovor: −3; 2.

Zadatak br. 7. Pronađite vrijednosti $$ za koje brojevi $-1;4-3;(()^(2))+1$ formiraju aritmetičku progresiju (tim redoslijedom).

Rješenje. Izrazimo opet srednji član kroz aritmetičku sredinu susjednih članova:

\[\begin(align) & 4x-3=\frac(x-1+((x)^(2))+1)(2); \\ & 4x-3=\frac(((x)^(2))+x)(2);\quad \left| \cdot 2 \desno.; \\ & 8x-6=((x)^(2))+x; \\ & ((x)^(2))-7x+6=0. \\ \end(poravnati)\]

Opet kvadratna jednadžba. I opet postoje dva korijena: $x=6$ i $x=1$.

Odgovor: 1; 6.

Ako u procesu rješavanja zadatka dođete do nekih brutalnih brojeva, ili niste sasvim sigurni u tačnost pronađenih odgovora, onda postoji divna tehnika koja vam omogućava da provjerite: jesmo li ispravno riješili problem?

Recimo da smo u zadatku br. 6 dobili odgovore −3 i 2. Kako možemo provjeriti da li su ti odgovori tačni? Hajde da ih samo uključimo u originalno stanje i vidimo šta će se desiti. Da vas podsjetim da imamo tri broja ($-6(()^(2))$, $+1$ i $14+4(()^(2))$), koji moraju formirati aritmetičku progresiju. Zamijenimo $x=-3$:

\[\begin(align) & x=-3\Strelica desno \\ & -6((x)^(2))=-54; \\ & x+1=-2; \\ & 14+4((x)^(2))=50. \end(poravnati)\]

Dobili smo brojeve −54; −2; 50 koje se razlikuju za 52 je nesumnjivo aritmetička progresija. Ista stvar se dešava za $x=2$:

\[\begin(align) & x=2\Strelica desno \\ & -6((x)^(2))=-24; \\ & x+1=3; \\ & 14+4((x)^(2))=30. \end(poravnati)\]

Opet progresija, ali sa razlikom od 27. Dakle, problem je ispravno riješen. Oni koji žele mogu sami provjeriti drugi problem, ali odmah ću reći: i tu je sve ispravno.

Generalno, rješavajući posljednje probleme, naišli smo na još jednu zanimljivu činjenicu koju također treba zapamtiti:

Ako su tri broja takva da je drugi aritmetička sredina prvog i posljednjeg, onda ti brojevi čine aritmetičku progresiju.

U budućnosti, razumevanje ove izjave omogućiće nam da doslovno „konstruišemo“ neophodne progresije na osnovu uslova problema. Ali prije nego što se upustimo u ovakvu „konstrukciju“, treba obratiti pažnju na još jednu činjenicu, koja direktno proizlazi iz onoga o čemu je već bilo riječi.

Grupisanje i zbrajanje elemenata

Vratimo se ponovo na brojevnu osu. Napomenimo tu nekoliko članova progresije, između kojih, možda. vrijedi mnogo drugih članova:

Na brojevnoj pravoj je označeno 6 elemenata

Pokušajmo izraziti “lijevi rep” kroz $((a)_(n))$ i $d$, a “desni rep” kroz $((a)_(k))$ i $d$. Vrlo je jednostavno:

\[\begin(align) & ((a)_(n+1))=((a)_(n))+d; \\ & ((a)_(n+2))=((a)_(n))+2d; \\ & ((a)_(k-1))=((a)_(k))-d; \\ & ((a)_(k-2))=((a)_(k))-2d. \\ \end(poravnati)\]

Sada imajte na umu da su sljedeći iznosi jednaki:

\[\begin(align) & ((a)_(n))+((a)_(k))=S; \\ & ((a)_(n+1))+((a)_(k-1))=((a)_(n))+d+((a)_(k))-d= S; \\ & ((a)_(n+2))+((a)_(k-2))=((a)_(n))+2d+(a)_(k))-2d= S. \end(poravnati)\]

Jednostavno, ako za početak uzmemo u obzir dva elementa progresije, koji su ukupno jednaki nekom broju $S$, a zatim počnu koračati od ovih elemenata u suprotnim smjerovima (jedan prema drugom ili obrnuto da bi se udaljili), onda sume elemenata na koje ćemo naići će takođe biti jednaki$S$. Ovo se najjasnije može prikazati grafički:


Jednaka udubljenja daju jednake količine

Razumijevanje ove činjenice omogućit će nam rješavanje problema fundamentalno višeg nivoa složenosti od onih koje smo razmatrali gore. Na primjer, ove:

Zadatak br. 8. Odredite razliku aritmetičke progresije u kojoj je prvi član 66, a proizvod drugog i dvanaestog člana najmanji mogući.

Rješenje. Hajde da zapišemo sve što znamo:

\[\begin(align) & ((a)_(1))=66; \\&d=? \\ & ((a)_(2))\cdot ((a)_(12))=\min . \end(poravnati)\]

Dakle, ne znamo razliku u progresiji $d$. Zapravo, cjelokupno rješenje će biti izgrađeno oko razlike, budući da se proizvod $((a)_(2))\cdot ((a)_(12))$ može prepisati na sljedeći način:

\[\begin(align) & ((a)_(2))=((a)_(1))+d=66+d; \\ & ((a)_(12))=((a)_(1))+11d=66+11d; \\ & ((a)_(2))\cdot ((a)_(12))=\left(66+d \desno)\cdot \left(66+11d \right)= \\ & =11 \cdot \left(d+66 \desno)\cdot \left(d+6 \desno). \end(poravnati)\]

Za one u rezervoaru: uzeo sam ukupan množitelj od 11 iz druge zagrade. Dakle, željeni proizvod je kvadratna funkcija u odnosu na varijablu $d$. Stoga, razmotrite funkciju $f\left(d \right)=11\left(d+66 \right)\left(d+6 \right)$ - njen graf će biti parabola sa granama nagore, jer ako proširimo zagrade, dobijamo:

\[\begin(align) & f\left(d \right)=11\left(((d)^(2))+66d+6d+66\cdot 6 \right)= \\ & =11(( d)^(2))+11\cdot 72d+11\cdot 66\cdot 6 \end(align)\]

Kao što vidite, koeficijent najvećeg člana je 11 - ovo je pozitivan broj, tako da imamo posla sa parabolom sa granama nagore:


graf kvadratne funkcije - parabola

Imajte na umu: ova parabola uzima svoju minimalnu vrijednost na svom vrhu sa apscisom $((d)_(0))$. Naravno, ovu apscisu možemo izračunati koristeći standardnu ​​šemu (postoji formula $((d)_(0))=(-b)/(2a)\;$), ali bi bilo mnogo razumnije primijetiti da željeni vrh leži na osnoj simetriji parabole, stoga je tačka $((d)_(0))$ jednako udaljena od korijena jednadžbe $f\left(d \right)=0$:

\[\begin(align) & f\left(d \right)=0; \\ & 11\cdot \left(d+66 \desno)\cdot \left(d+6 \right)=0; \\ & ((d)_(1))=-66;\quad ((d)_(2))=-6. \\ \end(poravnati)\]

Zato se nisam posebno žurio s otvaranjem zagrada: u njihovom izvornom obliku, korijenje je bilo vrlo, vrlo lako pronaći. Dakle, apscisa je jednaka aritmetičkoj sredini brojeva −66 i −6:

\[((d)_(0))=\frac(-66-6)(2)=-36\]

Šta nam daje otkriveni broj? Kod njega traženi proizvod poprima najmanju vrijednost (usput rečeno, nikada nismo izračunali $((y)_(\min ))$ - to se od nas ne traži). Istovremeno, ovaj broj je razlika u odnosu na prvobitnu progresiju, tj. našli smo odgovor. :)

Odgovor: −36

Zadatak br. 9. Između brojeva $-\frac(1)(2)$ i $-\frac(1)(6)$ ubacite tri broja tako da zajedno sa ovim brojevima čine aritmetičku progresiju.

Rješenje. U suštini, moramo napraviti niz od pet brojeva, s prvim i posljednjim brojem već poznatim. Označimo brojeve koji nedostaju varijablama $x$, $y$ i $z$:

\[\left(((a)_(n)) \right)=\left\( -\frac(1)(2);x;y;z;-\frac(1)(6) \right\ )\]

Imajte na umu da je broj $y$ “sredina” našeg niza - jednako je udaljen od brojeva $x$ i $z$, te od brojeva $-\frac(1)(2)$ i $-\frac (1)( 6)$. A ako trenutno ne možemo dobiti $y$ iz brojeva $x$ i $z$, onda je situacija drugačija sa krajevima progresije. Prisjetimo se aritmetičke sredine:

Sada, znajući $y$, naći ćemo preostale brojeve. Imajte na umu da $x$ leži između brojeva $-\frac(1)(2)$ i $y=-\frac(1)(3)$ koje smo upravo pronašli. Zbog toga

Koristeći slično razmišljanje, nalazimo preostali broj:

Spremni! Pronašli smo sva tri broja. Upišimo ih u odgovor onim redom kojim ih treba umetnuti između originalnih brojeva.

Odgovor: $-\frac(5)(12);\ -\frac(1)(3);\ -\frac(1)(4)$

Zadatak br. 10. Između brojeva 2 i 42 ubacite nekoliko brojeva koji zajedno sa ovim brojevima čine aritmetičku progresiju, ako znate da je zbir prvog, drugog i posljednjeg umetnutih brojeva 56.

Rješenje. Još složeniji problem, koji se, međutim, rješava po istoj shemi kao i prethodni - kroz aritmetičku sredinu. Problem je što ne znamo tačno koliko brojeva treba uneti. Stoga, pretpostavimo za definitivno da će nakon ubacivanja svega biti tačno $n$ brojeva, i prvi od njih je 2, a posljednji je 42. U ovom slučaju, tražena aritmetička progresija može se predstaviti u obliku:

\[\left(((a)_(n)) \right)=\left\( 2;((a)_(2));((a)_(3));...;(( a)_(n-1));42 \desno\)\]

\[((a)_(2))+((a)_(3))+((a)_(n-1))=56\]

Međutim, imajte na umu da su brojevi $((a)_(2))$ i $((a)_(n-1))$ dobijeni iz brojeva 2 i 42 na rubovima za jedan korak jedan prema drugom, tj. do centra niza. A to znači to

\[((a)_(2))+((a)_(n-1))=2+42=44\]

Ali tada se gore napisani izraz može prepisati na sljedeći način:

\[\begin(align) & ((a)_(2))+((a)_(3))+((a)_(n-1))=56; \\ & \left(((a)_(2))+((a)_(n-1)) \right)+((a)_(3))=56; \\ & 44+((a)_(3))=56; \\ & ((a)_(3))=56-44=12. \\ \end(poravnati)\]

Znajući $((a)_(3))$ i $((a)_(1))$, lako možemo pronaći razliku u progresiji:

\[\begin(align) & ((a)_(3))-((a)_(1))=12-2=10; \\ & ((a)_(3))-((a)_(1))=\left(3-1 \right)\cdot d=2d; \\ & 2d=10\Strelica desno d=5. \\ \end(poravnati)\]

Sve što ostaje je pronaći preostale pojmove:

\[\begin(align) & ((a)_(1))=2; \\ & ((a)_(2))=2+5=7; \\ & ((a)_(3))=12; \\ & ((a)_(4))=2+3\cdot 5=17; \\ & ((a)_(5))=2+4\cdot 5=22; \\ & ((a)_(6))=2+5\cdot 5=27; \\ & ((a)_(7))=2+6\cdot 5=32; \\ & ((a)_(8))=2+7\cdot 5=37; \\ & ((a)_(9))=2+8\cdot 5=42; \\ \end(poravnati)\]

Tako ćemo već na 9. koraku doći do lijevog kraja niza - broja 42. Ukupno je trebalo ubaciti samo 7 brojeva: 7; 12; 17; 22; 27; 32; 37.

Odgovor: 7; 12; 17; 22; 27; 32; 37

Riječni problemi s progresijama

U zaključku, želio bih razmotriti nekoliko relativno jednostavnih problema. Pa, onako jednostavno: većini učenika koji uče matematiku u školi, a nisu pročitali ono što je gore napisano, ovi problemi mogu izgledati teški. Ipak, ovo su tipovi zadataka koji se pojavljuju na OGE-u i Jedinstvenom državnom ispitu iz matematike, pa preporučujem da se s njima upoznate.

Zadatak br. 11. Tim je u januaru proizveo 62 dijela, au svakom sljedećem mjesecu proizveo je 14 dijelova više nego u prethodnom mjesecu. Koliko je delova tim proizveo u novembru?

Rješenje. Očigledno je da će broj dijelova navedenih po mjesecima predstavljati rastuću aritmetičku progresiju. Štaviše:

\[\begin(align) & ((a)_(1))=62;\quad d=14; \\ & ((a)_(n))=62+\left(n-1 \desno)\cdot 14. \\ \end(align)\]

Novembar je 11. mjesec u godini, tako da moramo pronaći $((a)_(11))$:

\[((a)_(11))=62+10\cdot 14=202\]

Stoga će u novembru biti proizvedeno 202 dijela.

Zadatak br. 12. Knjigovezačka radionica je u januaru uvezala 216 knjiga, au svakom narednom mjesecu uvezala je po 4 knjige više nego u prethodnom mjesecu. Koliko knjiga je radionica povezala u decembru?

Rješenje. Sve isto:

$\begin(align) & ((a)_(1))=216;\quad d=4; \\ & ((a)_(n))=216+\left(n-1 \desno)\cdot 4. \\ \end(align)$

Decembar je posljednji, 12. mjesec u godini, pa tražimo $((a)_(12))$:

\[((a)_(12))=216+11\cdot 4=260\]

Ovo je odgovor - u decembru će biti ukoričeno 260 knjiga.

Pa, ako ste do sada pročitali, žurim da vam čestitam: uspješno ste završili „kurs mladog borca“ u aritmetičkim progresijama. Možete sa sigurnošću preći na sljedeću lekciju, gdje ćemo proučavati formulu za zbir progresije, kao i važne i vrlo korisne posljedice iz toga.

Problemi s aritmetičkom progresijom postojali su već u antičko doba. Pojavili su se i tražili rješenje jer su imali praktičnu potrebu.

Dakle, jedan od papirusa starog Egipta koji ima matematički sadržaj, Rhind papirus (19. vek pne), sadrži sledeći zadatak: podelite deset mera hleba na deset ljudi, s tim da je razlika između svakog od njih jedna osmina od mjeri.”

A u matematičkim radovima starih Grka postoje elegantne teoreme vezane za aritmetičku progresiju. Tako je Hipsikle iz Aleksandrije (2. vek, koji je sastavio mnoge zanimljive probleme i dodao četrnaestu knjigu Euklidovim elementima), formulisao ideju: „U aritmetičkoj progresiji koja ima paran broj članova, zbir članova 2. polovine veći je od zbira članova 1. na kvadratu 1/2 broja članova."

Niz je označen sa an. Brojevi niza nazivaju se njegovim članovima i obično se označavaju slovima sa indeksima koji označavaju serijski broj ovog člana (a1, a2, a3 ... čitaju: “a 1st”, “a 2nd”, “a 3rd” i tako dalje ).

Niz može biti beskonačan ili konačan.

Šta je aritmetička progresija? Pod njim podrazumijevamo onaj koji se dobije dodavanjem prethodnog člana (n) sa istim brojem d, što je razlika progresije.

Ako d<0, то мы имеем убывающую прогрессию. Если d>0, onda se ova progresija smatra rastućom.

Aritmetička progresija se naziva konačnom ako se uzme u obzir samo nekoliko njenih prvih članova. Sa veoma velikim brojem članova, ovo je već beskonačan napredak.

Svaka aritmetička progresija definirana je sljedećom formulom:

an =kn+b, dok su b i k neki brojevi.

Suprotna izjava je apsolutno tačna: ako je niz zadan sličnom formulom, onda je to upravo aritmetička progresija koja ima svojstva:

  1. Svaki član progresije je aritmetička sredina prethodnog i sljedećeg člana.
  2. Obratno: ako je, počevši od 2., svaki član aritmetička sredina prethodnog i sljedećeg člana, tj. ako je uslov ispunjen, onda je ovaj niz aritmetička progresija. Ova jednakost je također znak progresije, zbog čega se obično naziva karakterističnim svojstvom progresije.
    Na isti način, tačna je teorema koja odražava ovo svojstvo: niz je aritmetička progresija samo ako je ova jednakost tačna za bilo koji od članova niza, počevši od 2.

Karakteristično svojstvo za bilo koja četiri broja aritmetičke progresije može se izraziti formulom an + am = ak + al, ako je n + m = k + l (m, n, k su brojevi progresije).

U aritmetičkoj progresiji, bilo koji neophodan (N-ti) član može se pronaći pomoću sljedeće formule:

Na primjer: prvi član (a1) u aritmetičkoj progresiji je dat i jednak je tri, a razlika (d) jednaka je četiri. Morate pronaći četrdeset peti član ove progresije. a45 = 1+4(45-1)=177

Formula an = ak + d(n - k) vam omogućava da odredite n-ti član aritmetičke progresije kroz bilo koji od njegovih k-tih članova, pod uslovom da je poznat.

Zbir članova aritmetičke progresije (što znači prvih n članova konačne progresije) izračunava se na sljedeći način:

Sn = (a1+an) n/2.

Ako je i 1. član poznat, onda je druga formula pogodna za izračunavanje:

Sn = ((2a1+d(n-1))/2)*n.

Zbir aritmetičke progresije koja sadrži n članova izračunava se na sljedeći način:

Izbor formula za proračun zavisi od uslova problema i početnih podataka.

Prirodni niz bilo kojeg broja, kao što su 1,2,3,...,n,..., je najjednostavniji primjer aritmetičke progresije.

Pored aritmetičke progresije postoji i geometrijska progresija, koja ima svoja svojstva i karakteristike.

Prije nego počnemo odlučivati problemi aritmetičke progresije, hajde da razmotrimo šta je niz brojeva, pošto je aritmetička progresija poseban slučaj niza brojeva.

Brojčani niz je skup brojeva čiji svaki element ima svoj serijski broj. Elementi ovog skupa nazivaju se članovima niza. Serijski broj elementa sekvence označen je indeksom:

Prvi element niza;

Peti element niza;

- "n-ti" element niza, tj. element "stoji u redu" na broju n.

Postoji odnos između vrijednosti elementa sekvence i njegovog redni broj. Stoga, sekvencu možemo smatrati funkcijom čiji je argument redni broj elementa niza. Drugim riječima, možemo to reći niz je funkcija prirodnog argumenta:

Redoslijed se može postaviti na tri načina:

1 . Redoslijed se može odrediti pomoću tabele. U ovom slučaju, jednostavno postavljamo vrijednost svakog člana niza.

Na primjer, Neko je odlučio da se bavi osobnim upravljanjem vremenom i za početak računa koliko vremena provodi na VKontakteu tokom sedmice. Upisivanjem vremena u tabelu, on će dobiti niz koji se sastoji od sedam elemenata:

Prvi red tabele označava broj dana u sedmici, drugi - vrijeme u minutama. Vidimo da je u ponedeljak Neko proveo 125 minuta na VKontakteu, odnosno u četvrtak - 248 minuta, a to je u petak samo 15.

2 . Redoslijed se može specificirati korištenjem formule n-tog pojma.

U ovom slučaju, ovisnost vrijednosti elementa niza o njegovom broju izražava se direktno u obliku formule.

Na primjer, ako , onda

Da bismo pronašli vrijednost elementa niza sa datim brojem, zamjenjujemo broj elementa u formulu n-tog člana.

Istu stvar radimo ako trebamo pronaći vrijednost funkcije ako je vrijednost argumenta poznata. Zamjenjujemo vrijednost argumenta u jednadžbu funkcije:

ako npr. , To

Dozvolite mi da još jednom primijetim da u nizu, za razliku od proizvoljne numeričke funkcije, argument može biti samo prirodan broj.

3 . Niz se može specificirati pomoću formule koja izražava ovisnost vrijednosti broja člana niza n o vrijednostima prethodnih članova. U ovom slučaju, nije nam dovoljno znati samo broj člana niza da bismo pronašli njegovu vrijednost. Moramo navesti prvog člana ili prvih nekoliko članova niza.

Na primjer, razmotrite slijed ,

Možemo pronaći vrijednosti članova niza u nizu, počevši od trećeg:

To jest, svaki put, da bismo pronašli vrijednost n-tog člana niza, vraćamo se na prethodna dva. Ova metoda specificiranja niza se zove ponavljajuća, od latinske riječi recurro- vrati se.

Sada možemo definirati aritmetičku progresiju. Aritmetička progresija je jednostavan poseban slučaj niza brojeva.

Aritmetička progresija je numerički niz čiji je svaki član, počevši od drugog, jednak prethodnom dodanom istom broju.


Broj je pozvan razlika aritmetičke progresije. Razlika aritmetičke progresije može biti pozitivna, negativna ili jednaka nuli.

Ako title="d>0">, то каждый член арифметической прогрессии больше предыдущего, и прогрессия является !} povećanje.

Na primjer, 2; 5; 8; jedanaest;...

Ako je , tada je svaki član aritmetičke progresije manji od prethodnog, a progresija je opadajući.

Na primjer, 2; -1; -4; -7;...

Ako , tada su svi članovi progresije jednaki istom broju, a progresija je stacionarno.

Na primjer, 2;2;2;2;...

Glavno svojstvo aritmetičke progresije:

Pogledajmo sliku.

Vidimo to

, i istovremeno

Sabiranjem ove dvije jednakosti dobijamo:

.

Podijelimo obje strane jednakosti sa 2:

Dakle, svaki član aritmetičke progresije, počevši od drugog, jednak je aritmetičkoj sredini dva susjedna:

Štaviše, pošto

, i istovremeno

, To

, i zbog toga

Svaki član aritmetičke progresije, koji počinje sa title="k>l">, равен среднему арифметическому двух равноотстоящих. !}

Formula th člana.

Vidimo da termini aritmetičke progresije zadovoljavaju sljedeće odnose:

i na kraju

Imamo formula n-tog člana.

BITAN! Bilo koji član aritmetičke progresije može se izraziti kroz i. Znajući prvi član i razliku aritmetičke progresije, možete pronaći bilo koji od njegovih pojmova.

Zbir n članova aritmetičke progresije.

U proizvoljnoj aritmetičkoj progresiji, sumi članova jednako udaljeni od ekstremnih jednaki su jedan drugom:

Razmotrimo aritmetičku progresiju sa n članova. Neka je zbir n članova ove progresije jednak .

Rasporedimo pojmove progresije prvo rastućim redoslijedom brojeva, a zatim opadajućim redoslijedom:

Dodajmo u parovima:

Zbir u svakoj zagradi je , broj parova je n.

Dobijamo:

dakle, zbir n članova aritmetičke progresije može se naći pomoću formula:

Hajde da razmotrimo rješavanje problema aritmetičke progresije.

1 . Niz je dat formulom n-tog člana: . Dokažite da je ovaj niz aritmetička progresija.

Dokažimo da je razlika između dva susjedna člana niza jednaka istom broju.

Otkrili smo da razlika između dva susjedna člana niza ne ovisi o njihovom broju i da je konstanta. Stoga je po definiciji ovaj niz aritmetička progresija.

2 . S obzirom na aritmetičku progresiju -31; -27;...

a) Pronađite 31 termin progresije.

b) Odredite da li je broj 41 uključen u ovu progresiju.

A) Vidimo to;

Zapišimo formulu za n-ti član za našu progresiju.

Uglavnom

U našem slučaju , Zbog toga

Aritmetička progresija imenovati niz brojeva (uslovi progresije)

U kojoj se svaki sljedeći pojam razlikuje od prethodnog po novom pojmu koji se također naziva razlika koraka ili progresije.

Stoga, specificiranjem koraka progresije i njegovog prvog člana, možete pronaći bilo koji njegov element koristeći formulu

Svojstva aritmetičke progresije

1) Svaki član aritmetičke progresije, počevši od drugog broja, je aritmetička sredina prethodnog i sljedećeg člana progresije

I obrnuto je tačno. Ako je aritmetička sredina susjednih neparnih (parnih) članova progresije jednaka terminu koji stoji između njih, onda je ovaj niz brojeva aritmetička progresija. Koristeći ovu izjavu, vrlo je lako provjeriti bilo koji niz.

Također, svojstvom aritmetičke progresije gornja formula se može generalizirati na sljedeće

Ovo je lako provjeriti ako napišete pojmove desno od znaka jednakosti

Često se koristi u praksi za pojednostavljenje proračuna u problemima.

2) Zbir prvih n članova aritmetičke progresije izračunava se pomoću formule

Dobro zapamtite formulu za zbir aritmetičke progresije; ona je neophodna u proračunima i često se nalazi u jednostavnim životnim situacijama.

3) Ako trebate pronaći ne cijeli zbir, već dio niza počevši od njegovog k-tog člana, tada će vam biti korisna sljedeća formula sume

4) Od praktičnog interesa je pronalaženje zbira n članova aritmetičke progresije počevši od k-tog broja. Da biste to učinili, koristite formulu

Ovim se završava teorijski materijal i prelazi se na rješavanje uobičajenih problema u praksi.

Primjer 1. Pronađite četrdeseti član aritmetičke progresije 4;7;...

Rješenje:

Prema stanju koje imamo

Odredimo korak napredovanja

Koristeći dobro poznatu formulu, nalazimo četrdeseti član progresije

Primjer 2. Aritmetička progresija data je trećim i sedmim članom. Pronađite prvi član progresije i zbir deset.

Rješenje:

Zapišimo date elemente progresije koristeći formule

Od druge jednačine oduzimamo prvu, kao rezultat nalazimo korak progresije

Pronađenu vrijednost zamjenjujemo u bilo koju od jednadžbi kako bismo pronašli prvi član aritmetičke progresije

Izračunavamo zbir prvih deset članova progresije

Bez složenih proračuna, pronašli smo sve potrebne količine.

Primjer 3. Aritmetička progresija data je imeniocem i jednim od njegovih članova. Pronađite prvi član progresije, zbir njegovih 50 članova počevši od 50 i zbir prvih 100.

Rješenje:

Zapišimo formulu za stoti element progresije

i pronađite prvu

Na osnovu prvog nalazimo 50. član progresije

Pronalaženje zbroja dijela progresije

i zbir prvih 100

Iznos progresije je 250.

Primjer 4.

Pronađite broj članova aritmetičke progresije ako:

a3-a1=8, a2+a4=14, Sn=111.

Rješenje:

Napišimo jednačine u terminima prvog člana i koraka progresije i odredimo ih

Dobijene vrijednosti zamjenjujemo u formulu sume kako bismo odredili broj članova u zbroju

Vršimo pojednostavljenja

i riješi kvadratnu jednačinu

Od dvije pronađene vrijednosti, samo broj 8 odgovara uslovima problema. Dakle, zbir prvih osam članova progresije je 111.

Primjer 5.

Riješite jednačinu

1+3+5+...+x=307.

Rješenje: Ova jednačina je zbir aritmetičke progresije. Hajde da napišemo njegov prvi član i pronađemo razliku u progresiji